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Chapter 2. Differentiation
2.1 The Derivatives of Functions
Definition 2.1

Let f be a function defined on an open interval containing c. If the limit

lim
∆xÑ0

f(c+∆x) ´ f(c)

∆x
= m exists, then the line passing through

(
c, f(c)

)
with slope

m is the tangent line to the graph of f at point
(
(c, f(c)

)
.

Definition 2.2
Let f be a function defined on an open interval I containing c. f is said to be
differentiable at c if the limit

lim
∆xÑ0

f(c+∆x) ´ f(c)

∆x

exists. If the limit above exists, the limit is denoted by f 1(c) and called the derivative
of f at c. When the derivative of f at each point of I exists, f is said to be differentiable
on I and the derivative of f is a function denoted by f 1.

Notation: If f is differentiable on an open interval I and c P I, then we use the following
notation:

f 1(x) =
d

dx
f(x) =

df(x)

dx
, f 1(c) =

d

dx

ˇ

ˇ

ˇ

x=c
f(x) .

Remark 2.3. Letting x = c+∆x in the definition of the derivatives, then

f 1(c) = lim
xÑc

f(x) ´ f(c)

x ´ c

if the limit exists.

Combining Example 2.4-2.6, we conclude that

d

dx
xn =

"

nxn´1 @x P R if n P N Y t0u ,

nxn´1 @x ‰ 0 if n P Z and n ă 0 .
(2.1.1)

我們注意到當 n 是負整數時，在計算
d

dx

ˇ

ˇ

ˇ

x=c
xn 時，已經必須先假設 c ‰ 0 才能計算導

數，並非最後算出來
d

dx

ˇ

ˇ

ˇ

x=c
xn = ncn´1 時發現 c 不可為零所以不能代入。這是一個非常

重要的觀念！不能搞錯順序！



Example 2.7. Let f(x) = sinx. By the sum and difference formula,

f(x+∆x) ´ f(x) = sin(x+∆x) ´ sinx = sinx cos∆x+ sin∆x cosx ´ sinx

= sinx(cos∆x ´ 1) + sin∆x cosx ;

thus by the fact that lim
xÑ0

sinx

x
= 1 and lim

xÑ0

cosx ´ 1

x
= 0, we find that

lim
∆xÑ0

f(x+∆x) ´ f(x)

∆x
= lim

∆xÑ0

[
sinx

cos∆x ´ 1

∆x
+

sin∆x

∆x
cosx

]
= cosx . (2.1.2)

In other words, the derivative of the sine function is cosine.
On the other hand, let g(x) = cosx. Then g(x) = ´f

(
x ´

π

2

)
. Then if ∆x ‰ 0,

g(x+∆x) ´ g(x)

∆x
= ´

f
(
x ´

π

2
+∆x

)
´ f

(
x ´

π

2

)
∆x

;

thus
lim

∆xÑ0

g(x+∆x) ´ g(x)

∆x
= ´ cos

(
x ´

π

2

)
= ´ sinx .

In other words, the derivative of the cosine function is minus sine. To summarize,
d

dx
sinx = cosx and d

dx
cosx = ´ sinx . (2.1.3)

Remark 2.8. If f is a function defined on a interval I, and c is one of the end-point. Then
it is possible to define the one-sided derivative. For example, if c is the left end-point of I,
then we can consider the limit

lim
∆xÑ0+

f(c+∆x) ´ f(c)

∆x
= lim

xÑc+

f(x) ´ f(c)

x ´ c

if it exists. The limit above, if exists, is called the derivatives of f at c from the right.

Theorem 2.9: 可微必連續
Let f be a function defined on an open interval I, and c P I. If f is differentiable at
c, then f is continuous at c.

Proof. If x ‰ c, f(x) ´ f(c) =
f(x) ´ f(c)

x ´ c
(x ´ c). Since the limit lim

xÑc

f(x) ´ f(c)

x ´ c
exists and

lim
xÑc

(x ´ c) = 0, by Theorem 1.12 we conclude that

lim
xÑc

[
f(x) ´ f(c)

]
=

(
lim
xÑc

f(x) ´ f(c)

x ´ c

)(
lim
xÑc

(x ´ c)
)
= 0 .

Therefore, lim
xÑc

f(x) = f(c) which shows that f is continuous at c. ˝



Remark 2.10. When f is continuous on an open interval I, f is not necessary differentiable
on I. For example, consider f(x) = |x|. Then Theorem 1.12 implies that f is continuous

on I, but lim
∆xÑ0

f(∆x) ´ f(0)

∆x
= lim

∆xÑ0

|∆x|

∆x
D.N.E.

2.2 Rules of Differentiation
Theorem 2.11

We have the following differentiation rules:

1. If k is a constant, then d

dx
k = 0.

2. If n is a non-zero integer, then d

dx
xn = nxn´1 (whenever xn´1 makes sense).

3. d

dx
sinx = cosx, d

dx
cosx = ´ sinx.

4. If k is a constant and f : (a, b) Ñ R is differentiable at c P (a, b), then kf is
differentiable at c and

d

dx

ˇ

ˇ

ˇ

x=c

[
kf(x)

]
= kf 1(c) .

5. If f, g : (a, b) Ñ R are differentiable at c P (a, b), then f ˘ g is differentiable at
c and

d

dx

ˇ

ˇ

ˇ

x=c

[
f(x) ˘ g(x)

]
= f 1(c) ˘ g 1(c) .

Proof of 5. Let h(x) = f(x) + g(x). Then if ∆x ‰ 0,

h(c+∆x) ´ h(c)

∆x
=

f(c+∆x) ´ f(c)

∆x
+

g(c+∆x) ´ g(c)

∆x
.

Since f, g are differentiable at c,

lim
∆xÑ0

f(c+∆x) ´ f(c)

∆x
= f 1(c) and lim

∆xÑ0

g(c+∆x) ´ g(c)

∆x

exist. Therefore, by Theorem 1.12,

h 1(c) = f 1(c) + g 1(c) .

The conclusion for the difference can be proved in the same way. ˝



Example 2.12. Let f(x) = 3x2 ´ 5x+ 7. Then

d

dx
f(x) =

d

dx
(3x2 ´ 5x) +

d

dx
7 =

d

dx
(3x2) ´

d

dx
(5x)

= 3
d

dx
x2 ´ 5

d

dx
x = 3 ¨ (2x) ´ 5 = 6x ´ 5 .

In general, for a polynomial function

p(x) = anx
n + an´1x

n´1 + ¨ ¨ ¨ + a1x+ a0 ”

n
ÿ

k=0

akx
k ,

where a0, a1, ¨ ¨ ¨ , an P R, by induction we can show that

d

dx
p(x) = nanx

n´1 + (n ´ 1)an´1x
n´2 + ¨ ¨ ¨ + a1 =

n
ÿ

k=1

kakx
k´1 .

Theorem 2.13: Product Rule
Let f, g : (a, b) Ñ R be real-valued functions, and c P (a, b). If f and g are differen-
tiable at c, then fg is differentiable at c and

d

dx

ˇ

ˇ

ˇ

x=c
(fg)(x) = f 1(c)g(c) + f(c)g 1(c) .

Proof. Let h(x) = f(x)g(x). Then

h(c+∆x) ´ h(c) = f(c+∆x)g(c+∆x) ´ f(c)g(c)

= f(c+∆x)g(c+∆x) ´ f(c)g(c+∆x) + f(c)g(c+∆x) ´ f(c)g(c)

=
[
f(c+∆x) ´ f(c)

]
g(c+∆x) + f(c)

[
g(c+∆x) ´ g(c)

]
.

Therefore, if ∆x ‰ 0,

h(c+∆x) ´ h(c)

∆x
=

f(c+∆x) ´ f(c)

∆x
g(c+∆x) + f(c)

g(c+∆x) ´ g(c)

∆x
.

Since f, g are differentiable at c,

lim
∆xÑ0

f(c+∆x) ´ f(c)

∆x
= f 1(c) , lim

∆xÑ0

g(c+∆x) ´ g(c)

∆x
, and lim

∆xÑ0
g(c+∆x) = g(c)

exist. By Theorem 1.12,
h 1(c) = f 1(c)g(c) + f(c)g 1(c)

which concludes the product rule. ˝



Example 2.14. Let f(x) = x3 sinx. Then the product rule implies that

f 1(x) = 3x2 sinx+ x3 cosx .

Theorem 2.15: Quotient Rule
Let f, g : (a, b) Ñ R be real-valued functions, and c P (a, b). If f and g are differen-

tiable at c and g(c) ‰ 0, then f

g
is differentiable at c and

d

dx

ˇ

ˇ

ˇ

x=c

f

g
(x) =

f 1(c)g(c) ´ f(c)g 1(c)

g(c)2
.

Proof. Let h(x) =
f(x)

g(x)
. Then

h(c+∆x) ´ h(c) =
f(c+∆x)

g(c+∆x)
´

f(c)

g(c)
=

f(c+∆x)g(c) ´ f(c)g(c+∆x)

g(c)g(c+∆x)

=
f(c+∆x)g(c) ´ f(c)g(c) + f(c)g(c) ´ f(c)g(c+∆x)

g(c)g(c+∆x)

=

[
f(c+∆x) ´ f(c)

]
g(c) ´ f(c)

[
g(c+∆x) ´ g(c)

]
g(c)g(c+∆x)

.

Therefore, if ∆x ‰ 0,

h(c+∆x) ´ h(c)

∆x
=

1

g(c)g(c+∆x)

[f(c+∆x) ´ f(c)

∆x
g(c) ´ f(c)

g(c+∆x) ´ g(c)

∆x

]
.

Since f, g are differentiable at c,

lim
∆xÑ0

f(c+∆x) ´ f(c)

∆x
= f 1(c) , lim

∆xÑ0

g(c+∆x) ´ g(c)

∆x
, and lim

∆xÑ0
g(c+∆x) = g(c)

exist. By Theorem 1.12,

h 1(c) =
1

g(c)2

[
f 1(c)g(c) ´ f(c)g 1(c)

]
which concludes the quotient rule. ˝

Example 2.16. Let n be a positive integer and f(x) = x´n. We have shown by definition
that f 1(x) = ´nx´n´1 if x ‰ 0. Now we use Theorem 2.15 to compute the derivative of f :
if x ‰ 0,

d

dx
x´n =

d

dx

1

xn
= ´

d

dx
xn

x2n
= ´

nxn´1

x2n
= ´nx´n´1 .



Example 2.17. Since tanx =
sinx

cosx , by Theorem 2.15 we have

d

dx
tanx =

cos2 x+ sin2 x

cos2 x =
1

cos2 x = sec2 x .

Similarly, we also have

d

dx
cotx =

´ sin2 x ´ cos2 x
sin2 x

= ´ csc2 x ,
d

dx
secx = ´

´ sinx

cos2 x = secx tanx ,

d

dx
cscx = ´

cosx
sin2 x

= ´ cotx cscx .

‚ Higher-order derivatives:
Let f be defined on an open interval I = (a, b). If f 1 exists on I and possesses derivatives

at every point in I, by definition we use f 11 to denote the derivative of f 1.In other words,

f 11(x) =
d

dx
f 1(x) =

d

dx

d

dx
f(x) ”

d2

dx2
f(x) =

d2f(x)

dx2

(
=

d2y

dx2
if y = f(x)

)
.

The function f 11 is called the second derivative of f . Similar as the “first” derivative case,

f 11(c) =
d2

dx2

ˇ

ˇ

ˇ

x=c
f(x).

The third derivatives and even higher-order derivatives are denoted by the following: if
y = f(x),

Third derivative: y 12 f 12(x)
d3

dx3
f(x)

d3f(x)

dx3

Fourth derivative: y(4) f (4)(x)
d4

dx4
f(x)

d4f(x)

dx4

...

n-th derivative: y(n) f (n)(x)
dn

dxn
f(x)

dnf(x)

dxn
.
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