微積分 MA1001-A 上課筆記(精簡版) 2018.10.11.

Ching-hsiao Arthur Cheng 鄭經斅

Definition 2.2

Let f be a function defined on an open interval I containing c. f is said to be differentiable at c if the limit

$$\lim_{\Delta x \to 0} \frac{f(c + \Delta x) - f(c)}{\Delta x}$$

exists. If the limit above exists, the limit is denoted by f'(c) and called the derivative of f at c. When the derivative of f at each point of I exists, f is said to be differentiable on I and the derivative of f is a function denoted by f'.

Theorem 2.9: 可微必連續

Let f be a function defined on an open interval I, and $c \in I$. If f is differentiable at c, then f is continuous at c.

Theorem 2.11

We have the following differentiation rules:

- 1. If n is an integer, then $\frac{d}{dx}x^n = nx^{n-1}$ (whenever x^{n-1} makes sense or $x^n \in \mathbb{R}$).
- 2. $\frac{d}{dx}\sin x = \cos x$, $\frac{d}{dx}\cos x = -\sin x$.
- 3. If k is a constant and $f:(a,b)\to\mathbb{R}$ is differentiable at $c\in(a,b)$, then kf is differentiable at c and

$$\frac{d}{dx}\Big|_{x=c} [kf(x)] = kf'(c).$$

4. If $f, g: (a, b) \to \mathbb{R}$ are differentiable at $c \in (a, b)$, then $f \pm g$ is differentiable at c and

$$\frac{d}{dx}\Big|_{x=c} \big[f(x) \pm g(x) \big] = f'(c) \pm g'(c).$$

Theorem 2.13: Product Rule

Let $f, g:(a, b) \to \mathbb{R}$ be real-valued functions, and $c \in (a, b)$. If f and g are differentiable at c, then fg is differentiable at c and

$$\frac{d}{dx}\Big|_{x=c}(fg)(x) = f'(c)g(c) + f(c)g'(c).$$

Theorem 2.15: Quotient Rule

Let $f, g:(a, b) \to \mathbb{R}$ be real-valued functions, and $c \in (a, b)$. If f and g are differentiable at c and $g(c) \neq 0$, then $\frac{f}{g}$ is differentiable at c and

$$\frac{d}{dx}\Big|_{x=c}\frac{f}{g}(x) = \frac{f'(c)g(c) - f(c)g'(c)}{g(c)^2}.$$

We also used the quotient rule to show the following identities:

$$\frac{d}{dx}\tan x = \sec^2 x, \qquad \frac{d}{dx}\cot x = -\csc^2 x,$$

$$\frac{d}{dx}\sec x = \sec x \tan x, \qquad \frac{d}{dx}\csc x = -\csc x \cot x.$$

2.3 The Chain Rule

The chain rule is used to study the derivative of composite functions.

Theorem 2.18: Chain Rule - 連鎖律

Let I, J be open intervals, $f: J \to \mathbb{R}$, $g: I \to \mathbb{R}$ be real-valued functions, and the range of g is contained in J. If g is differentiable at $c \in I$ and f is differentiable at g(c), then $f \circ g$ is differentiable at c and

$$\frac{d}{dx}\Big|_{x=c} (f \circ g)(x) = f'(g(c))g'(c).$$

Proof. To simplify the notation, we set d = g(c).

Let $\varepsilon > 0$ be given. Since f is differentiable at d and g is differentiable at c, there exist $\delta_1, \delta_2 > 0$ such that

$$\left| \frac{f(d+k) - f(d)}{k} - f'(d) \right| < \frac{\varepsilon}{2(1+|g'(c)|)} \text{ if } 0 < |k| < \delta_1,$$

$$\left| \frac{g(c+h) - g(c)}{h} - g'(c) \right| < \min\left\{ 1, \frac{\varepsilon}{2(1+|f'(d)|)} \right\} \text{ if } 0 < |h| < \delta_2.$$

Therefore,

$$|f(d+k) - f(d) - f'(d)k| \le \frac{\varepsilon}{2(1+|g'(c)|)}|k| \text{ if } |k| < \delta_1,$$

 $|g(c+h) - g(c) - g'(c)h| \le \min\left\{1, \frac{\varepsilon}{2(1+|f'(d)|)}\right\}|h| \text{ if } |h| < \delta_2.$

By Theorem 2.9, g is continuous at c; thus $\lim_{h\to 0} g(c+h) = g(c)$. This fact provides $\delta_3 > 0$ such that

$$|g(c+h)-g(c)|<\delta_1 \text{ if } |h|<\delta_3.$$

Define $\delta = \min\{\delta_2, \delta_3\}$. Then $\delta > 0$. Moreover, if $|h| < \delta$, the number $k \equiv g(c+h) - g(c)$ satisfies $|k| < \delta_1$. As a consequence, if $|h| < \delta$,

$$\begin{split} \left| (f \circ g)(c+h) - (f \circ g)(c) - f'(d)g'(c)h \right| &= \left| f(g(c+h)) - f(d) - f'(d)g'(c)h \right| \\ &= \left| f(d+k) - f(d) - f'(d)g'(c)h \right| \\ &= \left| f(d+k) - f(d) - f'(d)k + f'(d)k - f'(d)g'(c)h \right| \\ &\leq \left| f(d+k) - f(d) - f'(d)k \right| + \left| f'(d) \right| \left| k - g'(c)h \right| \\ &\leq \frac{\varepsilon}{2(1+|g'(c)|)} |k| + \left| f'(d) \right| \left| g(c+h) - g(c) - g'(c)h \right| \\ &\leq \frac{\varepsilon}{2(1+|g'(c)|)} (|k-g'(c)h| + |g'(c)||h|) + \left| f'(d) \right| \frac{\varepsilon}{2(1+|f'(d)|)} \\ &\leq \frac{\varepsilon}{2(1+|g'(c)|)} (|h| + |g'(c)||h|) + \left| f'(d) \right| \frac{\varepsilon|h|}{2(1+|f'(d)|)} \\ &= \frac{\varepsilon}{2}|h| + \frac{|f'(d)|}{2(1+|f'(d)|)} \varepsilon|h| \,. \end{split}$$

The inequality above implies that if $0 < |h| < \delta$,

$$\left|\frac{(f\circ g)(c+h)-(f\circ g)(c)}{h}-f'(d)g'(c)\right|\leqslant \frac{\varepsilon}{2}+\frac{\left|f'(d)\right|}{2(1+\left|f'(d)\right|)}\varepsilon<\varepsilon$$

which concludes the chain rule.

How to memorize the chain rule? Let y = g(x) and u = f(y). Then the derivative $u = (f \circ g)(x)$ is $\frac{du}{dx} = \frac{du}{du}\frac{dy}{dx}$.

Example 2.19. Let $f(x) = (3x - 2x^2)^3$. Then $f'(x) = 3(3x - 2x^2)^2(3 - 4x)$.

Example 2.20. Let $f(x) = \left(\frac{3x-1}{x^2+3}\right)^2$. Then

$$f'(x) = 2\left(\frac{3x-1}{x^2+3}\right)^{2-1} \frac{d}{dx} \frac{3x-1}{x^2+3} = \frac{2(3x-1)}{x^2+3} \cdot \frac{3(x^2+3)-2x(3x-1)}{(x^2+3)^2}$$
$$= \frac{2(3x-1)(-3x^2+2x+9)}{(x^2+3)^3}.$$

Example 2.21. Let $f(x) = \tan^3 [(x^2 - 1)^2]$. Then

$$f'(x) = \left\{ 3\tan^2\left[(x^2 - 1)^2 \right] \sec^2\left[(x^2 - 1)^2 \right] \right\} \times \left[2(x^2 - 1) \cdot (2x) \right]$$
$$= 12x(x^2 - 1)\tan^2\left[(x^2 - 1)^2 \right] \sec^2\left[(x^2 - 1)^2 \right].$$

Example 2.22. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0. \end{cases}$$

Then if $x \neq 0$, by the chain rule we have

$$f'(x) = \left(\frac{d}{dx}x^2\right)\sin\frac{1}{x} + x^2\left(\frac{d}{dx}\sin\frac{1}{x}\right) = 2x\sin\frac{1}{x} + x^2\cos\frac{1}{x}\left(\frac{d}{dx}\frac{1}{x}\right)$$
$$= 2x\sin\frac{1}{x} + x^2\cos\frac{1}{x}\left(-\frac{1}{x^2}\right) = 2x\sin\frac{1}{x} - \cos\frac{1}{x}.$$

Next we compute f'(0). If $\Delta x \neq 0$, we have

$$\left| \frac{f(\Delta x) - f(0)}{\Delta x} \right| = \left| \Delta x \sin \frac{1}{\Delta x} \right| \le \left| \Delta x \right|;$$

thus $-|\Delta x| \leq \frac{f(\Delta x) - f(0)}{\Delta x} \leq |\Delta x|$ for all $\Delta x \neq 0$ and the Squeeze Theorem implies that

$$f'(0) = \lim_{\Delta x \to 0} \frac{f(\Delta x) - f(0)}{\Delta x} = 0.$$

Therefore, we conclude that

$$f'(x) = \begin{cases} 2x \sin \frac{1}{x} - \cos \frac{1}{x} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

Definition 2.23

Let f be a function defined on an open interval I. f is said to be continuously differentiable on I if f is differentiable on I and f' is continuous on I.

The function f given in Example 2.22 is differentiable on \mathbb{R} but not continuously differentiable since $\lim_{x\to 0} f'(x)$ D.N.E.