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3.7 Newton’s Method
The Newton method is a numerical method for finding zeros of differentiable functions.
Let f : (a, b) Ñ R be a differentiable function, and c P (a, b) is a zero of f . To find an
approximated value of c, the Newton method is the following iterative scheme:

1. Make an initial estimate x1 P (a, b) that is close to c.

2. Determine a new approximation using the iterative relation:

xn+1 = xn ´
f(xn)

f 1(xn)
.

3. When |xn ´ xn+1| is within the desired accuracy, let xn+1 serve as the final approxi-
mation.

Example 3.32. To find the square root of a positive number A is equivalent to finding
zeros of the function f(x) = x2 ´ A in (0,8). The Newton method provides the iterative
scheme

xn+1 = xn ´
f(xn)

f 1(xn)
= xn ´

x2
n ´ A

2xn

=
xn

2
+

A

2xn

to find approximated value of
?
A.

It can be shown that when
ˇ

ˇ

ˇ

f(x)f 11(x)

f 1(x)2

ˇ

ˇ

ˇ
ă 1 for all x P (a, b), then the Newton method

produces a convergent sequence which approaches a zero in (a, b).



Chapter 4. Integration
‚ The Σ notation: The sum of n-terms a1, a2, ¨ ¨ ¨ , an is written as

n
ř

i=1

ai. In other words,
n

ÿ

i=1

ai = a1 + a2 + ¨ ¨ ¨ + an .

Here i is called the index of summation, ai is the i-th terms of the sum.

‚ Basic properties of sums:
n

ÿ

i=1

(kai + bi) = k
n

ÿ

i=1

ai +
n

ÿ

i=1

bi.

Theorem 4.1: Summation Formula

1.
n
ř

i=1

c = cn if c is a constant; 2.
n
ř

i=1

i =
n(n+ 1)

2
;

3.
n
ř

i=1

i2 =
n(n+ 1)(2n+ 1)

6
; 4.

n
ř

i=1

i3 =
n2(n+ 1)2

4
.

4.1 The Area under the Graph of a Non-negative Con-
tinuous Function

Let f : [a, b] Ñ R be a non-negative continuous function, and R be the region enclosed by
the graph of the function f , the x-axis and straight lines x = a and x = b. We consider
computing A(R), the area of R. Generally speaking, since the graph of y = f(x) is in
general not a straight line, the computation of A(R) is not straight-forward. How do we
compute the area A(R)?

Partition [a, b] into n sub-intervals with equal length, and let ∆x =
b ´ a

n
, xi = a+ i∆x.

By the Extreme Value Theorem, for each 1 ď i ď n f attains its maximum and minimum
on [xi´1, xi]; thus for 1 ď i ď n, there exist Mi,mi P [xi´1, xi] such that

f(Mi) = the maximum of f on [xi´1, xi]

and
f(mi) = the minimum of f on [xi´1, xi].

The sum S(n) ”
n
ř

i=1

f(Mi)∆x is called the upper sum of f for the partition ta = x0 ă x1 ă

x2 ă ¨ ¨ ¨ ă xn = bu, and s(n) ”
n
ř

i=1

f(mi)∆x is called the lower sum of f for the partition



ta = x0 ă x1 ă x2 ă ¨ ¨ ¨ ă xn = bu. By the definition of the upper sum and lower sum, we
find that for each n P N,

n
ÿ

i=1

f(mi)∆x ď A(R) ď

n
ÿ

i=1

f(Mi)∆x .

If the limits of the both sides exist and are identical as ∆x approaches 0 (which is the same
as n approaches infinity), by the Squeeze Theorem we can conclude that A(R) is the same
as the limit.

Example 4.2. Let f(x) = x2, and R be the region enclosed by the graph of y = f(x), the
x axis, and the straight lines x = a and x = b, where we assume that 0 ď a ă b. Then the
lower sum is obtained by the “left end-point rule” approximation of A(R)

n
ÿ

i=1

(
a+

(i ´ 1)(b ´ a)

n

)2 b ´ a

n

and the upper sum is obtained by the “right end-point rule” approximation
n

ÿ

i=1

(
a+

i(b ´ a)

n

)2 b ´ a

n
.

By Theorem 4.1,
n

ÿ

i=1

(
a+

i(b ´ a)

n

)2 b ´ a

n
=

n
ÿ

i=1

[
a2 +

2a(b ´ a)i

n
+

a2(b ´ a)2i2

n2

]b ´ a

n

= a2(b ´ a) +
a(b ´ a)2n(n+ 1)

n2
+

a2(b ´ a)3

n3

n(n+ 1)(2n+ 1)

6

= a2(b ´ a) + a(b ´ a)2
(
1 +

1

n

)
+

a2(b ´ a)3

6

(
1 +

1

n

)(
2 +

1

n

)
.

Letting n Ñ 8, we find that

lim
nÑ8

n
ÿ

i=1

(
a+

i(b ´ a)

n

)2 b ´ a

n
= a2(b ´ a) + a(b ´ a)2 +

a2(b ´ a)3

3
=

b3 ´ a3

3
.

Similarly,
n

ÿ

i=1

(
a+

(i ´ 1)(b ´ a)

n

)2 b ´ a

n
=

a2(b ´ a)

n
+

n
ÿ

i=1

(
a+

i(b ´ a)

n

)2 b ´ a

n
´

b2(b ´ a)

n

= a2(b ´ a) +
a(b ´ a)2n(n+ 1)

n2
+

a2(b ´ a)3

n3

n(n+ 1)(2n+ 1)

6
+

(a2 ´ b2)(b ´ a)

n
;



thus
lim
nÑ8

n
ÿ

i=1

(
a+

(i ´ 1)(b ´ a)

n

)2 b ´ a

n
=

b3 ´ a3

3
.

Therefore, A(R) =
b3 ´ a3

3
.

Remark 4.3. Let R1 be the region enclosed by f(x) = x2, the x-axis and x = a, the
R2 be the region enclosed by f(x) = x2, the x-axis and x = b, then intuitively A(R) =

A(R2) ´ A(R1) and this is true since A(R1) =
a3

3
and A(R2) =

b3

3
.

If f is not continuous, then f might not attain its extrema on the interval [xi´1, xi].
In this case, it might be impossible to form the upper sum or the lower sum for a given
partition. On the other hand, the left end-point rule

n
ř

i=1

f(xi´1)∆x and the right end-point

rule
n
ř

i=1

f(xi)∆x of approximating the area are always possible. We can even consider the

“mid-point rule” approximation given by
n

ÿ

i=1

f
(xi´1 + xi

2

)
∆x

and consider the limit of the expression above as n approaches infinity.

4.2 Riemann Sums and Definite Integrals
In general, in order to find an approximation of A(R), the interval [a, b] does not have to
be divided into sub-intervals with equal length. Assume that [a, b] are divided into n sub-
intervals and the end-points of those sub-intervals are ordered as a = x0 ă x1 ă x2 ă ¨ ¨ ¨ ă

xn = b, here the collection of end-points P = tx0, x1, ¨ ¨ ¨ , xnu is called a partition of [a, b].
Then the “left end-point rule” approximation for the partition P is given by

ℓ(P) =
n

ÿ

i=1

f(xi´1)(xi ´ xi´1)

and the “right end-point rule” approximation for the partition P is given by

r(P) =
n

ÿ

i=1

f(xi)(xi ´ xi´1) .
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