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Theorem 5.41: Cauchy Mean Value Theorem

Let f,g : [a,b] — R be continuous on |[a,b] and differentiable on (a,b). If g’(x) # 0
for all z € (a,b), then there exists ¢ € (a,b) such that

f'(e) _ f(b) = f(a)
g'(c)  g(b) —g(a)

Theorem 5.42: L’Ho6spital’s Rule

!/
Let f,g be differentiable on (a,b), and @) and /@) be defined on (a,b). If

9() g9'(x)
/
lim+ g /Eg exists, and one of the following conditions holds:
L lim f(r) = lim g(x) =0; 2. lim f(z) = lim g(z) = o0,
then lim f(=) exists, and
z—at g(7)

lim @ = lim /(@)

oat g(z)  wmar g'(2)

Remark 5.43. 1. L’Hospital Rule can also be applied to the case when lim replaces lim

T—b— r—at

in the theorem. Moreover, the one-sided limit can also be replaced by full limit lim if

r—C

c € (a,b) (by considering L'Hdspital’s Rule on (a,c¢) and (¢, b), respectively).

2. L’Hospital Rule can also be applied to limits as x — « or x — —oo (and here a or b

has to be changed to —o0 or 0 as well).

e Indeterminate form g

2 _
Example 5.44. Compute lin% € 1. Last time we conclude from L’Hdéspital’s Rule that
T— X
/ /
lim _f(a:) = lim (@) =2 and lim 7f(a:) = lim (@) =2
a—0t g(x) @m0t g'(x) 20— g(z)  z—0- g'(x)
Theorem 1.26 then shows that hII(l) fgg:; = 2 exists.
z—0 g\T

From the discussion in Example 5.44, using L’Hospital’s Rule in Theorem 5.42 we deduce

the following L’Héspital’s Rule for the full limit case.



Theorem 5.42%

Let a < ¢ < b, and f, g be differentiable functions on (a,b)\{c}. Assume that g'(z) # 0
for all 2 € (a, b)\{c}. If the limit of L)

7@) as x approaches ¢ produces the indeterminate
glxr

0 o0

f - —); that is, li

orm (or OO), at is, xl_)Hif(x)

= lim g(z) =0 (or lim f(z) = lim g(z) = 0), then
tim £ iy L)

m
a=e g(x)  a=e g'(x)
provided the limit on the right exists.

e Indeterminate form *

1 d
Example 5.45. In this example we compute lim 2 Note that lim

L lnzx 1
d _ 1 _
r—0 T T—00 3;%3; _111—1}0105_0,
so L’Hospital’s Rule implies that
Inz 4]
lim — = lim &% =0,
r—0 r r—00

%LU

In fact, the logarithmic function y = Inx grows slower than any power function; that is,

Inx
lim — =0 Vp>0.
rz—ow TP
. A i 1. - L
To see this, note that lim <% = lim —%— = — lim — =0, so L’Hospital’s Rule implies
z—0n L z—00 prP— p xz—wo TP
that .
Inz Inz
lim — = lim dxd
z—owo P —00 %xp
e Indeterminate form 0 - o
Example 5.46. Compute lim e *4/x. Rewrite e™*y/x as \/—f and note that
T—0 €
d 1
lim < — lim 2Y* L =
T—00 diel” z—w e¥
XL




In fact, the natural exponential function y = e grows faster than any power function;

that is,

The proof is left as an exercise.

e Indeterminate form 1%

Example 5.47. In this example we compute lin%(l +2)%. Rewrite (1+ )% as e If

the limit lim ln(lT”Lx) exists, then the continuity of the exponential function implies that

xr—>

: 1 . In(1+x)
iy 4! = exp iy 2

Nevertheless, since lim In(1 + z) = 0, hH(l) r =0 and

Tr—

AIn(l+x 1
lim w = lim =1
z—0 2T z—01+2x
L’Hospital’s Rule implies that
d
B 2] B0
z—0 x x—0 %x

thus lin%(l +1)r =exp(l) = e.

e Indeterminate form (°

Example 5.48. In this example we compute lim+(sin x)*. When sinx > 0, we have
z—0

Insinx

(sinx)m — exlnsina: —e 1=
Since
Y % Insinz Y o 5
im e = lim = — lim — rcosr =0,

by L’Hospital’s Rule and the continuity of the natural exponential function we find that

. . x . Insinz 0
lim (sinz)® = lim e /= =¢’ =1.
x—07F z—0t




e Indeterminate form oo —

z—1+ \lnxz x-—1

1 1 —1-1
Rewrite — — _ 7 ne

lnz zx-—1

Example 5.49. Compute lim ( ! ! )

and note that the right-hand side produces indeter-
(x—1)Inzx
minate form g2 approaches from the right. Also note that

d%(w—l—ln:c)_ -+ x—1
L(z—1)Inz S hhr+=! zhrtar-1

which, as x approaches 1 from the right, again produces indeterminate form —. In order to
find the limit of the right-hand side we compute

lim %(m — 1)

=1t L(zlnz +x—1)

thus L’Hospital’s Rule implies that

) 1 1
im —— = —;
-1+ Inx+1+1 2

d
B d(p_1
TR Sl ST (z-1)

= lim do :1.
ot zlnz+r -1 oot L(zlno4+z-1) 2

This in turm shows that

. x—1—Inzx
lim =

L(z—1-Inz)
o1+ (z—1)Inz

r—1
m
-1+t Lz —1)nz

1
im — = —.
st xlne+x2—1 2

5.7 The Inverse Trigonometric Functions: Differentia-
tion

Definition 5.50

~55) > R og:[0m] — R, and h : rr

—5,5) — R, respectively, where
f(z) =sinx, g(x) = cosz and h(xz) = tanz. In other words,

The arcsin, arccos, and arctan functions are the inverse functions of the function
f |: ™ T

1. y = arcsin z if and only if siny = x, where —

s T

-sSys 5, Il
5 SYS S, I1<z<l1
2. y = arccos x if and only if cosy = x, where 0 <y <7, -1 <x < 1.

3. y = arctan x if and only if tany = =, where —




Remark 5.51. Since arcsin, arccos and arctan look like the inverse function of sin, cos and

1 1

tan, respectively, often times we also write arcsin as sin™", arccos as cos™ ", and arctan as

tan—!.

-2 3w T
5 ) , and arctan 1

.1 T
Example 5.52. arcsin 3= arccos ( 1

Example 5.53. Suppose that y = arcsinx. Then y € [—%, g} which implies that cosy > 0.
Therefore, by the fact that sin®y + cos?y = 1, we have

cosy =4/1 —sin’y =1 — 22 if y=arcsinz.

Similarly, if y = arccos z, then y € (0, 7) which implies that siny > 0. Therefore,

siny = /1 —cos?y =1 — 2?2 if y=arccosz.
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