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Definition 4.6: Partition of Intervals and Riemann Sums
A finite set P = tx0, x1, ¨ ¨ ¨ , xnu is said to be a partition of the closed interval [a, b] if
a = x0 ă x1 ă ¨ ¨ ¨ ă xn = b. Such a partition P is usually denoted by ta = x0 ă x1 ă

¨ ¨ ¨ ă xnu. The norm of P , denoted by }P}, is the number max
␣

xi ´xi´1

ˇ

ˇ 1 ď i ď n
(

;
that is,

}P} ” max
␣

xi ´ xi´1

ˇ

ˇ 1 ď i ď n
(

.

A partition P = ta = x0 ă x1 ă ¨ ¨ ¨ ă xn = bu is called regular if xi ´ xi´1 = }P} for
all 1 ď i ď n.

Let f : [a, b] Ñ R be a function. A Riemann sum of f for the the partition
P = ta = x0 ă x1 ă ¨ ¨ ¨ ă xn = bu of [a, b] is a sum which takes the form

n
ÿ

i=1

f(ci)(xi ´ xi´1) ,

where the set Ξ = tc0, c1, ¨ ¨ ¨ , cn´1u satisfies that xi´1 ď ci ď xi for each 1 ď i ď n.

Definition 4.7: Riemann Integrals - 黎曼積分

Let f : [a, b] Ñ R be a function. f is said to be Riemann integrable on [a, b] if there
exists a real number A such that for every ε ą 0, there exists δ ą 0 such that if P
is partition of [a, b] satisfying }P} ă δ, then any Riemann sums for the partition P
belongs to the interval (A ´ ε, A+ ε). Such a number A (is unique and) is called the

Riemann integral of f on [a, b] and is denoted by
ż

[a,b]
f(x) dx.

Remark 4.8. For conventional reason, the Riemann integral of f over the interval with left

end-point a and right-end point b is written as
ż b

a
f(x) dx, and is called the definite integral

of f from a to b. The function f sometimes is called the integrand of the integral.
We also note that here in the representation of the integral, x is a dummy variable; that

is, we can use any symbol to denote the independent variable; thus
ż b

a

f(x) dx =

ż b

a

f(t) dt =

ż b

a

f(u) du

and etc.

The following example shows that no all functions are Riemann integrable.



Example 4.9. Consider the Dirichlet function

f(x) =

#

0 if x is rational ,
1 if x is irrational ,

on the interval [1, 2]. By partitioning [1, 2] into n sub-intervals with equal length, the
Riemann sum given by the right end-point rule is always zero since the right end-point of
each sub-interval is rational. On the other hand, by partitioning [1, 2] into n sub-intervals
using geometric sequence 1, r, r2, ¨ ¨ ¨ , rn´1, 2, where r = 2

1
n , by the fact that ri R Q for each

1 ď i ď n ´ 1 the Riemann sum of f for this partition given by the right end-point rule is

n
ÿ

i=1

f(ri)(ri ´ ri´1) =
n´1
ÿ

i=1

(ri ´ ri´1) = r1 ´ r0 + r2 ´ r1 + ¨ ¨ ¨ + rn´1 ´ rn´2

= rn´1 ´ r0 =
2

r
´ 1

which approaches 1 as r approaches 1. Therefore, f is not integrable on [1, 2] since there
are two possible limits of Riemann sums which means that the Riemann sums cannot con-
centrate around any firxed real number.

Theorem 4.10
If f : [a, b] Ñ R is continuous, then f is Riemann integrable on [a, b].

Example 4.11. In this example we compute
ż b

a
xq dx when q ‰ ´1 is a rational number

and 0 ă a ă b. Since f(x) = xq is continuous on [a, b], by Theorem 4.10 to find the integral
it suffices to find the limit of the Riemann sum given by the left end-point rule as }P}

approaches 0.

We follow the idea in Example 4.5. Let r =
(
b

a

) 1
n and xi = ari, as well as the partition

P = ta = x0 ă x1 ă ¨ ¨ ¨ ă xn = bu. Then the Riemann sum of f for the partition P given
by left end-point rule is

L(P) =
n
ÿ

i=1

(ari´1)q(ari ´ ari´1) = aq+1(r ´ 1)
n
ÿ

i=1

r(i´1)(q+1) = aq+1(r ´ 1)
rn(q+1) ´ 1

rq+1 ´ 1

=
r ´ 1

rq+1 ´ 1

(
bq+1 ´ aq+1

)
.



Since d

dr

ˇ

ˇ

ˇ

r=1
rq+1 = (q + 1), we have

lim
rÑ1

rq+1 ´ 1

r ´ 1
=

d

dr

ˇ

ˇ

ˇ

r=1
rq+1 = q + 1 ;

thus by the fact that r Ñ 1 as n Ñ 8 (or }P} Ñ 0), we find that

lim
}P}Ñ0

L(P) = lim
}P}Ñ0

L(P) =
bq+1 ´ aq+1

q + 1
.

Therefore,
ż b

a
xq dx =

bq+1 ´ aq+1

q + 1
if q ‰ 1 is a rational number and 0 ă a ă b.

Example 4.12. Since the sine function is continuous on any closed interval [a, b], to find
ż b

a
sinx dx we can partition [a, b] into sub-intervals with equal length, use the right end-

point rule to find an approximated value of the integral, and finally find the integral by
passing the number of sub-intervals to the limit.

Let ∆x =
b ´ a

n
and xi = a+ i∆x. The right end-point rule gives the approximation

n
ÿ

i=1

sinxi∆x =
n
ÿ

i=1

sin(a+ i∆x)∆x = ∆x
n
ÿ

i=1

sin(a+ i∆x)

of the integral.
Using the sum and difference formula, we find that

cos
[
a+

(
i ´

1

2

)
∆x

]
´ cos

[
a+

(
i+

1

2

)
∆x

]
= 2 sin(a+ i∆x) sin ∆x

2
;

thus if sin ∆x

2
‰ 0,

n
ÿ

i=1

sin(a+ i∆x) =
1

2 sin ∆x
2

[(
cos

(
a+

1

2
∆x

)
´ cos

(
a+

3

2
∆x

))
+
(

cos
(
a+

3

2
∆x

)
´ cos

(
a+

5

2
∆x

))
+ ¨ ¨ ¨ + cos

[
a+ (n ´

1

2

)
∆x

]
´ cos

[
a+

(
n+

1

2

)
∆x

]]
which, by the fact that a+

(
n+

1

2
∆x

)
= b+

1

2
∆x, implies that

n
ÿ

i=1

sinxi∆x =
∆x
2

sin ∆x
2

[
cos

(
a+

1

2
∆x

)
´ cos

(
b+

1

2
∆x

)]
.



By the fact that lim
xÑ0

sinx

x
= 1 and the continuity of the cosine function, we conclude that

ż b

a

sinx dx = lim
nÑ8

n
ÿ

i=1

sinxi∆x = cos a ´ cos b .

Theorem 4.13
Let f : [a, b] Ñ R be a non-negative and continuous function. The area of the region
enclosed by the graph of f , the x-axis, and the vertical lines x = a and x = b is
ż b

a
f(x) dx.

Example 4.14. In this example we use the integral notation to denote the areas of some
common geometric figures (without really doing computations):

1.
ż 2

´2

?
4 ´ x2 dx = 2π ; 2.

ż 1

´1

?
4 ´ x2 dx =

2π

3
+

?
3 ; 3.

ż

?
3

´1

?
4 ´ x2 dx = π +

?
3.

4.2.1 Properties of Definite Integrals
Definition 4.15

1. If f is defined at x = a, then
ż a

a
f(x) dx = 0.

2. If f is integrable on [a, b], then
ż a

b
f(x) dx = ´

ż b

a
f(x) dx = ´

ż

[a,b]
f(x) dx.

Remark 4.16. By the definition above, if f is Riemann integrable on [a, b],
ż a

b
f(x) dx is

the limit of the sum
n
ÿ

i=1

f(xi)(xi ´ xi´) and
n
ÿ

i=1

f(xi´1)(xi ´ xi´1)

as max
␣

|xi ´ xi´1|
ˇ

ˇ 1 ď i ď n
(

Ñ 0, where x0 = b ą x1 ą x2 ą ¨ ¨ ¨ ą xn = a.

Theorem 4.17
If f is Riemann integrable on the three closed intervals determined by a, b and c, then

ż b

a

f(x) dx =

ż c

a

f(x) dx+

ż b

c

f(x) dx .



Theorem 4.18
Let f, g : [a, b] Ñ R be Riemann integrable on [a, b] and k be a constant. Then the
function kf ˘ g are Riemann integrable on [a, b], and

ż b

a

(kf ˘ g)(x) dx = k

ż b

a

f(x) dx ˘

ż b

a

g(x) dx .

Theorem 4.19

If f is non-negative and Riemann integrable on [a, b], then
ż b

a
f(x) dx ě 0.

Corollary 4.20

If f, g are Riemann integrable on [a, b] and f(x) ď g(x) for all a ď x ď b, then
ż b

a

f(x) dx ď

ż b

a

g(x) dx .

Theorem 4.21
If f is Riemann integrable on [a, b], then |f | is Riemann integrable on [a, b] and

ˇ

ˇ

ˇ

ż b

a

f(x) dx
ˇ

ˇ

ˇ
ď

ż b

a

ˇ

ˇf(x)
ˇ

ˇ dx .
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