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Definition 4.6: Partition of Intervals and Riemann Sums

A finite set P = {xg,x1, -+ ,2,} is said to be a partition of the closed interval [a, b] if
a=1xp<x <--- <z, =Db Such a partition P is usually denoted by {a = 2o < x; <
-++ < 2p}. The norm of P, denoted by |P|, is the number max {z; —z;_1 |1 <i < n};

that is,
[Pl = max {z; — 21 |1 < i < n}.

A partition P = {a =9 < 21 < -+ < x, = b} is called regular if z; — x;_1 = ||P] for
all 1 <i<n.
Let f : [a,b] — R be a function. A Riemann sum of f for the the partition

P={a=xy<z; < <x, =0} of [a,]] is a sum which takes the form
D fle)(@i— i),
i=1

where the set = = {cg, 1, ,¢,_1} satisfies that x; 1 < ¢; < z; for each 1 < i < n.

Definition 4.7: Riemann Integrals - % & # ~

Let f : [a,b] — R be a function. f is said to be Riemann integrable on [a, ] if there

exists a real number A such that for every € > 0, there exists 6 > 0 such that if P
is partition of [a, b] satisfying |P| < J, then any Riemann sums for the partition P

belongs to the interval (A — &, A+ ¢). Such a number A (is unique and) is called the

Riemann integral of f on [a, ] and is denoted by f(z)dx.
[a,b]

Remark 4.8. For conventional reason, the Riemann integral of f over the interval with left

b
end-point a and right-end point b is written as f f(z)dz, and is called the definite integral

of f from a to b. The function f sometimes is called the integrand of the integral.
We also note that here in the representation of the integral, x is a dummy variable; that

is, we can use any symbol to denote the independent variable; thus

Lbf(x)dx:Lbf(t)dt:ff(u)du

and etc.

The following example shows that no all functions are Riemann integrable.



Example 4.9. Consider the Dirichlet function

0 if z is rational ,
flz) =

1 if x is irrational ,

on the interval [1,2]. By partitioning [1,2] into n sub-intervals with equal length, the
Riemann sum given by the right end-point rule is always zero since the right end-point of
each sub-interval is rational. On the other hand, by partitioning [1,2] into n sub-intervals
using geometric sequence 1,7, 72, -+ 7"~ 2 where r = 2, by the fact that ri ¢ Q for each
1 <i < n—1 the Riemann sum of f for this partition given by the right end-point rule is

n n—1

Zf(rz)(,rz o Tz’—l) _ Z(rz . Tz’—l) =yl 0 + 2yl 4ot =l pn=2

:Tn—l_rozg_l
r
which approaches 1 as r approaches 1. Therefore, f is not integrable on [1,2] since there
are two possible limits of Riemann sums which means that the Riemann sums cannot con-

centrate around any firxed real number.

Theorem 4.10

If f:]a,b] - R is continuous, then f is Riemann integrable on [a, b].

b

Example 4.11. In this example we compute J x?dr when ¢ # —1 is a rational number

and 0 < a < b. Since f(z) = 29 is continuous on [a, b], by Theorem 4.10 to find the integral
it suffices to find the limit of the Riemann sum given by the left end-point rule as ||P||

approaches 0.

1
We follow the idea in Example 4.5. Let r = (g) " and z; = ar', as well as the partition

P={a=x9 <z <+ <z, =0b}. Then the Riemann sum of f for the partition P given

by left end-point rule is

” : . . LI n(g+1) _ q
L(P) = Z(ar’*l)q(arz —ar' ) =a"™(r —1) Z PO+ — qatl( 1)T
i=1 =1
r—1

— T (bq+1 _ aq+1) ‘

ratl — 1



d
Since - ritt = (g + 1), we have
r=1

ratl — 1 d
lim— = —| rl=g+1;
r—1 r—1 drlr=1 1

thus by the fact that » — 1 as n — oo (or |P|| — 0), we find that

patl _ gatl
lim L(P)= lim L(P)= ———7—
|P|—0 ) [P0 (P) q+1
b patl _ gatl
Therefore, J xldr = TS Ee if ¢ # 1 is a rational number and 0 < a < b.

Example 4.12. Since the sine function is continuous on any closed interval [a, b, to find
b

sinx dr we can partition [a,b] into sub-intervals with equal length, use the right end-
pgint rule to find an approximated value of the integral, and finally find the integral by

passing the number of sub-intervals to the limit.

Let Az = b-

n

¢ and x; = a + 1Ax. The right end-point rule gives the approximation
Z sin x;Ax = Z sin(a + iAz)Ax = Az 2 sin(a + iAx)
i=1 i=1 i=1
of the integral.
Using the sum and difference formula, we find that

cos [a+ (i — %)Ax} —cos [a+ (i+ %)Am} = 2sin(a + iAx) sin % ;

A
thus if sin 736 # 0,

1 1 3 5
pl(on 130t )« 300

Z sin(a + iAx) =
— cos (a+ gAa:)) +---+cosla+ (n— %)Am]
—cos[a+ (n+ %)AZCH

which, by the fact that a + (n + %Am) =b+ éAw, implies that

A
EsmxAx— A [cos(a—l— Ax)—cos(b—i— Ax)]
2




PUT _ 1 and the continuity of the cosine function, we conclude that

By the fact that lin%

n—0o0
a =1

b n
f sinz dx = lim Zsinx,Ax =cosa — cosb.

Theorem 4.13

Let f : [a,b] — R be a non-negative and continuous function. The area of the region

enclosed by the graph of f, the z-axis, and the vertical lines * = a and z = b is

Lb f(z) dux.

Example 4.14. In this example we use the integral notation to denote the areas of some

common geometric figures (without really doing computations):

2 1 V3
1.J Vi —2?2de =27 ; 2.J \/4—m2dx:2§+\/§; 3.f VA4 —22de =7 ++/3.
) -1 -1

4.2.1 Properties of Definite Integrals

Definition 4.15

1. If f is defined at z = a, then J f(x)dz =0.

a

a b
2. 1f f is integrable on [a, 8], then L flz)de = — f Flz)de = —f[ S dr

Remark 4.16. By the definition above, if f is Riemann integrable on [a, b], J f(z)dx is
b

the limit of the sum

n

Z flz)(zi —xi-) and Z f(i) (@i — xi1)

i=1

asmax{|xi—xi_1|‘1<i<n}—>O,Wherex0:b>x1>x2>-~>xn:a.

Theorem 4.17

If f is Riemann integrable on the three closed intervals determined by a, b and ¢, then

Lbf(x)dx:ch(x)dx+£bf(x)dx.




Theorem 4.18

Let f,g : [a,b] — R be Riemann integrable on [a,b] and k be a constant.

function kf + g are Riemann integrable on [a, b], and

b

jb(k:f + g)(z) dx = kLbf(x) dr + J g(z)dx.

a a

Theorem 4.19

b
If f is non-negative and Riemann integrable on [a, b, then f f(z)dx = 0.

Corollary 4.20

Lb f(z)de < ng(x) dx .

If f, g are Riemann integrable on [a,b] and f(z) < g(x) for all a < z < b, then

Theorem 4.21

Lbf(x) dz| < Lb\f(x)\dx.

If f is Riemann integrable on [a,b], then |f| is Riemann integrable on [a, b] and
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