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Theorem 5.1: Inverse Function Differentiation

Let f be a function that is differentiable on an interval I. If f has an inverse function

g, then g is differentiable at any = for which f’(g(x)) # 0. Moreover,

g'(x) = —— for all x with f'(g(x)) # 0.

Definition 5.8

The function In : (0,00) — R is defined by

lna,':f 1dt Vr>0.
1 t

e In: (0,0) — R. is one-to-one and onto. Therefore, there exists a unique e € (1,00) such
that Ine = 1. In fact, 2 < e < 3.

e Logarithmic Laws

Theorem 5.14: Logarithmic properties of y =Inx

Let a, b be positive numbers and r is rational. Then
1. In1=0; 2. In(ab) =Ina + Inb;
3. In(a") =rlna; 4. In (%) =1Ina—Inb.

Definition 5.25

The natural exponential function exp : R — (0, o0) is a function defined by

exp(z) =y if and only if r=Iny.

By the definition of the natural exponential function, we have
exp(lnz) =2 Ve (0,0) and In(exp(z)) =z VzeR. (5.4.1)

Definition 5.26

Let a > 0 be a real number. For each x € R, the exponential function to the base a,

denote by y = a”, is defined by a” = exp(xzIna). In other words,

a® = exp(zlna) VreR.




Remark 5.28. The function y = e” is identical to the function y = exp(z) since
e’ =exp(xlne) = exp(x) VreR.
Remark 5.29. By the definition of the natural exponential function,

In(a”) = In(exp(xzlna)) = zlna Va>0and zeR. (5.4.2)

5.4.1 Properties of Exponential Functions

e The law of exponentials
(a) If a > 0, then a*™¥ = a*a? for all z,y € R.

(b) If a > 0, then a®* ¥ = a—y for all z,y € R: Using (a), we obtain that
a
a*Ya¥ = a" VY = a” Vo,yeR;
thus a®¢ = & for all x,y € R.
a¥

(¢) If a,b > 0, then (ab)® = a”b® for all z € R: By the definition of the exponential

functions,
(ab)x _ e:pln(ab) _ ex(lna+lnb) _ exlna+zlnb _ exlnaexlnb — a%b* .
(d) If a,b > 0, then <%> = Z—x for all z € R: Using (b), we obtain that
zlna T
aN*® zln ¢ z(lna—Inbd) € a
— = b — = — = —,
(b) € € erlnd b

(e) If a > 0, then (a®)? = a™ for all x,y € R: Using (5.4.2),

(ax)y — eylnaz — e:rylna = a®¥ .
e The range and the strict monotonicity of the exponential functions

Note that Theorem 5.6 implies that exp : R — (0, 0) is strictly increasing. Suppose that
a > 1. Then Ina > 0 which further implies that

a™ = exp(z;Ina) < exp(xgIna) = a™ Vi) <.

Similarly, if 0 < a < 1, the exponential function to the base a is a strictly decreasing
function.

Moreover, since exp : R — (0, c0) is onto, we must have that for 0 < a # 1, the range of
the exponential function to the base a is also R. Therefore, for 0 < a # 1, the exponential

function a" : R — (0, %0) is one-to-one and onto.



e The differentiation of the exponential functions

Theorem 5.30

ie‘l” =e® for all z € R.
dx

Proof. Define f : (0,00) - R and g : R — (0,90) by f(z) = Inz and g(z) = exp(z) = €*.
Then f and g are inverse functions to each other, and the Inverse Function Differentiation

implies that

g'(z) = m VzeR with f'(g(z)) #0.
Since f'(x) = i’ f'(g(x)) = g(lx) = exp(—x) # 0 for all x € R; thus
g'(x) = g(x) VzeR. G

Corollary 5.31

1. f e?dr =e* — 1 for all a € R; 2. Je“’cdm:ex—I—C’.
0

The following corollary is a direct consequence of Theorem 5.30 and the chain rule.
Corollary 5.32

Let f be a differentiable function defined on an interval /. Then

d
%ef(x):exf’(x) Veel.

Corollary 5.33

1. For a > 0, ia"”:a””lnafor allz e R (so Ja‘”d:c:a—i-C).
dx Ina

2. Let r be a real number. Then %xr = rgz" ! for all x > 0.

3. Let f, g be differentiable functions defined on an interval I. Then

f'(=)
()

%If(x)l"(“”) =|f(2)|" | g' () In | f ()| + 9(x) Vel with f(x) # 0.

Proof. The corollary holds because a® = e*™?, 2" = "% and |f(z)[9®) = es@MIF@I g



Example 5.34. di;e’% = e’%%<—%> = 3e$2/x for all x # 0.
Example 5.35. Let f: (0,00) — R be defined by f(x) = 2®. Then
f(x) = i69“” = emlmi(mlnx) =2°(lnx +1).
dx dx

Example 5.36. Find the indefinite integral f5xe‘x2 dx.
Let u = —2%. Then du = —2xdx; thus

2 ) 2 > ) D 2
f&cex dx = —§Jew (—2x)dx = 5 fe“ du = —56“ +C = —ie*w +C.

0
Example 5.37. Compute the definite integral J e’ cos(e”) dx.
-1
Let u = e*. Then du = e* dx; thus

0 1 u=1
f e” cos(e”) dx = f cosudu = sinu = sin1 —sin(e™!).
1 e—1

5.4.2 The number e

By the mean value theorem for integrals, for each x > 0 there exists d € [1, 1 + z| such that

1 14+«
n(1+x)_1f 1,1
Lt d

T i

which implies that

(1+ 91:)i = exp (In(1 + :U)%) = exp

(111(1 —i—x))

1
By the fact that the natural exponential function is continuous, we find that
. 1 . 1 . 1
Tim (14 2) = Tim exp () = limexp () =e.

Note that the limit above also shows that e = lim (1 + i)m

Tr—00

5.5 Logarithmic Functions to Bases Other than e

Definition 5.38

Let 0 < a # 1 be a real number. The logarithmic function to the base a, denoted by
log,,, is the inverse function of the exponential function to the base a. In other words,

y = log, x if and only if a’ =x.




Theorem 5.39

Let 0 < a # 1. Then log, x = E—z for all z > 0.

Proof. Let y =log, . Then a¥ = x; thus (5.4.2) implies that

ylna=In(a’) =Inz

1
which shows y = iy
na

5.5.1 Properties of logarithmic functions

e Logarithmic laws

The following theorem is a direct consequence of Theorem 5.14 and 5.39.

Theorem 5.40: Logarithmic properties of y = log, «

Let a, b, ¢ be positive numbers, a # 1, and r is rational. Then

1. log,1=0; 2. log,(bc) = log, b + log, c;
3. log,(a*) = z for all z € R; 4. a'&® =z for all x > 0;
5. log, (+) = log, ¢ — log, b.

b

e The change of base formula

We have the following identity

log, c = Va,b,c>0,a,b# 1.

In fact, if d = log, ¢, then ¢ = a?; thus log, ¢ = dlog, a which implies the identity above.
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