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Chapter 2. Differentiation

2.1 The Derivatives of Functions

Let f be a function defined on an open interval containing c. If the limit
L et Ax) — 1)
Az—0 Az

m is the tangent line to the graph of f at point ((c, f(c)).

Definition 2.2

Let f be a function defined on an open interval I containing c. f is said to be
differentiable at ¢ if the limit

= m exists, then the line passing through (c, f (c)) with slope

_ flc+ Az) — f(c)
Alirilo Ax

exists. If the limit above exists, the limit is denoted by f’(c) and called the derivative
of f at c. When the derivative of f at each point of I exists, f issaid to be differentiable

on I and the derivative of f is a function denoted by f”.

Notation: If f is differentiable on an open interval I and c € I, then we use the following
notation:

Fay=Li@ =T =L ).

dzx N % Tr=c

Remark 2.3. Letting z = ¢ + Az in the definition of the derivatives, then
f/(C) — lim f(l') — f(C)

T—C Tr—cC

if the limit exists.

Combining Example 2.4-2.6, we conclude that
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Example 2.7. Let f(x) = sinz. By the sum and difference formula,

flz+ Azx) — f(x) = sin(z + Az) — sinz = sinx cos Ax + sin Az cosz — sinz

=sinx(cos Az — 1) + sin Az cosx;

thus by the fact that lim ST _ 1 and lim cosz =1 _ 0, we find that
z—0 T z—0 X
. fle+Az)— f(x) . [ . cosAx—1 sinAx ] B
Algilo Az = Algilo sinz—— A, 0S| =cosz. (2.1.2)

In other words, the derivative of the sine function is cosine.
On the other hand, let g(z) = cosz. Then g(z) = —f(z — g) Then if Az # 0,

g(x +Azx) —g(x) f(:c—%%—Am)—f(m—%)

Ax Az )
thus

Lot Ar) — g(2)
Az—0 Ax
In other words, the derivative of the cosine function is minus sine. To summarize,

:—cos(az—g) = —sinzx.

d . d .
o sinw = cosx and gy CosT = —sinz. (2.1.3)

Remark 2.8. If f is a function defined on a interval I, and c is one of the end-point. Then
it is possible to define the one-sided derivative. For example, if ¢ is the left end-point of I,
then we can consider the limit

fle+An) = f(0) _ . ) = 1)

Ax—0t Ax rz—ct r—C

if it exists. The limit above, if exists, is called the derivatives of f at ¢ from the right.

Theorem 2.9: ¥ fic i 4

Let f be a function defined on an open interval I, and c € I. If f is differentiable at

¢, then f is continuous at c.

Proof. It x # ¢, f(z) — f(c) = W(m — ¢). Since the limit lim J@) = /o) exists and

T—cC Tr —C

hin(x —¢) =0, by Theorem 1.12 we conclude that
lim [f(z) — f(c)] = <lim f(at)—f(c)) (lim(az‘ - c)) =0.

T—C xTr—C xr —C r—C

Therefore, lim f(z) = f(c¢) which shows that f is continuous at c. o



Remark 2.10. When f is continuous on an open interval I, f is not necessary differentiable

on I. For example, consider f(x) = |z|. Then Theorem 1.12 implies that f is continuous

on I, but lim faz) = 10) = lim [az] D.N.E.
Az—0 Az Az—0 Az

2.2 Rules of Differentiation

We have the following differentiation rules:

1. If k is a constant, then %k =0.

n n—1

. . d
2. If n is a non-zero integer, then = nz"~! (whenever ! makes sense).
T

d . d .
3. —sinx =cosx, — cosT = —sinz.
dx dx

4. If k is a constant and f : (a,b) — R is differentiable at ¢ € (a,b), then kf is

differentiable at ¢ and J

dzx

[k ()] = k£(0).

Ir=cC

5. If f,g: (a,b) — R are differentiable at ¢ € (a,b), then f £ g is differentiable at

¢ and
d

dx

[f(z) £ g(2)] = f'(c) £ g'(c).

Ir=cC

Proof of 5. Let h(x) = f(x) + g(x). Then if Ax # 0,
e+ Aa) ~h(e) _ flet Ax)— £(6)  gle+ Ax) — gle)

Ax Az Az

Since f, g are differentiable at c,

_ fle+Ax)—f(e) ‘
v L v

exist. Therefore, by Theorem 1.12,
h'(c) = f'(c) +g'(c).

The conclusion for the difference can be proved in the same way. =



Example 2.12. Let f(z) = 32% — 5z + 7. Then

d d, d d d
—3—:5 *5i$—3 (2z) =5 =6x —5.

dz

In general, for a polynomial function
p(2) = anz™ + ap 12"+ Far+ag = 2 apz”

where ag,ay,- - ,a, € R, by induction we can show that

d
—p(z) = na,a" "+ (n — Vay,_12""

2y 1
+a kapx*1.
dx 1= Z k

Theorem 2.13: Product Rule

Let f,g : (a,b) — R be real-valued functions, and ¢ € (a,b). If f and g are differen-
tiable at ¢, then fg is differentiable at ¢ and

d

dx

(fg)(x) = f(c)g(c) + flc)g'(c) .

Tr=cC

Proof. Let h(x) = f(x)g(x). Then

h(c+ Az) — h(c) = f(c+ Az)g(c + Az) — f(c)g(c)
= f(c+ Az)g(c+ Az) — f(c)g(c + Az) + f(c)g(c + Az) — f(c)g(c)
= [fle+ Az) = f(0)]g(c+ Az) + f(c)[g(c + Az) — g(c)] .

Therefore, if Ax # 0,

h(c+ AAZL‘; — (o) _ fle+ AAa:; — f(c)g<c + A7)+ f(e)

Since f, g are differentiable at c,

f(c+AAw;—f(0) _ (¢). Tim glc+Ax) —g(c)

Az—0 Az

g(c+ Az) —g(c)
Az .

lim

Az—0

exist. By Theorem 1.12,

, and Alimog(c + Az) = g(c)

which concludes the product rule.



Example 2.14. Let f(z) = 2®sinx. Then the product rule implies that

f(x) = 3z*sinz + 2 cos z .

Theorem 2.15: Quotient Rule

Let f,g : (a,b) — R be real-valued functions, and ¢ € (a,b). If f and g are differen-

tiable at ¢ and g(c) # 0, then / is differentiable at ¢ and
g

LAy f(e)g(c) = f(e)g'(e)
dx rz=c{g g(C)2 )
Proof. Let h(x) = ggg Then
h(c+ Az) — h(c) = LleEB2) _ Je) fle+ Ax)g <c>( +f(AiC)(c + Az)

gle+Az)  gle) 9(c)g
fle+ Ax)g(e) — fle)g(c) + f()g(e) = fle)g(e + Ax)
g(c)g(c + Ax)

[f(c+ Az) - f(e)]g(e) = fl)glc + Ax) — g(c)]

g(c)g(c + Ax)
Therefore, if Ax # 0,
h(c+ Az) — h(c) 1 fle+Azx) — f(e) (c+ Azx) —g(c)
Az ~ gle)g(c+ Ax) [ Ax 9(e) = J(¢) Ax ]

Since f, g are differentiable at c,
- fle+Ax)—flo) - gle+Ar) —g(c)
Alglcrilo Ax = 1) ’Algilo Ax

exist. By Theorem 1.12,

, and Alimog(c + Az) = g(c)

which concludes the quotient rule. O

Example 2.16. Let n be a positive integer and f(z) = =". We have shown by definition

that f'(z) = —nz ™ ! if 2 # 0. Now we use Theorem 2.15 to compute the derivative of f:
if x #0,
4 1
d ., d1 e na"” 1

—2X = —— 0 = — = — = —Nx
dx dx xn x2n x2n



sin x

Example 2.17. Since tanx = by Theorem 2.15 we have

cosz’

cos® x + sin® x 1 )
—tanx = 5 = 5 = sect .
dx cos? x cos? x
Similarly, we also have
—sin®x — cos?z )
—cotx = — = —csco T,
dx sin® x
—sinx
—secr = — 5~ —secxtan,
dx cos? x
COS T
——CSCx = ———— = —cotxrcscx.
dx sin® x

e Higher-order derivatives:
Let f be defined on an open interval I = (a,b). If f’ exists on I and possesses derivatives

at every point in I, by definition we use f” to denote the derivative of f’.In other words,

d d d_2 _dzf(x)( d?y

F(@) = ) = ) = ) = T (= ity = f)).

The function f” is called the second derivative of f. Similar as the “first” derivative case,
2

d
[7(c) = 122 x:cf(w)-
The third derivatives and even higher-order derivatives are denoted by the following: if

y = f(x),

3 3
Third derivative: y”  f"(x) %f{x) ddi(;)
d! d' f(x)

ivative: y@ (4) i
Fourth derivative: y fH(z) = (x) oo

ﬂf(x) d"f(z)

n-th derivative: y™  f (”)(95) dn dxm
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