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Definition 5.8
The function In : (0,0) — R is defined by

lnyczf %dt Va>0.

1

e In: (0,0) — R. is one-to-one and onto.
Definition 5.25

The natural exponential function exp : R — (0, 00) is a function defined by

exp(z) =y if and only if x=Iny.

Definition 5.26

Let a > 0 be a real number. For each z € R, the exponential function to the base a,

denote by y = a”, is defined by a” = exp(xIna). In other words,

a® =exp(rlna) VreR.

e The range and the strict monotonicity of the exponential functions

The exponential function to the base a is a strictly decreasing function if a > 1, while the
exponential function to the base a is a strictly decreasing function if 0 < a < 1. Moreover,
for 0 < a # 1, the exponential function a : R — (0, o) is one-to-one and onto.

Corollary 5.33

Q‘I

For a > 0, d—ax:a‘”lnafor all z e R (so Ja”dleCL—i-C).
X
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Definition 5.38

Let 0 < a # 1 be a real number. The logarithmic function to the base a, denoted by
log,,, is the inverse function of the exponential function to the base a. In other words,

y = log, x if and only if a’ =x.

Theorem 5.39

Let 0 < a # 1. Then log, x = in—m for all z > 0.
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Ve >0.

By Theorem 5.39, we find that % log, =z =

5.6 Indeterminate Forms and L’Hoéspital’s Rule

Theorem 5.41: Cauchy Mean Value Theorem

Let f,g : [a,b] — R be continuous on |[a,b] and differentiable on (a,b). If g'(x) # 0
for all z € (a,b), then there exists ¢ € (a, b) such that

f'(e) _ f(b) — f(a)
g'(c)  g(b) —gla)

Proof. Let h : [a,b] — R be defined by

h(z) = (f(x) = f(a)) (9(b) — g(a)) = (£(b) = f(a)) (9(2) — g(a)) -
Then h(a) = h(b) = 0, and h is differentiable on (a,b). Then Rolle’s Theorem implies that
there exists ¢ € (a, b) such that h'(c) = 0; thus for some c € (a,b),
F(e)(g(b) — gla)) — (f(b) — f(a))g'(c) = 0.

Since g'(z) # 0 for all € (a,b), the Mean Value Theorem implies that g(b) # g(a).
Therefore, the equality above implies that

fie)  Fb) - fa)

9'(c)  g(b) —g(a)

for some c € (a, b).

Theorem 5.42: L’Ho6spital’s Rule

. , f(z) f'(x)
Let f,g be differentiable on (a,b), and and — be defined on (a,b). If
g(x) g9'(x)
/
lim+ g g; exists, and one of the following conditions holds:
L lim f(z) = lim g(z) =0; 2. lim f(r) = lim g() =,
then lim (=) exists, and
o) @) _ 1@
lim 22— fim *

z—a™t g(ﬂ?) r—at g/(.]?) '




Proof. We first prove L’Hospital’s rule for the case that lim+ flz) = lim+ g(x) = 0. Define
F,G: (a,b) > R by

| fz) fze(ad), [ g(z) ifxe(ab),
F(:z:)—{ 0 ifrx=a, and G(x)—{ 0 ifr=a.

Then for all z € (a,b), F,G are continuous on the closed [a,z], and differentiable on the
open interval with end-points (a,x). Therefore, the Cauchy Mean Value Theorem implies

that there exists a point ¢ between a and x such that

19 F'le)  F@)—Fla) _F
g'(c) G'(¢) Gx)—G(a) G(z) g(x)

Since ¢ approaches a as x approaches a, we have

lim 1) = lim f(e) — lim f’(:c)

z—at g/(C) c—at gl<C) z—a™t gl<£L'> ’

thus

lim m = lim f'(e) = lim f'(z)

B ) T o) T A )
Next we prove L’Hospital’s rule for the case that lim f(x) = lim g(z) = . Let

z—at z—at
/
L= hm+ ch /((;C; and ¢ > 0 be given. Then there exists d; > 0 such that
/
’f(x)_L)<£ whenever a <z <a+d,(<b).
9'(x) 2

Let d = a+ 6;. For a < x < d, the Cauchy mean value theorem implies that for some ¢ in

(x,d) such that
@) - fd) (o)

g(z) —g(d) — g'(c)
Note that the quotient above belongs to (L — g, L+ %) (if a < x < d). Moreover,

g(z) —g(d)  g(x) (9(z) — g(d))g() g'(c) g(z) g(z)’
thus
f(z) = f(d) — /() = @ @ whenever a < x
EETRrCIN GRS e B <d



Since lim+ g(x) = oo, the right-hand side of the inequality above approaches zero as x

r—a

approaches a from the right. Therefore, there exists 0 < § < d1, such that
’f(rv) —fld) f(x)‘ _€
g9(x) —g(d) g(z)! 2

Therefore, if a < x < a4+ 9,

f(z) _L’ _ ‘f(fﬂ) —fld) [z

g(x) g(x) —g(d)  g(z

which concludes the theorem.

)| /@) = f(d)
1+

x) — g(d)

whenever a <z <a+d(<d<b).
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Remark 5.43. 1. L’Hospital Rule can also be applied to the case when lim replaces lim

r—b~

r—at

in the theorem. Moreover, the one-sided limit can also be replaced by full limit lim

r—cC

if ¢ € (a,b) (by considering L’Hospital’s Rule on (a,c) and (c,b), respectively). See

Example 5.44 for more details on the full limit case.

2. L’Hospital Rule can also be applied to limits as x — c or x — —oo (and here a or b

has to be changed to —oo or oo as well). To see this, we note that if F/(z) = f(%) and

1 . . . . .
G(z) = g(;), then either a}f{% F(z) = xll,%l+ G(z) =0or mlir(r)1+ F(z) = $11)I(I)1+ G(zr) = oo

thus L’Hospital Rule implies that

=
) v G')

e Indeterminate form g

e2r 1

Example 5.44. Compute lin%

PGV Py L Fy)
— y—0t G(y)

f(z)

1m .
a—w0 g(x)

Let f(z) = €*®* — 1 and g(x) = z. Then f, g are differentiable on (0,1) and g(x) #

0,9'(x) # 0 for all x € (0,1). Moreover,

/ 2 2x
lim (@) = li ¢
a0t g'(z)  em0t 1

and lim f(z) = lim g(x) = 0. Therefore, L’'Hospital’s Rule implies that

z—0t z—0t

lim @) = lim /(@) =

0t g(z)  am0t g'(2)

Similarly, by the fact that



1. f,g are differentiable on (—1,0) and g(z) # 0,g'(x) # 0 for all x € (—1,0),

o flm) . 2e™
2 T

3. lim f(x)= lim g(z) =0,

=2,

z—01 z—0t
THAcnital . o f@) o )
L’Hospital’s Rule implies that lim = lim =~ = 2. Theorem 1.26 then shows that
a—0- g(x) a0~ g'()
lim f@) = 2 exists.

z—0 g(x)
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