Calculus MA1002-A Midterm 3
National Central University, May. 28, 2019

Problem 1. (20%) True or False ( # 2:48): 7 485 4 » E4HFa & > 4 6)4ca & (Ficd >
CREA G L)
In the following, R is always an open region in the plane, (a,b) is always a point in R, and

f+ R — Ris a function of two variables.

1. If Pn% fla+tcosh, b+ tsinf) exists for all f € R, then ( l)mr% , f(z,y) exists.
- z,y)—(a,

2. If f is differentiable at (a,b), then f is continuous at (a,b).

3. If f, and f, both exist on R, then f is differentiable on R.

4. If f, and f, are continuous on R, then f is continuous on R.

5. If f, and f, both exist and are bounded on R, then f is continuous on R.

6. If f.(a,b) and f,(a,b) both exist, and w is a unit vector, then the directional derivative of f at
(a,b) in the direction w is (fz(a,b), fy(a,b)) - u.

7. If the directional derivative of f at (a,b) exists in all directions, then f is continuous at (a,b).
8. If fzy and f,, both exist on R, then f,, = f,, on R.

9. If f, and f, are continuous on R, then the level curve f(z,y) = f(a,b) has a tangent line at

(a,b).
10. If f, and f, are continuous on R and (Vf)(a,b) # 0, then the value of f at (a,b) increases
s o (V)(a,b)
most rapidly in the direction ——=—-——"——.
— (V)0

Problem 2. Let R be an open region in the plane, f : R — R be a function, and (a,b) € R.
1. (5%) Define the differentiability of f at (a,b).

2. (5%) Define the directional derivative of f at (a,b) in direction u, where u = (cos 6, sinf) is a

unit vector.

Problem 3. Assume that f is a continuous function of two variable satisfying that

: f<x7y)_3$2+2y2
lim =
@y)=(10) /(7 + 1)2 + (y — 1)2

1. (10%) Find f,(—1,1) and f,(—1,1).

2. (5%) Prove or disprove that f is differentiable at (—1,1).



_ 32 2
Solution. Note that since  lim fx,y) — 32" + 2y
() =1 /(2 +1)2 + (y — 1)2

lim z,y) — 322+ 2% =0;
i [f(z,y) y’]

= 0, we must have

thus ( )lir(n )f(x,y) = 1. Since f is continuous, f(—1,1) = 1.
z,y)—(—1,1

For (z,y) # (—1,1),

flz,y) =32 +2y*  f(z,y) —3[(z+1) - 1]2+2[(y— 1)+ 1]2

VE+1)2+(y—12 VE 12+ (y—1)2
:f(a;,y)—3(x+1)2+6(1'+1)—3—|—2(y—1)2+4(y—1)+2
V0 +1)2 4 (y— 1)
_ flz,y)— f(-=1, 1) +6(x+1)+4(y—1) 3(xz+1)*>+2(y—1)>

Vi0E+1)2+(y—1)? VE+1)2+ (-1

3z +1)2+2(y—1)2
V(@ +1)2+ (y - 1)2

Since ) ‘ < 3|z + 1| 4+ 2|y — 1], by Squeeze Theorem we find that

3(x+1)?+2(y —1)?

lim —0.
@y =11 /(z + 1)2+ (y — 1)2

Therefore,
(@y)—(=1,1) V(T +1)2+ (y—1)2
which implies that
im =0.

(@y)—(=1,1) V(T +1)2+ (y —1)2
1. Note that the identity above implies that

‘f($,y) - f(_17 1) + 6(.1'—|— 1) +4(y - 1)|

(z,y)}:r(rlll,l) \/(33 I 1)2 T+ (y — 1>2 =0.
Therefore,
— 11m
(Iﬁy);(fl,l) \/(ZL’ + 1)2 + (y _ 1)2
_ i (@D SCLD O+ D)y, (@D SELD g,
z——1 z+1 z——1 T — (_1)
thus
fx(_l) 1) = lim f(.??, 1> _ f(_17 1) = _6.

=N 2= (1)

Similarly, f,(—=1,1) = —4.

2. In the computations above, we conclude that

b @) = fELY - f(L D@+ 1) — fy(-L Dy — 1) —o
(zy)—(-1,1) \/(:U +1)2+ (y —1)2 :




By definition, f is differentiable at (—1,1). o

Problem 4. (10%) Let f,g: R?* - R be defined by

22 (x .
fla,y) = (fyy) if (z,y) # (0,0),

0 if (z,y) = (0,0).
Find the directional derivative of f at (0,0) in the direction along which the value of the function f
at (0,0) decreases most rapidly.

Solution. Let u be the direction along which the value of the function f at (0,0) decreases most

rapidly. Then
(Duf)(0,0) = min {(Dyf)(0,0) | ] = 1}.
Let v = (cos@,sinf). Then

. f(tcos®,tsinf) — f(0,0) . t*cos*6(cosf + sinh)
D, f)(0,0) =1 —1
(Df)(0,0) 150 t i t3(cos? 0 + t2 sin 0)
cos? B(cos 0 + sin 0)
150 cos?f + 12sint 6

If cosf = 0, then (D, f)(0,0) = 0. If cos# # 0, then (D, [)(0,0) = cos@ + sin . Therefore,

0 if cosf =0,
cos@ +sinf if cos® #0.

(Du)0.0) - {

Since min { cos +sin 6 |6 € [0,27)} = —v/2 (attained at § = ??Tﬁ), thus (D,f)(0,0) = —/2. a
Problem 5. (15%) Find the second Taylor polynomial of the function f(x,y) = arctan vl
X
(0,0).
Solution. First, f(0,0) = arctan 1 = % By the chain rule, for z # —1,
Fi 1 _y+1
T4 (292 1+ ()2 (@+ 12+ (y+1)?
P = DA st
o L4 ()2 1+ (82 (a+ 12+ (y+ 1)
and
2z +1)(y+1) —2(z+1)(y+1)
fxx(xay) = 9 9127 fyy(xay) = 2 512
(x4 1)+ (y +1)?] [(z+1)2+ (y+1)?]
folny) = )P+ )P -2+ 1) (1) (1)
o [z +1)?+(y+17)° [(z+ 1)+ (y+ 17’
Therefore, the second Taylor’s polynomial of f is
1
F(0,0) + £2(0,002 + £,(0,0)y + 5 | £22(0, 02 + 2£2,(0, 0)ay + £, (0, 0)y”)
11 10, 1, 7 1 1 1,,
PR At 10t U Al Sl U VAP LG ’




Problem 6. (10%) Find all relative extrema and saddle points of f(z,y) = (22 +y?)e?" = using the
second derivative test. When a relative extremum is found, determine if it is a relative maximum or

a relative minimum.

Solution. We first compute the first and second partial derivatives of f and find that

(z,y) =2
(z,y) =2
Fulea) = 2607 =257 45212~ e,
(,y) [2217(—21/) +day(l — 2 — yZ)}eyZ—xQ ’
(z,y) = [2+ 22" + 6° + (1 + 2%+ ¢?)] e "
Therefore, critical points of f are (0,0), (1,0) and (—1,0).

1. Since f25(0,0) = £,,(0,0) =2, f,,(0,0) = 0, we find that f,.(0,0)f,,(0,0) — fu, (0,0)% = 4 > 0;
thus the fact that f,,(0,0) > 0 implies that f(0,0) is a relative minimum of f.

2. Since f,.(1,0) = —4e™', f,,(1,0) = 4e7! and f,,(1,0) = 0, we find that f..(0,0)f,,(0,0) —
f24(0,0)? = —=16e~% < 0; thus (1,0) is a saddle point of f.

3. Since fu,(—1,0) = —de™ !, f,,(=1,0) = 4e ' and f,,(—1,0) = 0, we find that f,,(0,0)f,,(0,0)—
f24(0,0)? = =162 < 0; thus (—1,0) is a saddle point of f. o

Problem 7. (20%) Let R be the solid in the space given by

{(w,y,2) |1 <2< Va—22— 2}

Find the extreme value of function w = f(z,y,2) = zyz on R.

Solution. Let g(z,y,z) = 2? + y*> + 22 — 4, and h(x,y,2) = z — 1. Then

(VN x,y,2) = (yz, 22, 29)
(Vg)(z,y,2) = (2,2y,22),
(Vh)(x,y,2) =(0,0,1).

If (Vf)(z,y,z) =0, then xy = yz = zx = 0 which implies that at least two of z,y, z are zero. In
this case, f(z,y,z) =0.

Now we consider the extreme value of f on the boundary of R. Suppose that the extreme value
of f occurs at (g, yo, 20). Note that the boundary of R consists of three pieces: g = 0, h = 0 and
g=h=0.

1. g(zo,v0,20) = 0: Since (Vg)(xo, Yo, 20) # 0, Lagrange Multiplier Theorem implies that there
exists A € R such that
(Y020, To20, ToYo) = A(2T0, 2y0, 220) -



Therefore, (xo, Yo, 20, A) satisfies

Yozo = 2Azo (0.1a)
Tozo = 2\ , (0.1b)
Toyo = 2M29 , (0.1c)
z+ys 4z =4. (0.1d)

If one of xq, yo, 20 is zero, then f(xo, Yo, 20) = 0; thus we assume that zoypzo # 0. Then \ # 0

and the product of (@a,b,c) shows that z¢ypzo = SA3. Therefore,
4N? 4\ 402
o=——5 Yo=—", R0~ -
Zo Yo <0

which implies that (zg, yo, 20) is

(20, £2X0,2)),  (F2X, F2X, —2)),  (£2X,2), +2)),
(42X, —20, T20), (20,420, 42)),  (=2), 42\, T2)).
1

In either cases, (@d) implies that 12)\? = 4; thus \ = iﬁ. Since zy = 1, we conclude that
2 2 2 2 2 2
— (+ + L 2 + - F 2 2.
(@0:90,20) = (£ 5 5 (5) o (2 5% 5 5)

8
In this case, f(xg, o, 20) = t——=.
f (o, Yo, 20) W

. h(xo,y0,20) = 0: Since (Vh)(zo,yo, 20) # 0, Lagrange Multiplier Theorem implies that there
exists A € R such that

(Y020, Tozo, ToYo) = A(0,0,1) and 2y =1.

Therefore, (xo, Yo, 20) = (0,0, 1) which is impossible f(zq, yo, 20) = 0.

. 9(x0, Yo, 20) = h(z0, Yo, 20) = 0: Since
(Vg)(zo, Y0, 20) x (Vh)(x0, Yo, 20) = (220, 2¥0, 220) % (1,1,1) = 2(yo — 20, 20 — o, To — Yo)

(Vg)(zo, Yo, 20) x (VRh)(x0, Yo, 20) = 0 if and only if zg = yg = 2. Since h(zg, Yo, z0) = 0 implies
that zo = 1, and g(1,1,1) # 0, we find that (Vg)(zo, 0, 20) x (Vh)(z0, Y0, 20) = 0. Therefore,
Lagrange Multiplier Theorem implies that there exist Ay € R such that

(y()ZQ, To<0, [L'Oyo) = )\(2330, Qy(), 220) + N(O, O, 1) .

Therefore, (xg, Yo, 20, A, pt) satisfies

Yozo = 2Azo, (0.2a)

Tozo = 2o , (0.2b)

Tolo = 2A20 + 14, (0.2¢)
zi+ys+ 20 =4, (0.2d)
zp=1. (0.2¢)

By (@a,b,e), we find that xy = 2\yp = 4\2x¢; thus 2o = 0 or 4)\? = 1.



(a) It To = 07 then f(x())yOa ZO) =0.
(b) If 2 # 0, then A = i%.

S
N o
—
N—"

(i) A= %: (@a,e) implies that yy = zo; thus (@) implies that (9, yo, 20) = (

In this case, f(zo,yo0,20) = g

(ii) @a e) implies that yo = —xo; thus (@) implies that (20,0, 20) = ( +

\[ \/7 . In this case, f(zo,yo,20) =

Comparing the values of all possible extreme points (zg, Yo, 20), we find that the maximum of f on

R is 8 and the minimum of f on R is —i. =

3v3’ 3v/3




