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Definition 1.7

Let f be a function defined on an open interval containing ¢ (except possibly at c),

and L be a real number. The statement

lim f(x) = L, read “the limit of f at cis L”,

Tr—C

means that for each € > 0 there exists a > 0 such that

|f(x) =Ll <e if 0<|z—¢| <§.

Theorem 1.12

Let b, ¢ be real numbers, f, g be functions with lim f(z) = L, lim g(x) = K. Then

r—C

1. limb =0, limx = ¢, lim |z| = |¢[;
Tr—C Tr—C

xr—C

2. lim [f(z) £ g(z)] = L+ K; (fre* £ 4B/ 1E 045 Lo £ )

r—C

3. lim [f(2)g(x)] = LK; (F4f iR ¥ 3042 Lhak )

f(z)

L . .
. lim = _ifK#0. (FA2&AF 2 F > P 5 g TE 3G LehH )
x%cg(l') K * ﬁ;”’ ]"3

Theorem 1.15

If ¢ > 0 and n is a positive integer, then lim Tw = cn.

r—C

Theorem 1.16

If f and g are functions such that lim g(x) = K, lin}( f(z) =L and L = f(K), then

xr—cC

lim(fog)(z)=L.

r—cC

Theorem 1.18: Squeeze Theorem ( % #3732 )

Let f, g, h be functions defined on an interval containing ¢ (except possibly at ¢), and

h(z) < f(z) < g(x) if © # c. If lim h(z) = lim g(z) = L, then lim f(z) exists and is

equal to L.




Definition 1.23: One-sided limits

Let f be a function defined on an interval with ¢ as the left/right end-point, and L

be a real number. The statement

lim f(z)=L / lim f(z)=1L,

r—ct T—Cc™

read “the right/left(-hand) limit of f at ¢ is L” or “the limit of f at ¢ from the right/
left is L”, means that for each € > 0 there exists a 6 > 0 such that

lf(x) =Ll <e if 0<(z—¢)<d/—-0<z—0c<0.

We note that Theorem 1.12, Corollary 1.14, Theorem 1.15, 1.16 and 1.18 are also valid
when the limits are replaced by one-sided limits. Theorem 1.16 is also valid when x — c is
replaced by = — ¢t or © — ¢~ (with z — K unchanged).

Theorem 1.25

Let f be a function defined on an open interval containing ¢ (except possibly at ¢).

The limit lim f(x) exists if and only if lim, f(z) and lim f(x) both exist and are

identical. In either case,

lim f(z) = lim f(z) = lim f(x).

Tr—C T—C r—Cc™

We also established the inequality |sinz| < |z| for all z € R and sinz < x < tanz if
sinz 1

O<z< g Using these inequalities and Theorem 1.25, we conclude that liH(l)
xTx— x

Remark 1.27. The function - is the famous (unnormalized) sinc function; that is,

. X
sinc(z) = 2T and sinc(0) = 1. The example above shows that lin%) sinc(x) = sinc(0).
x r—
: . .. .. l—cosz
Example 1.28. In this example we compute the limit hng) ———5— By the half-angle
r— T

formula, 1 — cos z = 2sin? g; thus

1 —cosz QSin2§ _ lsin2§ 1. 2(110)
v )

1-— 1
Therefore, Theorem 1.16 implies that lir% & =3
T €T



Explanation on “A if and only if B” in Theorem 1.25: It should be clear that “A if B”
means “A happens when B happens” (which is the same as “B implies A”). The statement
“A only if B” means that “A happens only when B happens”; thus “A only if B” means that
“A implies B”.

Proof of Theorem 1.25. (=) - the “only if” part: Suppose that lim f(z) = L, and let £ > 0

r—cC

be given. Then there exists § > 0 such that

|f(z) =Ll <e if O<|z—c|<0.
Therefore, there exists 6 > 0 such that

|If(x) =Ll <e if 0<z—c<d;
thus lim f(z) = L. Similarly, lim f(z) = L.

z—ct T—c~
(<) - the “if” part: Suppose that lim+ f(z) = lim f(z) = L. Let € > 0. Then there exist
01,09 > 0 such that o o
[f(x) =Ll <e if 0<z—c<d
and
|[f(z) —L|<e if —da<x—c<O0.
Define 6 = min{dy,d2}. Then 6 > 0 and if 0 < |z —¢| < 9, we must have 0 <z —c¢ <
and —dy <z —c¢ < 0; thus if 0 < |z — ¢| < 0, we must have |f(z) — L| <e. o

An open interval in the real number system can be unbounded. When the open interval
on which f is defined is not bounded from above (which means there is no real number
which is larger than all the numbers in this interval), we can also consider the behavior of

f(z) as x becomes increasingly large and eventually outgrow all finite bounds.

Definition 1.29: Limits as z — +w

Let f be a function defined on an infinite interval bounded from below/above, and L

be a real number. The statement

lim f(x) =L / lim f(z)=1L,

Tr—00 Tr——00

read “the right/left(-hand) limit of f at ¢ is L” or “the limit of f at ¢ from the right/

left is L”, means that for each € > 0 there exists a real number M > 0 such that

|f(z)—Ll<e if 2>M /x<—M.




Similar to the case of one-sided limit, Theorem 1.12, Corollary 1.14, Theorem 1.15, 1.16

and 1.18 are also valid when the 2 — ¢* are replaced by z — +o0.

Example 1.30. In this example we show that lim f(z) =0 and lim f(z) =0.

1
Let £ > 0 be given. Define M = - Then if © > M or x < —M, we must have |z| > M;
thusif x > M orx < —M,

1
Similarly, lim — = lim — =0.
r—0 |£L“ r——00 ‘l‘|

Example 1.31. Recall the sinc function defined by

' sinz . 20,
sinc(z) = T
1 ifx=0.
sinx 1 . . . . 1 sinx 1
Then . ‘ < Tl for all x # 0 and this provides the inequality T < - < Tl for all

x # 0. By the Squeeze Theorem and the previous example, we find that

lim sinc(z) = lim sinc(z) =0.
r—00 r——00

Theorem 1.32
1

Let f be a function defined on an open interval, and g(z) = f(=) if z # 0.
X

1. Suppose that the open interval is not bounded from above. Then lim f(z) exists
Tr—0

if and only if lim g(x) exists. In either case,

z—0t
lim f(z) = lim g(z).

2. Suppose that the open interval is not bounded from below. Then lim f(z)

Tr——00
exists if and only if lim g(z) exists. In either case,

y—0~
lim f(z) = lim g(x).

T—>—0 z—0~

The theorem above should be very intuitive, and the proof is left as an exercise.



Corollary 1.33

Let p and ¢ be polynomial functions.
1. If the degree of p is smaller than the degree of ¢, then

lim M = lim M

P g@) e ga)

2. If the degree of p is the same as the degree of ¢, then

. plx) . p(z) the leading coefficient of p
lim —% = lim = . . .
e—w q(r) 2—-oq(x) the leading coeflicient of ¢




