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Theorem 5.41: Cauchy Mean Value Theorem

Let f, g : [a, b] Ñ R be continuous on [a, b] and differentiable on (a, b). If g 1(x) ‰ 0

for all x P (a, b), then there exists c P (a, b) such that

f 1(c)

g 1(c)
=

f(b) ´ f(a)

g(b) ´ g(a)
.

Theorem 5.42: L’Hôspital’s Rule

Let f, g be differentiable on (a, b), and f(x)

g(x)
and f 1(x)

g 1(x)
be defined on (a, b). If

lim
xÑa+

f 1(x)

g 1(x)
exists, and one of the following conditions holds:

1. lim
xÑa+

f(x) = lim
xÑa+

g(x) = 0; 2. lim
xÑa+

f(x) = lim
xÑa+

g(x) = 8,

then lim
xÑa+

f(x)

g(x)
exists, and

lim
xÑa+

f(x)

g(x)
= lim

xÑa+

f 1(x)

g 1(x)
.

Remark 5.43. 1. L’Hôspital Rule can also be applied to the case when lim
xÑb´

replaces lim
xÑa+

in the theorem. Moreover, the one-sided limit can also be replaced by full limit lim
xÑc

if
c P (a, b) (by considering L’Hôspital’s Rule on (a, c) and (c, b), respectively).

2. L’Hôspital Rule can also be applied to limits as x Ñ 8 or x Ñ ´8 (and here a or b

has to be changed to ´8 or 8 as well).

‚ Indeterminate form 0

0

Example 5.44. Compute lim
xÑ0

e2x ´ 1

x
. Last time we conclude from L’Hôspital’s Rule that

lim
xÑ0+

f(x)

g(x)
= lim

xÑ0+

f 1(x)

g 1(x)
= 2 and lim

xÑ0´

f(x)

g(x)
= lim

xÑ0´

f 1(x)

g 1(x)
= 2 .

Theorem 1.26 then shows that lim
xÑ0

f(x)

g(x)
= 2 exists.

From the discussion in Example 5.44, using L’Hôspital’s Rule in Theorem 5.42 we deduce
the following L’Hôspital’s Rule for the full limit case.



Theorem 5.42:*
Let a ă c ă b, and f, g be differentiable functions on (a, b)ztcu. Assume that g 1(x) ‰ 0

for all x P (a, b)ztcu. If the limit of f(x)

g(x)
as x approaches c produces the indeterminate

form 0

0

(
or 8

8

)
; that is, lim

xÑc
f(x) = lim

xÑc
g(x) = 0

(
or lim

xÑc
f(x) = lim

xÑc
g(x) = 8

)
, then

lim
xÑc

f(x)

g(x)
= lim

xÑc

f 1(x)

g 1(x)

provided the limit on the right exists.

‚ Indeterminate form 8

8

Example 5.45. In this example we compute lim
xÑ8

lnx

x
. Note that lim

xÑ8

d
dx lnx

d
dxx

= lim
xÑ8

1

x
= 0,

so L’Hôspital’s Rule implies that

lim
xÑ8

lnx

x
= lim

xÑ8

d
dx lnx

d
dxx

= 0 .

In fact, the logarithmic function y = lnx grows slower than any power function; that is,

lim
xÑ8

lnx

xp
= 0 @ p ą 0 .

To see this, note that lim
xÑ8

d
dx lnx
d
dxx

p
= lim

xÑ8

1
x

pxp´1
=

1

p
lim
xÑ8

1

xp
= 0 , so L’Hôspital’s Rule implies

that
lim
xÑ8

lnx

xp
= lim

xÑ8

d
dx

lnx
d
dx
xp

= 0 .

‚ Indeterminate form 0 ¨ 8

Example 5.46. Compute lim
xÑ8

e´x
?
x. Rewrite e´x

?
x as

?
x

ex
and note that

lim
xÑ8

d
dx

?
x

d
dx
ex

= lim
xÑ8

1
2

?
x

ex
= lim

xÑ8

1

2
?
xex

= 0 .

Therefore, L’Hôspital’s Rule implies that

lim
xÑ8

?
x

ex
= lim

xÑ8

d
dx

?
x

d
dx
ex

= 0 .



In fact, the natural exponential function y = ex grows faster than any power function;
that is,

lim
xÑ8

xp

ex
= 0 @ p ą 0 .

The proof is left as an exercise.

‚ Indeterminate form 18

Example 5.47. In this example we compute lim
xÑ0

(1 + x)
1
x . Rewrite (1 + x)

1
x as e

ln(1+x)
x . If

the limit lim
xÑ0

ln(1+x)
x

exists, then the continuity of the exponential function implies that

lim
xÑ0

(1 + x)
1
x = exp

(
lim
xÑ0

ln(1 + x)

x

)
.

Nevertheless, since lim
xÑ0

ln(1 + x) = 0, lim
xÑ0

x = 0 and

lim
xÑ0

d
dx

ln(1 + x)
d
dx
x

= lim
xÑ0

1

1 + x
= 1

L’Hôspital’s Rule implies that

lim
xÑ0

ln(1 + x)

x
= lim

xÑ0

d
dx

ln(1 + x)
d
dx
x

= 1 ;

thus lim
xÑ0

(1 + x)
1
x = exp(1) = e.

‚ Indeterminate form 00

Example 5.48. In this example we compute lim
xÑ0+

(sinx)x. When sin x ą 0, we have

(sinx)x = ex ln sinx = e
ln sin x
1/x .

Since

lim
xÑ0+

d
dx

ln sin x
d
dx

1
x

= lim
xÑ0+

cosx
sinx

´ 1
x2

= ´ lim
xÑ0+

x

sinx
x cosx = 0 ,

by L’Hôspital’s Rule and the continuity of the natural exponential function we find that

lim
xÑ0+

(sinx)x = lim
xÑ0+

e
ln sin x
1/x = e0 = 1 .



‚ Indeterminate form 8 ´ 8

Example 5.49. Compute lim
xÑ1+

(
1

lnx
´

1

x ´ 1

)
.

Rewrite 1

lnx
´

1

x ´ 1
=

x ´ 1 ´ lnx

(x ´ 1) lnx
and note that the right-hand side produces indeter-

minate form 0

0
as x approaches from the right. Also note that

d
dx
(x ´ 1 ´ lnx)
d
dx
(x ´ 1) lnx

=
1 ´ 1

x

lnx+ x´1
x

=
x ´ 1

x lnx+ x ´ 1

which, as x approaches 1 from the right, again produces indeterminate form 0

0
. In order to

find the limit of the right-hand side we compute

lim
xÑ1+

d
dx
(x ´ 1)

d
dx
(x lnx+ x ´ 1)

= lim
xÑ1+

1

lnx+ 1 + 1
=

1

2
;

thus L’Hôspital’s Rule implies that

lim
xÑ1+

x ´ 1

x lnx+ x ´ 1
= lim

xÑ1+

d
dx
(x ´ 1)

d
dx
(x lnx+ x ´ 1)

=
1

2
.

This in turm shows that

lim
xÑ1+

x ´ 1 ´ lnx

(x ´ 1) lnx
= lim

xÑ1+

d
dx
(x ´ 1 ´ lnx)
d
dx
(x ´ 1) lnx

= lim
xÑ1+

x ´ 1

x lnx+ x ´ 1
=

1

2
.

5.7 The Inverse Trigonometric Functions: Differentia-
tion

Definition 5.50
The arcsin, arccos, and arctan functions are the inverse functions of the function
f :

[
´

π

2
,
π

2

]
Ñ R, g : [0, π] Ñ R, and h :

(
´

π

2
,
π

2

)
Ñ R, respectively, where

f(x) = sinx, g(x) = cosx and h(x) = tanx. In other words,

1. y = arcsinx if and only if sin y = x, where ´
π

2
ď y ď

π

2
, ´1 ď x ď 1.

2. y = arccosx if and only if cos y = x, where 0 ď y ď π, ´1 ď x ď 1.

3. y = arctanx if and only if tan y = x, where ´
π

2
ă y ă

π

2
, ´8 ă x ă 8.



Remark 5.51. Since arcsin, arccos and arctan look like the inverse function of sin, cos and
tan, respectively, often times we also write arcsin as sin´1, arccos as cos´1, and arctan as
tan´1.

Example 5.52. arcsin 1

2
=

π

6
, arccos

(´
?
2

2

)
=

3π

4
, and arctan 1 =

π

4
.

Example 5.53. Suppose that y = arcsinx. Then y P
[
´
π

2
,
π

2

]
which implies that cos y ě 0.

Therefore, by the fact that sin2 y + cos2 y = 1, we have

cos y =

b

1 ´ sin2 y =
?
1 ´ x2 if y = arcsinx .

Similarly, if y = arccosx, then y P (0, π) which implies that sin y ě 0. Therefore,

sin y =
a

1 ´ cos2 y =
?
1 ´ x2 if y = arccosx .
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