Calculus MA1002-A Midterm 3

National Central University, May. 28, 2019

Problem 1. (20%) True or False (是非題): 每題兩分,答對得兩分,答錯倒扣兩分(倒扣至本大題零分為止)

In the following, R is always an open region in the plane, (a,b) is always a point in R, and $f: R \to \mathbb{R}$ is a function of two variables.

- F 1. If $\lim_{t\to 0} f(a+t\cos\theta,b+t\sin\theta)$ exists for all $\theta\in\mathbb{R}$, then $\lim_{(x,y)\to(a,b)} f(x,y)$ exists.
- $\boxed{\mathbf{T}}$ 2. If f is differentiable at (a,b), then f is continuous at (a,b).
- $\boxed{\mathsf{F}}$ 3. If f_x and f_y both exist on R, then f is differentiable on R.
- $\lceil T \rceil$ 4. If f_x and f_y are continuous on R, then f is continuous on R.
- T 5. If f_x and f_y both exist and are bounded on R, then f is continuous on R.
- F 6. If $f_x(a,b)$ and $f_y(a,b)$ both exist, and \boldsymbol{u} is a unit vector, then the directional derivative of f at (a,b) in the direction \boldsymbol{u} is $(f_x(a,b), f_y(a,b)) \cdot \boldsymbol{u}$.
- $\boxed{\mathsf{F}}$ 7. If the directional derivative of f at (a,b) exists in all directions, then f is continuous at (a,b).
- $\lceil F \rceil$ 8. If f_{xy} and f_{yx} both exist on R, then $f_{xy} = f_{yx}$ on R.
- F 9. If f_x and f_y are continuous on R, then the level curve f(x,y) = f(a,b) has a tangent line at (a,b).
- T 10. If f_x and f_y are continuous on R and $(\nabla f)(a,b) \neq \mathbf{0}$, then the value of f at (a,b) increases most rapidly in the direction $\frac{(\nabla f)(a,b)}{\|(\nabla f)(a,b)\|}$.

Problem 2. Let R be an open region in the plane, $f: R \to \mathbb{R}$ be a function, and $(a, b) \in R$.

- 1. (5%) Define the differentiability of f at (a, b).
- 2. (5%) Define the directional derivative of f at (a,b) in direction \mathbf{u} , where $\mathbf{u} = (\cos \theta, \sin \theta)$ is a unit vector.

Problem 3. Assume that f is a continuous function of two variable satisfying that

$$\lim_{(x,y)\to(-1,1)}\frac{f(x,y)-3x^2+2y^2}{\sqrt{(x+1)^2+(y-1)^2}}=0\,.$$

- 1. (10%) Find $f_x(-1,1)$ and $f_y(-1,1)$.
- 2. (5%) Prove or disprove that f is differentiable at (-1,1).

Solution. Note that since $\lim_{(x,y)\to(-1,1)} \frac{f(x,y)-3x^2+2y^2}{\sqrt{(x+1)^2+(y-1)^2}} = 0$, we must have

$$\lim_{(x,y)\to(-1,1)} \left[f(x,y) - 3x^2 + 2y^2 \right] = 0;$$

thus $\lim_{(x,y)\to(-1,1)} f(x,y) = 1$. Since f is continuous, f(-1,1) = 1. For $(x,y) \neq (-1,1)$,

$$\frac{f(x,y) - 3x^2 + 2y^2}{\sqrt{(x+1)^2 + (y-1)^2}} = \frac{f(x,y) - 3[(x+1) - 1]^2 + 2[(y-1) + 1]^2}{\sqrt{(x+1)^2 + (y-1)^2}}$$

$$= \frac{f(x,y) - 3(x+1)^2 + 6(x+1) - 3 + 2(y-1)^2 + 4(y-1) + 2}{\sqrt{(x+1)^2 + (y-1)^2}}$$

$$= \frac{f(x,y) - f(-1,1) + 6(x+1) + 4(y-1)}{\sqrt{(x+1)^2 + (y-1)^2}} + \frac{3(x+1)^2 + 2(y-1)^2}{\sqrt{(x+1)^2 + (y-1)^2}}.$$

Since $\left| \frac{3(x+1)^2 + 2(y-1)^2}{\sqrt{(x+1)^2 + (y-1)^2}} \right| \le 3|x+1| + 2|y-1|$, by Squeeze Theorem we find that

$$\lim_{(x,y)\to(-1,1)}\frac{3(x+1)^2+2(y-1)^2}{\sqrt{(x+1)^2+(y-1)^2}}=0.$$

Therefore,

$$\lim_{(x,y)\to(-1,1)} \frac{f(x,y) - f(-1,1) + 6(x+1) + 4(y-1)}{\sqrt{(x+1)^2 + (y-1)^2}} = 0$$

which implies that

$$\lim_{(x,y)\to(-1,1)}\frac{\left|f(x,y)-f(-1,1)+6(x+1)+4(y-1)\right|}{\sqrt{(x+1)^2+(y-1)^2}}=0.$$

1. Note that the identity above implies that

$$\lim_{\substack{(x,y)\to(-1,1)\\y=1}\\y=1} \frac{\left|f(x,y)-f(-1,1)+6(x+1)+4(y-1)\right|}{\sqrt{(x+1)^2+(y-1)^2}} = 0.$$

Therefore,

$$0 = \lim_{\substack{(x,y) \to (-1,1) \\ y=1}} \frac{\left| f(x,y) - f(-1,1) + 6(x+1) + 4(y-1) \right|}{\sqrt{(x+1)^2 + (y-1)^2}} \Big|$$

$$= \lim_{x \to -1} \left| \frac{f(x,1) - f(-1,1) + 6(x+1)}{x+1} \right| = \lim_{x \to -1} \left| \frac{f(x,1) - f(-1,1)}{x - (-1)} + 6 \right|;$$

thus

$$f_x(-1,1) = \lim_{x \to -1} \frac{f(x,1) - f(-1,1)}{x - (-1)} = -6.$$

Similarly, $\underline{f_y(-1,1) = -4}$.

2. In the computations above, we conclude that

$$\lim_{(x,y)\to(-1,1)} \frac{\left| f(x,y) - f(-1,1) - f_x(-1,1)(x+1) - f_y(-1,1)(y-1) \right|}{\sqrt{(x+1)^2 + (y-1)^2}} \Big| = 0.$$

Problem 4. (10%) Let $f, g : \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} \frac{x^2(x+y)}{x^2 + y^4} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Find the directional derivative of f at (0,0) in the direction along which the value of the function f at (0,0) decreases most rapidly.

Solution. Let u be the direction along which the value of the function f at (0,0) decreases most rapidly. Then

$$(D_{\boldsymbol{u}}f)(0,0) = \min\{(D_{\boldsymbol{v}}f)(0,0) \mid ||\boldsymbol{v}|| = 1\}.$$

Let $\mathbf{v} = (\cos \theta, \sin \theta)$. Then

$$(D_{v}f)(0,0) = \lim_{t \to 0} \frac{f(t\cos\theta, t\sin\theta) - f(0,0)}{t} = \lim_{t \to 0} \frac{t^{3}\cos^{2}\theta(\cos\theta + \sin\theta)}{t^{3}(\cos^{2}\theta + t^{2}\sin^{4}\theta)}$$
$$= \lim_{t \to 0} \frac{\cos^{2}\theta(\cos\theta + \sin\theta)}{\cos^{2}\theta + t^{2}\sin^{4}\theta}.$$

If $\cos \theta = 0$, then $(D_{v}f)(0,0) = 0$. If $\cos \theta \neq 0$, then $(D_{v}f)(0,0) = \cos \theta + \sin \theta$. Therefore,

$$(D_{v}f)(0,0) = \begin{cases} 0 & \text{if } \cos \theta = 0, \\ \cos \theta + \sin \theta & \text{if } \cos \theta \neq 0. \end{cases}$$

Since min $\{\cos\theta + \sin\theta \mid \theta \in [0, 2\pi)\} = -\sqrt{2}$ (attained at $\theta = \frac{3\pi}{4}$); thus $\underline{(D_{\boldsymbol{u}}f)(0, 0) = -\sqrt{2}}$.

Problem 5. (15%) Find the second Taylor polynomial of the function $f(x,y) = \arctan \frac{y+1}{x+1}$ at (0,0).

Solution. First, $f(0,0) = \arctan 1 = \frac{\pi}{4}$. By the chain rule, for $x \neq -1$,

$$f_x(x,y) = \frac{\frac{\partial}{\partial x} \frac{y+1}{x+1}}{1 + (\frac{y+1}{x+1})^2} = \frac{-\frac{y+1}{(x+1)^2}}{1 + (\frac{y+1}{x+1})^2} = -\frac{y+1}{(x+1)^2 + (y+1)^2},$$

$$f_y(x,y) = \frac{\frac{\partial}{\partial y} \frac{y+1}{x+1}}{1 + (\frac{y+1}{x+1})^2} = \frac{\frac{1}{x+1}}{1 + (\frac{y+1}{x+1})^2} = \frac{x+1}{(x+1)^2 + (y+1)^2},$$

and

$$f_{xx}(x,y) = \frac{2(x+1)(y+1)}{\left[(x+1)^2 + (y+1)^2\right]^2}, \quad f_{yy}(x,y) = \frac{-2(x+1)(y+1)}{\left[(x+1)^2 + (y+1)^2\right]^2}$$
$$f_{xy}(x,y) = -\frac{(x+1)^2 + (y+1)^2 - 2(y+1)^2}{\left[(x+1)^2 + (y+1)^2\right]^2} = \frac{(y+1)^2 - (x+1)^2}{\left[(x+1)^2 + (y+1)^2\right]^2}.$$

Therefore, the second Taylor's polynomial of f is

$$f(0,0) + f_x(0,0)x + f_y(0,0)y + \frac{1}{2} \left[f_{xx}(0,0)x^2 + 2f_{xy}(0,0)xy + f_{yy}(0,0)y^2 \right]$$
$$= \frac{\pi}{4} - \frac{1}{2}x + \frac{1}{2}y + \frac{1}{2} \left(\frac{1}{2}x^2 - \frac{1}{2}y^2 \right) = \frac{\pi}{4} - \frac{1}{2}x + \frac{1}{2}y + \frac{1}{4} \left(x^2 - y^2 \right).$$

Problem 6. (10%) Find all relative extrema and saddle points of $f(x,y) = (x^2 + y^2)e^{y^2 - x^2}$ using the second derivative test. When a relative extremum is found, determine if it is a relative maximum or a relative minimum.

Solution. We first compute the first and second partial derivatives of f and find that

$$\begin{split} f_x(x,y) &= 2xe^{y^2-x^2} + (x^2+y^2)(-2x)e^{y^2-x^2} = 2x(1-x^2-y^2)e^{y^2-x^2}\,,\\ f_y(x,y) &= 2ye^{y^2-x^2} + (x^2+y^2)(2y)e^{y^2-x^2} = 2y(1+x^2+y^2)e^{y^2-x^2}\,,\\ f_{xx}(x,y) &= \left[2-6x^2-2y^2-4x^2(1-x^2-y^2)\right]e^{y^2-x^2}\,,\\ f_{xy}(x,y) &= \left[2x(-2y)+4xy(1-x^2-y^2)\right]e^{y^2-x^2}\,,\\ f_{yy}(x,y) &= \left[2+2x^2+6y^2+4y^2(1+x^2+y^2)\right]e^{y^2-x^2}\,. \end{split}$$

Therefore, critical points of f are (0,0), (1,0) and (-1,0).

- 1. Since $f_{xx}(0,0) = f_{yy}(0,0) = 2$, $f_{xy}(0,0) = 0$, we find that $f_{xx}(0,0)f_{yy}(0,0) f_{xy}(0,0)^2 = 4 > 0$; thus the fact that $f_{xx}(0,0) > 0$ implies that f(0,0) is a relative minimum of f.
- 2. Since $f_{xx}(1,0) = -4e^{-1}$, $f_{yy}(1,0) = 4e^{-1}$ and $f_{xy}(1,0) = 0$, we find that $f_{xx}(0,0)f_{yy}(0,0) f_{xy}(0,0)^2 = -16e^{-2} < 0$; thus (1,0) is a saddle point of f.
- 3. Since $f_{xx}(-1,0) = -4e^{-1}$, $f_{yy}(-1,0) = 4e^{-1}$ and $f_{xy}(-1,0) = 0$, we find that $f_{xx}(0,0)f_{yy}(0,0) f_{xy}(0,0)^2 = -16e^{-2} < 0$; thus (-1,0) is a saddle point of f.

Problem 7. (20%) Let R be the solid in the space given by

$$\{(x, y, z) \mid 1 \le z \le \sqrt{4 - x^2 - y^2} \}$$
.

Find the extreme value of function w = f(x, y, z) = xyz on R.

Solution. Let $g(x, y, z) = x^2 + y^2 + z^2 - 4$, and h(x, y, z) = z - 1. Then

$$(\nabla f)(x, y, z) = (yz, xz, xy),$$

 $(\nabla g)(x, y, z) = (2x, 2y, 2z),$
 $(\nabla h)(x, y, z) = (0, 0, 1).$

If $(\nabla f)(x, y, z) = 0$, then xy = yz = zx = 0 which implies that at least two of x, y, z are zero. In this case, f(x, y, z) = 0.

Now we consider the extreme value of f on the boundary of R. Suppose that the extreme value of f occurs at (x_0, y_0, z_0) . Note that the boundary of R consists of three pieces: g = 0, h = 0 and g = h = 0.

1. $g(x_0, y_0, z_0) = 0$: Since $(\nabla g)(x_0, y_0, z_0) \neq \mathbf{0}$, Lagrange Multiplier Theorem implies that there exists $\lambda \in \mathbb{R}$ such that

$$(y_0z_0, x_0z_0, x_0y_0) = \lambda(2x_0, 2y_0, 2z_0)$$
.

Therefore, (x_0, y_0, z_0, λ) satisfies

$$y_0 z_0 = 2\lambda x_0 \,, \tag{0.1a}$$

$$x_0 z_0 = 2\lambda y_0 \,, \tag{0.1b}$$

$$x_0 y_0 = 2\lambda z_0 \,, \tag{0.1c}$$

$$x_0^2 + y_0^2 + z_0^2 = 4. (0.1d)$$

If one of x_0, y_0, z_0 is zero, then $f(x_0, y_0, z_0) = 0$; thus we assume that $x_0y_0z_0 \neq 0$. Then $\lambda \neq 0$ and the product of (0.1a,b,c) shows that $x_0y_0z_0 = 8\lambda^3$. Therefore,

$$x_0 = \frac{4\lambda^2}{x_0}$$
, $y_0 = \frac{4\lambda^2}{y_0}$, $z_0 = \frac{4\lambda^2}{z_0}$.

which implies that (x_0, y_0, z_0) is

$$\begin{array}{lll} \left(\pm 2\lambda,\pm 2\lambda,2\lambda\right), & \left(\pm 2\lambda,\mp 2\lambda,-2\lambda\right), & \left(\pm 2\lambda,2\lambda,\pm 2\lambda\right), \\ \left(\pm 2\lambda,-2\lambda,\mp 2\lambda\right), & \left(2\lambda,\pm 2\lambda,\pm 2\lambda\right), & \left(-2\lambda,\pm 2\lambda,\mp 2\lambda\right). \end{array}$$

In either cases, (0.1d) implies that $12\lambda^2 = 4$; thus $\lambda = \pm \frac{1}{\sqrt{3}}$. Since $z_0 \ge 1$, we conclude that

$$(x_0, y_0, z_0) = (\pm \frac{2}{\sqrt{3}}, \pm \frac{2}{\sqrt{3}}, \frac{2}{\sqrt{3}})$$
 or $(\pm \frac{2}{\sqrt{3}}, \mp \frac{2}{\sqrt{3}}, \frac{2}{\sqrt{3}})$.

In this case, $f(x_0, y_0, z_0) = \pm \frac{8}{3\sqrt{3}}$.

2. $h(x_0, y_0, z_0) = 0$: Since $(\nabla h)(x_0, y_0, z_0) \neq \mathbf{0}$, Lagrange Multiplier Theorem implies that there exists $\lambda \in \mathbb{R}$ such that

$$(y_0z_0, x_0z_0, x_0y_0) = \lambda(0, 0, 1)$$
 and $z_0 = 1$.

Therefore, $(x_0, y_0, z_0) = (0, 0, 1)$ which is impossible $f(x_0, y_0, z_0) = 0$.

3. $g(x_0, y_0, z_0) = h(x_0, y_0, z_0) = 0$: Since

$$(\nabla g)(x_0, y_0, z_0) \times (\nabla h)(x_0, y_0, z_0) = (2x_0, 2y_0, 2z_0) \times (1, 1, 1) = 2(y_0 - z_0, z_0 - x_0, x_0 - y_0),$$

 $(\nabla g)(x_0, y_0, z_0) \times (\nabla h)(x_0, y_0, z_0) = \mathbf{0}$ if and only if $x_0 = y_0 = z_0$. Since $h(x_0, y_0, z_0) = 0$ implies that $z_0 = 1$, and $g(1, 1, 1) \neq 0$, we find that $(\nabla g)(x_0, y_0, z_0) \times (\nabla h)(x_0, y_0, z_0) = \mathbf{0}$. Therefore, Lagrange Multiplier Theorem implies that there exist $\lambda \mu \in \mathbb{R}$ such that

$$(y_0z_0, x_0z_0, x_0y_0) = \lambda(2x_0, 2y_0, 2z_0) + \mu(0, 0, 1).$$

Therefore, $(x_0, y_0, z_0, \lambda, \mu)$ satisfies

$$y_0 z_0 = 2\lambda x_0 \,, \tag{0.2a}$$

$$x_0 z_0 = 2\lambda y_0, \qquad (0.2b)$$

$$x_0 y_0 = 2\lambda z_0 + \mu$$
, (0.2c)

$$x_0^2 + y_0^2 + z_0^2 = 4, (0.2d)$$

$$z_0 = 1$$
. (0.2e)

By (0.2a,b,e), we find that $x_0 = 2\lambda y_0 = 4\lambda^2 x_0$; thus $x_0 = 0$ or $4\lambda^2 = 1$.

- (a) If $x_0 = 0$, then $f(x_0, y_0, z_0) = 0$.
- (b) If $x_0 \neq 0$, then $\lambda = \pm \frac{1}{2}$.
 - (i) $\lambda = \frac{1}{2}$: (0.2a,e) implies that $y_0 = x_0$; thus (0.2) implies that $(x_0, y_0, z_0) = (\sqrt{\frac{3}{2}}, \sqrt{\frac{3}{2}}, 1)$. In this case, $f(x_0, y_0, z_0) = \frac{3}{2}$.
 - (ii) $\lambda = -\frac{1}{2}$: (0.2a,e) implies that $y_0 = -x_0$; thus (0.2) implies that $(x_0, y_0, z_0) = (\pm \sqrt{\frac{3}{2}}, \mp \sqrt{\frac{3}{2}}, 1)$. In this case, $f(x_0, y_0, z_0) = -\frac{3}{2}$.

Comparing the values of all possible extreme points (x_0, y_0, z_0) , we find that the maximum of f on R is $\frac{8}{3\sqrt{3}}$, and the minimum of f on R is $-\frac{8}{3\sqrt{3}}$.