# 微積分 MA1001-A 上課筆記(精簡版) 2018.11.27.

Ching-hsiao Arthur Cheng 鄭經教

### Definition 5.8

The function  $\ln:(0,\infty)\to\mathbb{R}$  is defined by

$$\ln x = \int_{1}^{x} \frac{1}{t} dt \qquad \forall x > 0.$$

## Theorem 5.10

$$\frac{d}{dx} \ln x = \frac{1}{x}$$
 for all  $x > 0$ .

# Corollary 5.11

The function  $\ln : (0, \infty) \to \mathbb{R}$  is strictly increasing on  $(0, \infty)$ , and the graph of  $y = \ln x$  is concave downward on  $(0, \infty)$ .

We also show that

$$x - \frac{x^2}{2} \le \ln(1+x) \le x \qquad \forall x > 0.$$
 (5.2.1)

#### • The range

Next we show that  $\lim_{x\to\infty} \ln x = \infty$  and  $\lim_{x\to-\infty} \ln x = -\infty$ . To see this, we note that

$$\ln(2^n) = \int_1^{2^n} \frac{1}{t} dt = \int_1^2 \frac{1}{t} dt + \int_2^4 \frac{1}{t} dt + \int_4^8 \frac{1}{t} dt + \dots + \int_{2^{n-1}}^{2^n} \frac{1}{t} dt$$
$$= \sum_{i=1}^n \int_{2^{i-1}}^{2^i} \frac{1}{t} dt \geqslant \sum_{i=1}^n \int_{2^{i-1}}^{2^i} \frac{1}{2^i} dt = \sum_{i=1}^n \frac{2^i - 2^{i-1}}{2^i} = \sum_{i=1}^n \frac{1}{2} = \frac{n}{2}$$

and

$$\ln(2^{-n}) = \int_{1}^{2^{-n}} \frac{1}{t} dt = -\int_{2^{-n}}^{1} \frac{1}{t} dt = -\left[\int_{2^{-n}}^{2^{-n+1}} \frac{1}{t} dt + \int_{2^{-n+1}}^{2^{-n+2}} \frac{1}{t} dt + \dots + \int_{\frac{1}{2}}^{1} \frac{1}{t} dt\right]$$
$$= -\sum_{i=1}^{n} \int_{2^{-i}}^{2^{1-i}} \frac{1}{t} dt \leqslant -\sum_{i=1}^{n} \int_{2^{-i}}^{2^{1-i}} \frac{1}{2^{1-i}} dt = -\sum_{i=1}^{n} \frac{2^{1-i} - 2^{-i}}{2^{1-i}} = -\sum_{i=1}^{n} \frac{1}{2} = -\frac{n}{2};$$

thus we have  $\lim_{x\to\infty} \ln x = \infty$  and  $\lim_{x\to-\infty} \ln x = -\infty$ . By the continuity of  $\ln$  and the Intermediate Value Theorem, for each  $b\in\mathbb{R}$  there exists one  $a\in(0,\mathbb{R})$  such that  $b=\ln a$ . By the strict monotonicity  $\ln:(0,\infty)\to\mathbb{R}$  is one-to-one and onto.

**Remark 5.13.** In particular, there exists one unique number e such that  $\ln e = 1$ . We note that

$$\ln 2 = \int_{1}^{2} \frac{1}{t} dt = \int_{1}^{1.5} \frac{1}{t} dt + \int_{1.5}^{2} \frac{1}{t} dt \le \frac{0.5}{1} + \frac{0.5}{1.5} = \frac{5}{6} < 1$$

and

$$\ln 3 = \int_{1}^{3} \frac{1}{t} dt = \left( \int_{1}^{1.25} + \int_{1.25}^{1.5} + \int_{1.5}^{1.75} + \int_{1.75}^{2} + \int_{2}^{2.5} + \int_{2.5}^{3} \right) \frac{1}{t} dt$$

$$\geqslant \frac{0.25}{1.25} + \frac{0.25}{1.5} + \frac{0.25}{1.75} + \frac{0.25}{2} + \frac{0.5}{2.5} + \frac{0.5}{3}$$

$$= \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{5} + \frac{1}{6} = \frac{841}{840} > 1.$$

Therefore, 2 < e < 3.

#### • Logarithmic Laws

The most important property of the function  $y = \ln x$  is the relation among  $\ln a$ ,  $\ln b$  and  $\ln(ab)$ . By the property of integration,

$$\ln(ab) = \int_{1}^{ab} \frac{1}{t} dt = \int_{1}^{a} \frac{1}{t} dt + \int_{a}^{ab} \frac{1}{t} dt = \ln a + \int_{a}^{ab} \frac{1}{t} dt.$$

By the substitution t = au, dt = adu; thus

$$\int_{a}^{ab} \frac{1}{t} dt = \int_{1}^{b} \frac{1}{au} a du = \int_{1}^{b} \frac{1}{u} du = \ln b.$$

Therefore, we obtain the identity:

$$\ln(ab) = \ln a + \ln b \qquad \forall a, b > 0.$$
 (5.2.2)

Having established (5.2.2), we can show that the function ln is a logarithmic function for the following reason. First, we observe that for all a > 0 and  $n \in \mathbb{N}$ ,

$$\ln(a^n) = \ln(a^{n-1}a) = \ln(a^{n-1}) + \ln a = \ln(a^{n-2}a) + \ln a = \ln(a^{n-2}) + 2\ln a = \dots = n \ln a.$$

Moreover, by the definition of  $\ln 0 = \ln(1) = \ln(a^0) = 0 \ln a$ ; thus

$$\ln(a^n) = n \ln a \qquad \forall a > 0, n \in \mathbb{N} \cup \{0\}.$$

Next, by the law of exponents, for a > 0 and  $n \in \mathbb{N}$  we have

$$0 = \ln(a^0) = \ln(a^n \cdot a^{-n}) = \ln(a^n) + \ln(a^{-n}) = n \ln a + \ln(a^{-n}).$$

Therefore, for all  $n \in \mathbb{N}$ , we also have  $\ln(a^{-n}) = -n \ln a$ ; hence

$$\ln(a^n) = n \ln a \quad \forall a > 0, n \in \mathbb{Z}.$$

The identity above also implies that if  $k, n \in \mathbb{Z}$  and  $n \neq 0$ ,

$$n\ln(a^{\frac{k}{n}}) = \ln((a^{\frac{k}{n}})^n) = \ln(a^k) = k\ln a,$$

and this shows that

$$\ln(a^{\frac{k}{n}}) = \frac{k}{n} \ln a \qquad \forall a > 0, n, k \in \mathbb{Z}, n \neq 0.$$

As a consequence,

$$\ln(a^r) = r \ln a \qquad \forall a > 0, r \in \mathbb{Q}.$$

Finally, we find that  $\ln(e^r) = r \ln e = r$ , so  $\ln x$  is indeed the logarithm of x to base e. In other words, we obtain that

$$\log_e x = \ln x = \int_1^x \frac{1}{t} \, dt \qquad \forall \, x > 0 \,. \tag{5.2.3}$$

# Theorem 5.14: Logarithmic properties of $y = \ln x$

Let a, b be positive numbers and r be a rational number. Then

- 1.  $\ln 1 = 0$ ;
- 2.  $\ln(ab) = \ln a + \ln b$ ;
- 3.  $\ln(a^r) = r \ln a;$  4.  $\ln\left(\frac{a}{b}\right) = \ln a \ln b.$

**Remark 5.15.** Since the function  $y = \ln x$  has the logarithmic property, it is called the natural logarithmic function.

Example 5.16. 
$$\ln \frac{(x^2+3)^2}{x\sqrt[3]{x^2+1}} = 2\ln(x^2+3) - \ln x - \frac{1}{3}\ln(x^2+1)$$
 if  $x > 0$ .

#### Theorem 5.17

If f is a differentiable function on an interval I, then  $\ln |f|$  is differentiable at those point  $x \in I$  satisfying  $f(x) \neq 0$ . Moreover,

$$\frac{d}{dx}\ln|f(x)| = \frac{f'(x)}{f(x)}$$
 for all  $x \in I$  with  $f(x) \neq 0$ .

*Proof.* Note that the function y = |x| is differentiable at non-zero points, and

$$\frac{d}{dx}|x| = \frac{d}{dx}(x^2)^{\frac{1}{2}} = \frac{1}{2}(x^2)^{-\frac{1}{2}} \cdot 2x = \frac{x}{|x|} \qquad \forall x \neq 0.$$

If  $f(c) \neq 0$ , by the fact that the natural logarithmic function ln is differentiable at |f(c)|, the absolute function  $|\cdot|$  is differentiable at f(c) and f is differentiable at f(c), the chain rule implies that f(c) is differentiable at f(c) and

$$\frac{d}{dx}\Big|_{x=c} \ln |f(x)| = \frac{1}{|f(c)|} \frac{f(c)}{|f(c)|} f'(c) = \frac{f'(c)}{f(c)}.$$

**Example 5.18.**  $\frac{d}{dx} \ln|\cos x| = \frac{-\sin x}{\cos x} = -\tan x$  for all x with  $\cos x \neq 0$ .

**Example 5.19.** Compute the derivative of  $f(x) = \frac{(x^2+3)^2}{x\sqrt[3]{x^2+1}}$  for x>0.

Let  $h(x) = \ln f(x)$ . Then

$$\frac{f'(x)}{f(x)} = h'(x) = \frac{d}{dx} \left[ 2\ln(x^2 + 3) - \ln x - \frac{1}{3}\ln(x^2 + 1) \right]$$
$$= 2\frac{d}{dx}\ln(x^2 + 3) - \frac{d}{dx}\ln x - \frac{1}{3}\frac{d}{dx}\ln(x^2 + 1)$$
$$= \frac{4x}{x^2 + 3} - \frac{1}{x} - \frac{2x}{3(x^2 + 1)};$$

thus

$$f'(x) = \frac{(x^2+3)^2}{x\sqrt[3]{x^2+1}} \left[ \frac{4x}{x^2+3} - \frac{1}{x} - \frac{2x}{3(x^2+1)} \right].$$