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3.7 Newton’s Method

The Newton method is a numerical method for finding zeros of differentiable functions.
Let f : (a,b) — R be a differentiable function, and ¢ € (a,b) is a zero of f. To find an

approximated value of ¢, the Newton method is the following iterative scheme:
1. Make an initial estimate x; € (a,b) that is close to c.

2. Determine a new approximation using the iterative relation:

f'(zn) .

Tn+1 = Tp —

3. When |z,, — 41| is within the desired accuracy, let x,,1 serve as the final approxi-

mation.

Example 3.32. To find the square root of a positive number A is equivalent to finding
zeros of the function f(z) = 2? — A in (0,00). The Newton method provides the iterative

scheme
fla) oA x, A

Tpy1 = Tn — f/(l'n) = Tnp 20, ? E

to find approximated value of v/A.

It can be shown that when )f ) < 1 for all = € (a,b), then the Newton method

produces a convergent sequence Wthh approaches a zero in (a, b).



Chapter 4. Integration

n
e The ¥ notation: The sum of n-terms ay, as, - - ,a, is written as >, a;. In other words,
i=1
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Here i is called the index of summation, a; is the i-th terms of the sum.

¢ Basic properties of sums: Z(kai +b;) = kz a; + Z b;.
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Theorem 4.1: Summation Formula
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4.1 The Area under the Graph of a Non-negative Con-
tinuous Function

Let f : [a,b] — R be a non-negative continuous function, and R be the region enclosed by
the graph of the function f, the z-axis and straight lines x = a and x = b. We consider
computing A(R), the area of R. Generally speaking, since the graph of y = f(x) is in
general not a straight line, the computation of A(R) is not straight-forward. How do we

compute the area A(R)?
b—

Partition [a, b] into n sub-intervals with equal length, and let Ax = a’ r; = a+1Ax.

n
By the Extreme Value Theorem, for each 1 < ¢ < n f attains its maximum and minimum

on [z;_1,x;]; thus for 1 < i < n, there exist M;, m; € [x;_1, z;| such that
f(M;) = the maximum of f on [z;_1, x;]

and
f(m;) = the minimum of f on [x;_q, z;].
The sum S(n) = >, f(M;)Ax is called the upper sum of f for the partition {a = xy < 21 <
i=1

Ty < -+ <z, = b}, and s(n) = > f(m;)Ax is called the lower sum of f for the partition
=1



{a =2y <1 <29 <+ <z, =b}. By the definition of the upper sum and lower sum, we
find that for each n € N,

n n

3 fm)Ar < AR) < Y f(M;) Az

i=1 i=1
If the limits of the both sides exist and are identical as Az approaches 0 (which is the same

as n approaches infinity), by the Squeeze Theorem we can conclude that A(R) is the same

as the limit.

Example 4.2. Let f(z) = 22, and R be the region enclosed by the graph of y = f(z), the
x axis, and the straight lines x = a and x = b, where we assume that 0 < a < b. Then the
lower sum is obtained by the “left end-point rule” approximation of A(R)

n

2 (a—i— (i—l)(b—a))Qb—a

i=1

and the upper sum is obtained by the “right end-point rule” approximation

n

Z <a+ i(b;a))Qb;a.

i=1

By Theorem 4.1,
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Letting n — o0, we find that
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Similarly,
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thus

R (z’—1)(b—a))2b—a_b3—a3
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Therefore, A(R) = 3

Remark 4.3. Let R; be the region enclosed by f(z) = 2?, the z-axis and x = a, the

Ry be the region enclosed by f(x) = 22, the z-axis and x = b, then intuitively A(R) =
3 3

A(Rz2) — A(R;) and this is true since A(R;) = % and A(Ry) = %
If f is not continuous, then f might not attain its extrema on the interval [z; 1, x;].

In this case, it might be impossible to form the upper sum or the lower sum for a given

partition. On the other hand, the left end-point rule > f(z;—1)Az and the right end-point
i=1

n

rule > f(x;)Ax of approximating the area are always possible. We can even consider the
i=1

“mid-point rule” approximation given by

() A
i=1

and consider the limit of the expression above as n approaches infinity.

4.2 Riemann Sums and Definite Integrals

In general, in order to find an approximation of A(R), the interval [a,b] does not have to
be divided into sub-intervals with equal length. Assume that [a,b] are divided into n sub-
intervals and the end-points of those sub-intervals are ordered as a =g < 11 < a9 < --- <
x, = b, here the collection of end-points P = {xg, z1, -, z,} is called a partition of |a,b].

Then the “left end-point rule” approximation for the partition P is given by

n

UP) =D flaia)(w: — xi1)

i=1
and the “right end-point rule” approximation for the partition P is given by

n

r(P) = Y flw:) (@ — i),

=1
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