
Calculus MA1002-A Midterm 2
National Central University, Apr. 16, 2019

Problem 1. (10%) Suppose that the limit lim
nÑ8

nαrnC3n
n exists and is non-zero. Find α, r and the

limit.

Solution. Recall the Stirling formula:

lim
nÑ8

n!
?
2πnnne´n

= 1 .

Therefore,

lim
nÑ8

a

2π(3n)(3n)3ne´3n

(3n)!
= lim

nÑ8

(2n)!
a

2π(2n)(2n)2ne´2n
= 1 .

By definition, C3n
n =

(3n)!

n!(2n)!
; thus if the limit lim

nÑ8
nαrnC3n

n exists,

lim
nÑ8

nαrnC3n
n

=
(

lim
nÑ8

nαrnC3n
n

)(
lim
nÑ8

n!
?
2πnnne´n

)(
lim
nÑ8

(2n)!
a

2π(2n)(2n)2ne´2n

)(
lim
nÑ8

a

2π(3n)(3n)3ne´3n

(3n)!

)
= lim

nÑ8

(
nαrnC3n

n

n!(2n)!

(3n)!

a

2π(3n)(3n)3ne´3n

?
2πnnne´n

a

2π(2n)(2n)2ne´2n

)
= lim

nÑ8

(
nαrn

a

2π(3n)(3n)3ne´3n

?
2πnnne´n

a

2π(2n)(2n)2ne´2n

)
= lim

nÑ8

(
nαrn

a

2π(3n)33n
?
2πn

a

2π(2n)22n

)
=

c

3

4π
lim
nÑ8

[
nα´ 1

2

(27r
4

)n]
.

Since the limit lim
nÑ8

nβsn does not exist unless β = 0 and s = 1, we conclude that if the limit

lim
nÑ8

nαrnC3n
n exists, α =

1

2
and r =

4

27
, and in such a case lim

nÑ8
nαrnC3n

n =

c

3

4π
. ˝

Problem 2. (15%) Find all value p P R such that
8
ř

k=2

[
exp

(
1

k(ln k)p

)
´1

]
converges. Note that you

need to provide the reason for the convergence or divergence of the power series for each p.

Solution. Let an = exp
(

1

n(lnn)p

)
´ 1 and bn =

1

n(lnn)p
. Then an, bn ě 0 for all n ě 2. Moreover,

lim
nÑ8

bn = 0; thus by the fact that an = exp(bn) ´ 1 and lim
xÑ0

ex ´ 1

x
= 1, we find that lim

nÑ8

an
bn

= 1.

Therefore, the limit comparison test implies that
8
ř

n=2

an converges if and only if
8
ř

n=2

bn converges.

If p ą 0, then the function y =
1

x(lnx)p
is decreasing on [2,8); thus the integral test implies that

8
ř

n=2

bn converges if and only if
ż 8

2

1

x(lnx)p
dx converges. A substitution of variable shows that

ż 8

2

1

x(lnx)p
dx

(x=eu)
=

ż 8

ln 2

1

upeu
eu du =

ż 8

ln 2

u´p du



which converges if and only if p ą 1. Therefore, if p ą 0, then
8
ř

n=2

bn converges if and only if p ą 1.

For p ď 0, note that 0 ă
1

k
ď

1

k(ln k)p
for all k ě 3; thus by the fact that

8
ř

k=1

1

k
diverges, the

comparison test implies that
8
ř

k=2

1

k(ln k)p
diverges for p ď 0.

Combining the discussion above, we conclude that
8
ÿ

k=2

[
exp

(
1

k(ln k)p

)
´ 1

]
converges if and only if p ą 1. ˝

Problem 3. (15%) Show that
8
ř

k=1

sin(kx)
k

converges for all x P R.

Proof. First we note that by the periodicity of the sine function, it suffices to show that
8
ř

k=1

sin(kx)
k

converges for all 0 ď x ď 2π. Moreover, if x = 0 or x = 2π, the sum is clearly 0; thus we only need

to show that
8
ř

k=1

sin(kx)
k

converges for all x P (0, 2π).

For x P (0, 2π), sin x

2
‰ 0; thus the fact that

2 sin x

2

n
ÿ

k=1

sin(kx) =
n

ÿ

k=1

[
cos

(
kx ´

x

2

)
´ cos

(
kx+

x

2

)]
=

8
ÿ

n=1

[
cos

(
k ´

1

2

)
x ´ cos

(
k +

1

2

)
x
]

=
(

cos x

2
´ cos 3x

2

)
+
(

cos 3x

2
´ cos 5x

2

)
+ ¨ ¨ ¨ +

(
cos

(
n ´

1

2

)
x ´ cos

(
n+

1

2

)
x
)

= cos x

2
´ cos (2n+ 1)x

2
,

we have
n
ř

k=1

sin(kx) = cos x
2 ´ cos (2n+1)x

2

2 sin x
2

. Therefore, for each n P N and x P (0, 2π),

ˇ

ˇ

ˇ

n
ÿ

k=1

sin(kx)
ˇ

ˇ

ˇ
ď

1

sin x
2

ă 8 .

Therefore, by the Abel (or Dirichlet) test,
8
ř

k=1

sin(kx)
k

converges for all x P (0, 2π). ˝

Problem 4. (15%) Find the radius of convergence and the interval of convergence of the power
series

8
ÿ

k=2

(´1)kx2k

2k ln k
.

Solution. Let an =
(´1)nx2

n

2n lnn
. Then

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ
=

x2n+1

2n+1 ln(n+1)

x2n

2n lnn

=
lnn

2 ln(n+ 1)
x2n+1´2n =

lnn

2 ln(n+ 1)
x2n .

If |x| ą 1, then lim
nÑ8

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ
= 8. On the other hand, if |x| ď 1, then

lim
nÑ8

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ
=

#

0 if |x| ă 1 ,
1

2
if |x| = 1 .



Therefore, the ratio test shows that
8
ř

k=2

(´1)kx2
k

2k ln k
converges if and only if |x| ď 1; thus

1. the radius of convergence is 1; 2. the interval of convergence is [´1, 1]. ˝

Problem 5. Suppose that x(t) is a function of t satisfying the following equations

x 11(t) + x(t) = 0 , x(0) = 1 , x 1(0) = 1 ,

where 1 denotes the derivatives with respect to t.

1. (5%) Assume that the function x(t) can be written as a power series (on a certain interval),
that is, x(t) =

8
ř

k=0

akt
k. Show that (k + 2)(k + 1)ak+2 + ak = 0 for all k ě 0.

2. (10%) Show that the 4-th Maclaurin polynomial of sin t+ cos t agrees with the 4-th Maclaurin
polynomial of x(t).

Proof. 1. Suppose that x(t) =
8
ř

k=0

akt
k has radius of convergence R and is a solution to the equation.

Since
x 11(t) =

8
ÿ

k=2

k(k ´ 1)akt
k´2 =

8
ÿ

k=0

(k + 2)(k + 1)ak+2t
k @ |t| ă R ,

we find that for t P (´R,R),

0 =
8
ÿ

k=0

(k + 2)(k + 1)ak+2t
k +

8
ÿ

k=0

akt
k =

8
ÿ

k=0

[
(k + 2)(k + 1)ak+2 + ak

]
tk .

Therefore, (k + 2)(k + 1)ak+2 + ak = 0 for all k ě 0.

2. Since x(0) = x 1(0) = 1, we find that a0 = a1 = 1. Therefore,

a2 =
´a0
2 ¨ 1

= ´
1

2
, a3 =

´a1
3 ¨ 2

= ´
1

6
, a4 =

´a2
4 ¨ 3

=
1

24
;

thus the 4-th Maclaurin polynomial of x is 1+t´
t2

2
´

t3

6
+

t4

24
. On the other hand, the Maclaurin

series of the function y = sin t + cos t is the sum of the Maclaurin series of the sine function
and the Maclaurin series of the cosine function; thus the Maclaurin series of sin t+ cos t is

8
ÿ

k=0

(´1)k

(2k + 1)!
t2k+1 +

8
ÿ

k=0

(´1)k

(2k)!
t2k

which shows the 4-th Maclaurin polynomial of sin t+ cos t is

t ´
t3

3!
+ 1 ´

t2

2!
+

t4

4!
= 1 ´ t ´

t2

2
´

t3

6
+

t4

24
.

Therefore, the 4-th Maclaurin polynomial of sin t+ cos t agrees with the 4-th Maclaurin poly-
nomial of x(t). ˝

Problem 6. Complete the following.



1. (5%) State the Taylor Theorem (for functions of one variable).

2. (10%) Use the Taylor Theorem to show that

arctanx ď

2n
ÿ

k=0

(´1)k
x2k+1

2k + 1
@x ą 0 .

Proof of 2. Let f(x) =
1

1 + x
. Then f (k)(x) = (´1)kk!(1 + x)´(k+1). Therefore, Taylor’s Theorem

implies that for each x P R, there exists ξ between x and 0 such that

f(x) =
2n
ÿ

k=0

f (k)(0)

k!
xk +

f (2n+1)(ξ)

(2n+ 1)!
x2n+1 =

2n
ÿ

k=0

(´1)kxk ´ (1 + ξ)´2n´2x2n+1 .

Therefore, if x ą 0,

1

1 + x
=

2n
ÿ

k=0

(´1)kxk ´ (1 + ξ)´2n´2x2n+1 ď

2n
ÿ

k=0

(´1)kxk .

In particular, for all x P R,
1

1 + x2
ď

2n
ÿ

k=0

(´1)kx2k ;

thus if x ą 0,

arctanx =

ż x

0

1

1 + t2
dt ď

ż x

0

2n
ÿ

k=0

(´1)kt2k dt =
2n
ÿ

k=0

(´1)k
ż x

0

t2k dt =
2n
ÿ

k=0

(´1)k

2k + 1
x2k+1 . ˝

Problem 7. (15%) Find n such that
ˇ

ˇ

ˇ
e ´

n
ÿ

k=0

1

k!

ˇ

ˇ

ˇ
ă 5 ˆ 10´6 .

Explain your answer.

Solution. By Taylor’s Theorem, for each x P R there exists ξ between 0 and x such that

ex =
n

ÿ

k=0

xk

k!
+

eξ

(n+ 1)!
xn+1 .

In particular, there exists ξ P (0, 1) such that e =
n
ř

k=0

1

k!
+

eξ

(n+ 1)!
. Therefore,

ˇ

ˇ

ˇ
e ´

n
ÿ

k=0

1

k!

ˇ

ˇ

ˇ
ď

e

(n+ 1)!
ď

3

(n+ 1)!
.

Choosing n = 15, we find that
ˇ

ˇ

ˇ
e ´

n
ÿ

k=0

1

k!

ˇ

ˇ

ˇ
ď

3

15!
ď

3

10 ¨ 11 ¨ 12 ¨ 13 ¨ 14 ¨ 15
ď 3 ¨ 10´6 ă 5 ˆ 10´6 .

In fact, the desired inequality holds as long as n ě 10. ˝


