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Theorem 5.1: Inverse Function Differentiation
Let f be a function that is differentiable on an interval I. If f has an inverse function
g, then g is differentiable at any x for which f 1(g(x)) ‰ 0. Moreover,

g 1(x) =
1

f 1(g(x))
for all x with f 1(g(x)) ‰ 0.

Definition 5.8
The function ln : (0,8) Ñ R is defined by

lnx =

ż x

1

1

t
dt @x ą 0 .

‚ ln : (0,8) Ñ R. is one-to-one and onto. Therefore, there exists a unique e P (1,8) such
that ln e = 1. In fact, 2 ă e ă 3.

‚ Logarithmic Laws

Theorem 5.14: Logarithmic properties of y = lnx

Let a, b be positive numbers and r is rational. Then

1. ln 1 = 0; 2. ln(ab) = ln a+ ln b;

3. ln(ar) = r ln a; 4. ln
(a
b

)
= ln a ´ ln b.

Definition 5.25
The natural exponential function exp : R Ñ (0,8) is a function defined by

exp(x) = y if and only if x = ln y .

By the definition of the natural exponential function, we have

exp(lnx) = x @x P (0,8) and ln(exp(x)) = x @x P R . (5.4.1)

Definition 5.26
Let a ą 0 be a real number. For each x P R, the exponential function to the base a,

denote by y = ax, is defined by ax ” exp(x ln a). In other words,

ax = exp(x ln a) @x P R .



Remark 5.28. The function y = ex is identical to the function y = exp(x) since

ex = exp(x ln e) = exp(x) @x P R .

Remark 5.29. By the definition of the natural exponential function,

ln(ax) = ln(exp(x ln a)) = x ln a @ a ą 0 and x P R . (5.4.2)

5.4.1 Properties of Exponential Functions
‚ The law of exponentials

(a) If a ą 0, then ax+y = axay for all x, y P R.

(b) If a ą 0, then ax´y =
ax

ay
for all x, y P R: Using (a), we obtain that

ax´yay = ax´y+y = ax @x, y P R ;

thus ax´y =
ax

ay
for all x, y P R.

(c) If a, b ą 0, then (ab)x = axbx for all x P R: By the definition of the exponential
functions,

(ab)x = ex ln(ab) = ex(ln a+ln b) = ex ln a+x ln b = ex ln aex ln b = axbx .

(d) If a, b ą 0, then
(
a

b

)x

=
ax

bx
for all x P R: Using (b), we obtain that(a

b

)x

= ex ln a
b = ex(ln a´ln b) =

ex ln a

ex ln b
=

ax

bx
.

(e) If a ą 0, then (ax)y = axy for all x, y P R: Using (5.4.2),

(ax)y = ey ln ax = exy ln a = axy .

‚ The range and the strict monotonicity of the exponential functions

Note that Theorem 5.6 implies that exp : R Ñ (0,8) is strictly increasing. Suppose that
a ą 1. Then ln a ą 0 which further implies that

ax1 = exp(x1 ln a) ă exp(x2 ln a) = ax2 @x1 ă x2 .

Similarly, if 0 ă a ă 1, the exponential function to the base a is a strictly decreasing
function.

Moreover, since exp : R Ñ (0,8) is onto, we must have that for 0 ă a ‰ 1, the range of
the exponential function to the base a is also R. Therefore, for 0 ă a ‰ 1, the exponential
function a¨ : R Ñ (0,8) is one-to-one and onto.



‚ The differentiation of the exponential functions

Theorem 5.30
d

dx
ex = ex for all x P R.

Proof. Define f : (0,8) Ñ R and g : R Ñ (0,8) by f(x) = lnx and g(x) = exp(x) = ex.
Then f and g are inverse functions to each other, and the Inverse Function Differentiation
implies that

g 1(x) =
1

f 1(g(x))
@x P R with f 1(g(x)) ‰ 0 .

Since f 1(x) =
1

x
, f 1(g(x)) =

1

g(x)
= exp(´x) ‰ 0 for all x P R; thus

g 1(x) = g(x) @x P R . ˝

Corollary 5.31

1.
ż a

0
ex dx = ea ´ 1 for all a P R; 2.

ż

ex dx = ex + C.

The following corollary is a direct consequence of Theorem 5.30 and the chain rule.
Corollary 5.32

Let f be a differentiable function defined on an interval I. Then

d

dx
ef(x) = exf 1(x) @x P I .

Corollary 5.33

1. For a ą 0, d

dx
ax = ax ln a for all x P R

(
so

ż

ax dx =
ax

ln a
+ C

)
.

2. Let r be a real number. Then d

dx
xr = rxr´1 for all x ą 0.

3. Let f, g be differentiable functions defined on an interval I. Then

d

dx
|f(x)|g(x) = |f(x)|g(x)

[
g 1(x) ln |f(x)|+

f 1(x)

f(x)
g(x)

]
@x P I with f(x) ‰ 0 .

Proof. The corollary holds because ax = ex ln a, xr = er lnx, and |f(x)|g(x) = eg(x) ln |f(x)|. ˝



Example 5.34. d

dx
e´ 3

x = e´ 3
x
d

dx

(
´

3

x

)
=

3e´3/x

x2
for all x ‰ 0.

Example 5.35. Let f : (0,8) Ñ R be defined by f(x) = xx. Then

f 1(x) =
d

dx
ex lnx = ex lnx d

dx
(x lnx) = xx(lnx+ 1) .

Example 5.36. Find the indefinite integral
ż

5xe´x2
dx.

Let u = ´x2. Then du = ´2xdx; thus
ż

5xe´x2

dx = ´
5

2

ż

e´x2

(´2x) dx = ´
5

2

ż

eu du = ´
5

2
eu + C = ´

5

2
e´x2

+ C .

Example 5.37. Compute the definite integral
ż 0

´1
ex cos(ex) dx.

Let u = ex. Then du = ex dx; thus
ż 0

´1

ex cos(ex) dx =

ż 1

e´1

cosu du = sinu
ˇ

ˇ

ˇ

u=1

u=e´1
= sin 1 ´ sin(e´1) .

5.4.2 The number e

By the mean value theorem for integrals, for each x ą 0 there exists d P [1, 1 + x] such that
ln(1 + x)

x
=

1

x

ż 1+x

1

1

t
dt =

1

d

which implies that

(1 + x)
1
x = exp

(
ln(1 + x)

1
x

)
= exp

( ln(1 + x)

x

)
= exp

(1
d

)
.

By the fact that the natural exponential function is continuous, we find that

lim
xÑ0+

(1 + x)
1
x = lim

xÑ0+
exp

(1
d

)
= lim

dÑ1
exp

(1
d

)
= e .

Note that the limit above also shows that e = lim
xÑ8

(
1 +

1

x

)x.

5.5 Logarithmic Functions to Bases Other than e

Definition 5.38
Let 0 ă a ‰ 1 be a real number. The logarithmic function to the base a, denoted by
loga, is the inverse function of the exponential function to the base a. In other words,

y = loga x if and only if ay = x .



Theorem 5.39

Let 0 ă a ‰ 1. Then loga x =
lnx

ln a
for all x ą 0.

Proof. Let y = loga x. Then ay = x; thus (5.4.2) implies that

y ln a = ln(ay) = lnx

which shows y =
lnx

ln a
. ˝

5.5.1 Properties of logarithmic functions
‚ Logarithmic laws

The following theorem is a direct consequence of Theorem 5.14 and 5.39.
Theorem 5.40: Logarithmic properties of y = loga x

Let a, b, c be positive numbers, a ‰ 1, and r is rational. Then

1. loga 1 = 0; 2. loga(bc) = loga b+ logb c;

3. loga(a
x) = x for all x P R; 4. aloga x = x for all x ą 0;

5. loga

(c
b

)
= loga c ´ loga b.

‚ The change of base formula

We have the following identity

loga c =
logb c

logb a
@ a, b, c ą 0, a, b ‰ 1 .

In fact, if d = loga c, then c = ad; thus logb c = d logb a which implies the identity above.
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