微積分 MA1001-A 上課筆記(精簡版) 2018.11.15.

Ching-hsiao Arthur Cheng 鄭經斅

Definition 4.22

A function F is an anti-derivative of f on an interval I if F'(x) = f(x) for all x in I.

Theorem 4.23

If F is an anti-derivative of f on an interval I, then G is an anti-derivative of f on the interval I if and only if G is of the form G(x) = F(x) + C for all x in I, where C is a constant. (導函數相同的函數相差一常數)

Theorem 4.24: Mean Value Theorem for Integrals - 積分均值定理

Let $f:[a,b]\to\mathbb{R}$ be a continuous function. Then there exists $c\in[a,b]$ such that

$$\int_a^b f(x) dx = f(c)(b-a).$$

Theorem 4.25: Fundamental Theorem of Calculus - 微積分基本定理

Let $f:[a,b]\to\mathbb{R}$ be a continuous function, and F be an anti-derivative of f on [a,b]. Then

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

Moreover, if $G(x) = \int_a^x f(t) dt$ for $x \in [a, b]$, then G is an anti-derivative of f.

Example 4.32. Find $\frac{d}{dx} \int_0^{\sqrt{x}} \sin^{100} t \, dt$ for x > 0.

Let $F(x) = \int_0^x \sin^{100} t \, dt$. Then by the chain rule,

$$\frac{d}{dx}F(\sqrt{x}) = F'(\sqrt{x})\frac{d}{dx}\sqrt{x} = \frac{1}{2\sqrt{x}}F'(\sqrt{x}).$$

By the Fundamental Theorem of Calculus, $F'(x) = \sin^{100} x$; thus

$$\frac{d}{dx} \int_0^{\sqrt{x}} \sin^{100} t \, dt = \frac{d}{dx} F(\sqrt{x}) = \frac{\sin^{100} \sqrt{x}}{2\sqrt{x}}.$$

Theorem 4.28

Let $f:[a,b]\to\mathbb{R}$ be continuous and f is differentiable on (a,b). If f' is Riemann integrable on [a,b], then

$$\int_{a}^{b} f'(x) \, dx = f(b) - f(a) \, .$$

Theorem 4.25 and 4.28 can be combined as follows:

Theorem 4.31

Let $f:[a,b]\to\mathbb{R}$ be a Riemann integrable function and F be an anti-derivative of f on [a,b]. Then

$$\int_a^b f(x) dx = F(b) - F(a).$$

Moreover, if in addition f is continuous on [a,b], then $G(x)=\int_a^x f(t)\,dt$ is differentiable on [a,b] and

$$G'(x) = f(x)$$
 for all $x \in [a, b]$.

Definition 4.30

An anti-derivative of f, if exists, is denoted by $\int f(x) dx$, and sometimes is also called an indefinite integral of f.

• Basic Rules of Integration:

Differentiation Formula	Anti-derivative Formula
$\frac{d}{dx}C = 0$	$\int 0 dx = C$
$\frac{d}{dx}x^r = rx^{r-1}$	$\int x^q dx = \frac{x^{q+1}}{q+1} + C \text{if } q \neq -1$
$\frac{d}{dx}\sin x = \cos x$	$\int \cos x dx = \sin x + C$
$\frac{d}{dx}\cos x = -\sin x$	$\int \sin x dx = -\cos x + C$
$\frac{d}{dx}\tan x = \sec^2 x$	$\int \sec^2 x dx = \tan x + C$
$\frac{d}{dx}\sec x = \sec x \tan x$	$\int \sec x \tan x dx = \sec x + C$
$\frac{d}{dx}[kf(x) + g(x)] = kf'(x) + g'(x)$	$\int [kf'(x) + g'(x)] dx = kf(x) + g(x) + C$

4.4 Integration by Substitution - 變數變換

Suppose that $g:[a,b]\to\mathbb{R}$ is one-to-one and differentiable, and $f:\operatorname{range}(g)\to\mathbb{R}$ is differentiable. Then the chain rule implies that $f\circ g$ is an anti-derivative of $(f'\circ g)g'$; thus provided that

- 1. $(f \circ g)'$ is Riemann integrable on [a, b],
- 2. f' is Riemann integrable on the range of g,

then Theorem 4.28 implies that

$$\int_{a}^{b} f'(g(x))g'(x) dx = \int_{a}^{b} (f \circ g)'(x) dx = (f \circ g)(b) - (f \circ g)(a)$$
$$= f(g(b)) - f(g(a)) = \int_{g(a)}^{g(b)} f'(u) du. \tag{4.4.1}$$

Replacing f' by f in the identity above shows the following

Theorem 4.33

If the function u = g(x) has a continuous derivative on the closed interval [a, b], and f is continuous on the range of g, then

$$\int_{a}^{b} f(g(x))g'(x) dx = \int_{g(a)}^{g(b)} f(u) du.$$

The anti-derivative version of Theorem 4.33 is stated as follows.

Theorem 4.34

Let g be a function with range I and f be a continuous function on I. If g is differentiable on its domain and F is an anti-derivative of f on I, then

$$\int f(g(x))g'(x) dx = F(g(x)) + C$$

Letting u = g(x) gives du = g'(x) dx and

$$\int f(u) \, du = F(u) + C \, .$$

Example 4.35. Find $\int (x^2 + 1)^2 (2x) dx$.

Let $u = x^2 + 1$. Then du = 2xdx; thus

$$\int (x^2 + 1)^2 (2x) \, dx = \int u^2 \, du = \frac{1}{3} u^3 + C = \frac{1}{3} (x^2 + 1)^3 + C.$$

Example 4.36. Find $\int \cos(5x) dx$.

Let u = 5x. Then du = 5dx; thus

$$\int \cos(5x) \, dx = \frac{1}{5} \int \cos u \, du = \frac{1}{5} \sin u + C = \frac{1}{5} \sin(5x) + C \, .$$

Example 4.37. Find $\int \sec^2 x (\tan x + 3) dx$.

Let $u = \tan x$. Then $du = \sec^2 x dx$; thus

$$\int \sec^2 x(\tan x + 3) \, dx = \int (u+3) \, du = \frac{1}{2}u^2 + 3u + C = \frac{1}{2}\tan^2 x + 3\tan x + C.$$

On the other hand, let $v = \tan x + 3$. Then $dv = \sec^2 x \, dx$; thus

$$\int \sec^2 x(\tan x + 3) \, dx = \int v \, dv = \frac{1}{2}v^2 + C = \frac{1}{2}(\tan x + 3)^2 + C$$
$$= \frac{1}{2}\tan^2 x + 3\tan x + \frac{9}{2} + C.$$

We note that even though the right-hand side of the two indefinite integrals look different, they are in fact the same since C could be any constant, and $\frac{9}{2} + C$ is also any constant.

Chapter 5. Logarithmic, Exponential, and other Transcendental Functions

5.1 Inverse Functions (課本 §5.3)

Definition 5.1

A function g is the inverse function of the function f if

$$f(g(x)) = x$$
 for all x in the domain of g (5.1.1)

and

$$g(f(x)) = x$$
 for all x in the domain of f . (5.1.2)

The inverse function of f is usually denoted by f^{-1} .

Some important observations about inverse functions:

- 1. If g is the inverse function of f, then f is the inverse function of g.
- 2. Note that (5.1.1) implies that
 - (a) the domain of g is contained in the range of f,
 - (b) the domain of f contains the range of g,
 - (c) g is one-to-one since if $g(x_1) = g(x_2)$, then $x_1 = f(g(x_1)) = f(g(x_2)) = x_2$

and (5.1.2) implies that

- (a) the domain of f is contained in the range of g,
- (b) the domain of g contains the range of f,
- (c) f is one-to-one since if $f(x_1) = f(x_2)$, then $x_1 = g(f(x_1)) = g(f(x_2)) = x_2$.

According to the statements above, the domain of f^{-1} is the range of f, and the range of f^{-1} is the domain of f.