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Theorem 1.45: Intermediate Value Theorem - 中間值定理
If f is continuous on the closed interval [a, b], f(a) ‰ f(b), and k is any number
between f(a) and f(b), then there is at least one number c in [a, b] such that f(c) = k.

Theorem 3.8: Mean Value Theorem
If f : [a, b] Ñ R is continuous and f is differentiable on (a, b), then there exists a point
c P (a, b) such that

f 1(c) =
f(b) ´ f(a)

b ´ a
.

Definition 4.7: Riemann Integrals - 黎曼積分

Let f : [a, b] Ñ R be a function. f is said to be Riemann integrable on [a, b] if there
exists a real number A such that for every ε ą 0, there exists δ ą 0 such that if P
is partition of [a, b] satisfying }P} ă δ, then any Riemann sums for the partition P
belongs to the interval (A ´ ε, A+ ε). Such a number A (is unique and) is called the

Riemann integral of f on [a, b] and is denoted by
ż

[a,b]
f(x) dx.

4.3 The Fundamental Theorem of Calculus

In this section, we develop a theory which shows a systematic way of finding integrals if the
integrand is a continuous function.
Definition 4.22

A function F is an anti-derivative of f on an interval I if F 1(x) = f(x) for all x in I.

Theorem 4.23
If F is an anti-derivative of f on an interval I, then G is an anti-derivative of f on
the interval I if and only if G is of the form G(x) = F (x) +C for all x in I, where C

is a constant.（導函數相同的函數相差一常數）

Proof. It suffices to show the “ñ” (only if) direction. Suppose that F 1 = G 1 = f on I.
Then the function h = F ´ G satisfies h 1(x) = 0 for all x P I. By the mean value theorem,



for any a, b P I with a ‰ b, there exists c in between a and b such that

h(b) ´ h(a) = h 1(c)(b ´ a) .

Since h 1(x) = 0 for all x P I, h(a) = h(b) for all a, b P I; thus h is a constant function. ˝

Theorem 4.24: Mean Value Theorem for Integrals - 積分均值定理

Let f : [a, b] Ñ R be a continuous function. Then there exists c P [a, b] such that
ż b

a

f(x) dx = f(c)(b ´ a) .

Proof. By the Extreme Value Theorem, f has a maximum and a minimum on [a, b]. Let
M = f(x1) and m = f(x2), where x1, x2 P [a, b], denote the maximum and minimum of f
on [a, b], respectively. Then m ď f(x) ď M for all x P [a, b]; thus Corollary 4.20 implies
that

m(b ´ a) =

ż b

a

mdx ď

ż b

a

f(x) dx ď

ż b

a

M dx = M(b ´ a) .

Therefore, the number 1

b ´ a

ż b

a
f(x) dx P [m,M ]. By the Intermidiate Value Theorem, there

exists c in between x1 and x2 such that f(c) =
1

b ´ a

ż b

a
f(x) dx. ˝

Theorem 4.25: Fundamental Theorem of Calculus - 微積分基本定理
Let f : [a, b] Ñ R be a continuous function, and F be an anti-derivative of f on [a, b].
Then

ż b

a

f(x) dx = F (b) ´ F (a) .

Moreover, if G(x) =
ż x

a
f(t) dt for x P [a, b], then G is an anti-derivative of f .

We note that for x P [a, b], f is continuous on [a, x]; thus f is Riemann integrable on
[a, x] which shows that G(x) =

ż x

a
f(t) dt is well-defined.

Proof of the Fundamental Theorem of Calculus. Note that for h ‰ 0 such that x+h P [a, b],
we have

G(x+ h) ´ G(x)

h
=

1

h

[ ż x+h

a

f(t) dt ´

ż x

a

f(t) dt
]
=

1

h

ż x+h

x

f(t) dt .



By the Mean Value Theorem for Integrals, there exists c = c(h) in between x and x+h such

that 1

h

ż x+h

x
f(t) dt = f(c). Since f is continuous on [a, b], lim

hÑ0
f(c) = lim

cÑx
f(c) = f(x); thus

lim
hÑ0

G(x+ h) ´ G(x)

h
= lim

hÑ0

1

h

ż x+h

x

f(t) dt = lim
hÑ0

f(c) = f(x)

which shows that G is an anti-derivative of f on [a, b].
By Theorem 4.23, G(x) = F (x) + C for all x P [a, b]. By the fact that G(a) = 0,

C = ´F (a); thus
ż b

a

f(x) dx = G(b) = F (b) ´ F (a)

which concludes the theorem. ˝

Example 4.26. Since an anti-derivative of the function y = xq, where q ‰ ´1 is a rational

number, is y =
xq+1

q + 1
, we find that

ż b

a

xq dx =
xq+1

q + 1

ˇ

ˇ

ˇ

x=b
´

xq+1

q + 1

ˇ

ˇ

ˇ

x=a
=

bq+1 ´ aq+1

q + 1
.

Example 4.27. Since an anti-derivative of the sine function is negative of cosine, we find
that

ż b

a

sinx dx = (´ cos)(b) ´ (´ cos)(b) = cos b ´ cos a .

Theorem 4.28
Let f : [a, b] Ñ R be continuous and f is differentiable on (a, b). If f 1 is Riemann
integrable on [a, b], then

ż b

a

f 1(x) dx = f(b) ´ f(a) .

Remark 4.29. If f 1 is continuous on [a, b], then the theorem above is simply a direct
consequence of the Fundamental Theorem of Calculus. The theorem above can be viewed
as a generalization of the Fundamental Theorem of Calculus.

Proof of Theorem 4.28. Let ε ą 0 be given, and define A =
ż b

a
f 1(x) dx. By the definition

of the integrability there exists δ ą 0 such that if P = ta = x0 ă x1 ă ¨ ¨ ¨ ă xn = bu is



a partition of [a, b] satisfying }P} ă δ, then any Riemann sums of f for P belongs to the
interval (A ´ ε, A+ ε).

Let P = ta = x0 ă x1 ă ¨ ¨ ¨ ă xn = bu be a partition of [a, b] satisfying that }P} ă δ.
Then by the mean value theorem, for each 1 ď i ď n there exists xi´1 ă c ă xi such that
f(xi) ´ f(xi´1) = f 1(ci)(xi ´ xi´1). Since

n
ÿ

i=1

f 1(ci)(xi ´ xi´1)

is a Riemann sum of f for P , we must have
ˇ

ˇ

ˇ

n
ÿ

i=1

f 1(ci)(xi ´ xi´1) ´ A
ˇ

ˇ

ˇ
ă ε .

On the other hand, by the fact that
n

ÿ

i=1

f 1(ci)(xi ´ xi´1) =
n

ÿ

i=1

[
f(xi) ´ f(xi´1)

]
= f(x1) ´ f(x0) + f(x2) ´ f(x1) + ¨ ¨ ¨ + f(xn) ´ f(xn´1)

= f(xn) ´ f(x0) = f(b) ´ f(a) ,

we conclude that
ˇ

ˇ

ˇ
f(b) ´ f(a) ´

ż b

a

f 1(x) dx
ˇ

ˇ

ˇ
ă ε .

Since ε ą 0 is chosen arbitrarily, we find that
ż b

a
f 1(x) dx = f(b) ´ f(a). ˝

Definition 4.30

An anti-derivative of f , if exists, is denoted by
ż

f(x) dx, and sometimes is also called
an indefinite integral of f .
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