Calculus MA1002-A Midterm 2
National Central University, Apr. 16, 2019

Problem 1. (10%) Suppose that the limit lim n®r"C3" exists and is non-zero. Find a, r and the

n—0o0
limit.

Solution. Recall the Stirling formula:
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Since the limit lim n”s" does not exist unless 3 = 0 and s = 1, we conclude that if the limit

n—0o0

= lim
n—0o0
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lim n®r"C3" exists, « = = and 7 = —, and in such a case lim n®r"C3" = i o
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Problem 2. (15%) Find all value p € R such that }; [exp (k:(ln k)P> - 1] converges. Note that you
k=2
need to provide the reason for the convergence or divergence of the power series for each p.
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Solution. Let a, = exp <7) —1and b, = ———. Then a,,b, = 0 for all n > 2. Moreover,
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lim b, = 0; thus by the fact that a, = exp(b,) — 1 and lim i 1, we find that lim dn 1,
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Therefore, the limit comparison test implies that >} a, converges if and only if > b, converges.
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If p > 0, then the function y = (na)? is decreasing on [2,00); thus the integral test implies that
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> by, converges if and only if dx converges. A substitution of variable shows that
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which converges if and only if p > 1. Therefore, if p > 0, then >, b, converges if and only if p > 1.
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For p < 0, note that 0 < E S kb for all £ > 3; thus by the fact that IE Z diverges, the
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comparison test implies that 122 k(Ink)P

Combining the discussion above, we conclude that

diverges for p < 0.
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,{ZQ [exp (k(lnlk)P> — 1] converges if and only if p > 1. =
&, sin(kx)
Problem 3. (15%) Show that L converges for all x € R.
k=
&, sin(kx)
Proof. First we note that by the periodicity of the sine function, it suffices to show that Z .
converges for all 0 < x < 27. Moreover, if x = 0 or x = 27, the sum is clearly 0; thus we only need
to show that )] sm;ka:) converges for all x € (0, 27).
k=1
For z € (0, 2m), sm # 0; thus the fact that
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we have Y] sin(kx) 2 2 Therefore, for each n € N and x € (0, 27)
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Therefore, by the Abel (or Dirichlet) test, > L converges for all z € (0, 27). D
k=1

Problem 4. (15%) Find the radius of convergence and the interval of convergence of the power
series

£, (<1)ta?
k
= 2k
—_1)" A
Solution. Let a,, = & Then
2"Inn
$2n+1
Unt1| 27 I(ng1)  nn Lo _ Inn 2
an Qgin 2In(n + 1) ~ 2In(n+ 1)
If || > 1, then lim |2"*!| = o0. On the other hand, if |z| < 1, then
n—0 | Qp
0 if |z| <1
. Anp+1 )
1 =
oo | {; if |2 = 1.



0 (_1\k,.2F
Therefore, the ratio test shows that >’ (QIf)Inxk converges if and only if || < 1; thus
k=2

1. the radius of convergence is 1; 2. the interval of convergence is [—1, 1. o

Problem 5. Suppose that z(t) is a function of ¢ satisfying the following equations
z"(t)+z(t)=0, z(0)=1, =2'(0)=1,
where " denotes the derivatives with respect to t.

1. (5%) Assume that the function z(t) can be written as a power series (on a certain interval),

0
that is, z(t) = >, axt*. Show that (k + 2)(k + 1)ass2 + ax = 0 for all k > 0.
k=0

2. (10%) Show that the 4-th Maclaurin polynomial of sint + cost agrees with the 4-th Maclaurin

polynomial of z(t).
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Proof. 1. Suppose that z(t) = > axt* has radius of convergence R and is a solution to the equation.
k=0

Since
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2(t) = > k(k = Dagt*™> = Y (k+2)(k + Dapot®  V[t| <R,
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we find that for t € (—R, R),
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0= (k+2)(k+ Dagsat® + > apt® = > [(k+2)(k + Darss + ax]t*.
k=0 k=0 k=0

Therefore, (k + 2)(k + 1)agyo + ar = 0 for all £ > 0.

2. Since x(0) = z’(0) = 1, we find that ag = a; = 1. Therefore,
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thus the 4-th Maclaurin polynomial of z is 14+t — 7% + o0 On the other hand, the Maclaurin

series of the function y = sint + cost is the sum of the Maclaurin series of the sine function

and the Maclaurin series of the cosine function; thus the Maclaurin series of sint + cost is
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which shows the 4-th Maclaurin polynomial of sint + cost is
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Therefore, the 4-th Maclaurin polynomial of sint 4 cost agrees with the 4-th Maclaurin poly-

nomial of x(t). D

Problem 6. Complete the following.



1. (5%) State the Taylor Theorem (for functions of one variable).

2. (10%) Use the Taylor Theorem to show that
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Proof of 2. Let f(x) = 1—11—35 Then f®)(z) = (=1)*K!(1 + 2)~*+1). Therefore, Taylor’s Theorem

implies that for each x € R, there exists & between x and 0 such that
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Therefore, if z > 0,
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In particular, for all x € R,
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Problem 7. (15%) Find n such that

o
‘e—ZH‘<5x10—6.

Explain your answer.

Solution. By Taylor’s Theorem, for each x € R there exists £ between 0 and x such that
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In particular, there exists £ € (0,1) such that e = Z 1‘ + ———. Therefore,
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Choosing n = 15, we find that
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In fact, the desired inequality holds as long as n > 10. =



