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Definition 9.1: Sequence
A sequence of real numbers (or simply a real sequence) is a function f : N Ñ R.
We usually use fn to denote f(n), the n-th term of a sequence f : N Ñ R, and this
sequence is usually denoted by tfnu8

n=1 or simply tfnu.

Definition 9.5
A sequence of real numbers tanu8

n=1 is said to converge to L if for every ε ą 0, there
exists N ą 0 such that |an ´ L| ă ε whenever n ě N . Such an L (must be a real
number and) is called a limit of the sequence. If tanu8

n=1 converges to L, we write
an Ñ x as n Ñ 8.
A sequence of real number tanu8

n=1 is said to be convergent if there exists L P R
such that tanu8

n=1 converges to L. If no such L exists we say that tanu8
n=1 does not

converge or simply diverges.

Proposition 9.6
If tanu8

n=1 is a sequence of real numbers, and an Ñ a and an Ñ b as n Ñ 8, then
a = b. (若收斂則極限唯一).

‚ Notation: Since the limit of a convergent sequence is unique, we use lim
nÑ8

an to denote
this unique limit of a convergent sequence tanu8

n=1.
Theorem 9.7

Let L be a real number, and f : [1,8) Ñ R be a function of a real variable such that
lim
xÑ8

f(x) = L. If tanu8
n=1 is a sequence such that f(n) = an for every positive integer

n, then lim
nÑ8

an = L.

Theorem 9.11
Let tanu8

n=1 and tbnu8
n=1 be sequences of real numbers such that lim

nÑ8
an = L and

lim
nÑ8

bn = K. Then

1. lim
nÑ8

(an ˘ bn) = L ˘ K.

2. lim
nÑ8

(anbn) = LK. In particular, lim
nÑ8

(can) = cL if c is a real number.

3. lim
nÑ8

an
bn

=
L

K
if K ‰ 0.



Theorem 9.12: Squeeze Theorem
Let tanu8

n=1, tbnu8
n=1 and tcnu8

n=1 be sequences of real numbers such that an ď cn ď bn

for all n ě N . If lim
nÑ8

an = lim
nÑ8

bn = L, then lim
nÑ8

cn = L.

Theorem 9.13: Absolute Value Theorem
Let tanu8

n=1 be a sequence of real numbers. If lim
nÑ8

|an| = 0, then lim
nÑ8

an = 0.

Definition 9.14: Monotonicity of Sequences

A sequence tanu8
n=1 Ď R is said to be

1. (monotone) increasing if an+1 ě an for all n P N;

2. (monotone) decreasing if an+1 ď an for all n P N;

3. monotone if tanu8
n=1 is an increasing sequence or a decreasing sequence.

Definition 9.16: Boundedness of Sequences
Let tanu8

n=1 be a sequence of real numbers.

1. tanu8
n=1 is said to be bounded（有界的）if there exists M P R such that |an| ď M

for all n P N.

2. tanu8
n=1 is said to be bounded from above（有上界）if there exists B P R,

called an upper bound of the sequence, such that an ď B for all n P N. Such
a number B is called an upper bound of the sequence.

3. tanu8
n=1 is said to be bounded from below（有下界）if there exists A P R,

called a lower bound of the sequence, such that A ď an for all n P N. Such a
number A is called a lower bound of the sequence.

Proposition 9.18

A convergent sequence of real numbers is bounded（數列收斂必有界）.

‚ Completeness of Real Numbers:
One important property of the real numbers is that they are complete. The complete-

ness axiom for real numbers states that “every bounded sequence of real numbers has a least
upper bound and a greatest lower bound”; that is, if tanu8

n=1 is a bounded sequence of



real numbers, then there exists an upper bound M and a lower bound m of tanu8
n=1 such

that there is no smaller upper bound nor greater lower bound of tanu8
n=1.

Theorem 9.20: Monotone Sequence Property (MSP)

Let tanu8
n=1 be a monotone sequence of real numbers. Then tanu8

n=1 converges if and
only if tanu8

n=1 is bounded.

Proof. It suffices to show the “ð” direction.
Without loss of generality, we can assume that tanu8

n=1 is increasing and bounded. By
the completeness of real numbers, there exists a least upper bound M for the sequence
tanu8

n=1.
Let ε ą 0 be given. Since M is the least upper bound for tanu8

n=1, M ´ε is not an upper
bound; thus there exists N P N such that aN ą M ´ ε. Since tanu8

n=1 is increasing, an ě aN

for all n ě N . Therefore,
M ´ ε ă an ď M @n ě N

which implies that
|an ´ M | ă ε @n ě N .

The statement above shows that tanu8
n=1 converges to M . ˝

Remark 9.21. A sequence of real numbers tanu8
n=1 is called a Cauchy sequence if for

every ε ą 0 there exists N ą 0 such that

|an ´ am| ă ε whenever n,m ě N .

A convergent sequence must be a Cauchy sequence. Moreover, the completeness of real
numbers is equivalent to that “every Cauchy sequence of real number converges”.

9.2 Series and Convergence
An infinite series is the “sum” of an infinite sequence. If tanu8

n=1 is a sequence of real
numbers, then

8
ÿ

k=1

ak = a1 + a2 + ¨ ¨ ¨ + an + ¨ ¨ ¨

is an infinite series (or simply series). The numbers a1, a2, a3, ¨ ¨ ¨ are called the terms of
the series. For convenience, the sum could begin the index at n = 0 or some other integer.



Definition 9.22

The series
8
ř

k=1

ak is said to converge to S if the sequence of the partial sum, denoted

by tSnu8
n=1 and defined by

Sn ”

n
ÿ

k=1

ak = a1 + a2 + ¨ ¨ ¨ + an,

converges to S. Sn is called the n-th partial sum of the series
8
ř

k=1

ak.

When the series converges, we write S =
8
ř

k=1

ak and
8
ř

k=1

ak is said to be convergent.

If tSnu8
n=1 diverges, the series is said to be divergent or diverge. If lim

nÑ8
Sn = 8 (or

´8), the series is said to diverge to 8 (or ´8).

Example 9.23. The n-th partial sum of the series
8
ř

k=1

1

k(k + 1)
is

Sn =
n

ÿ

k=1

1

k(k + 1)
=

n
ÿ

k=1

(1
k

´
1

k + 1

)
=

(
1 ´

1

2

)
+
(1
2

´
1

3

)
+ ¨ ¨ ¨ +

( 1
n

´
1

n+ 1

)
= 1 ´

1

n+ 1
;

thus the series
8
ř

k=1

1

k(k + 1)
converges to 1, and we write

8
ř

k=1

1

k(k + 1)
= 1.

Example 9.24. The n-th partial sum of the series
8
ř

k=1

2

4k2 ´ 1
is

n
ÿ

k=1

2

4k2 ´ 1
=

n
ÿ

k=1

2

(2k ´ 1)(2k + 1)
=

n
ÿ

k=1

( 1

2k ´ 1
´

1

2k + 1

)
=

(
1 ´

1

3

)
+
(1
3

´
1

5

)
+ ¨ ¨ ¨ +

( 1

2n ´ 1
´

1

2n+ 1

)
= 1 ´

1

2n+ 1
;

thus the series
8
ř

k=1

2

4k2 ´ 1
converges to 1, and we write

8
ř

k=1

2

4k2 ´ 1
= 1.

The series in the previous two examples are series of the form
n

ÿ

k=1

(bk ´ bk+1) = (b1 ´ b2) + (b2 ´ b3) + ¨ ¨ ¨ + (bn ´ bn+1) + ¨ ¨ ¨ ,

and are called telescoping series. A telescoping series converges if and only if lim
nÑ8

bn con-
verges.



Example 9.25. The series
8
ř

k=1

rk, where r is a real number, is called a geometric series

(with ratio r). Note that the n-th partial sum of the series is

Sn =
n

ÿ

k=1

rk = 1 + r + r2 + ¨ ¨ ¨ + rn =

$

&

%

1 ´ rn+1

1 ´ r
if r ‰ 1 ,

n+ 1 if r = 1 .

Therefore, the geometric series converges if and only if the common ratio r satisfies |r| ă 1.

Theorem 9.26

Let
8
ř

k=1

ak and
8
ř

k=1

be convergent series, and c is a real number. Then

1.
8
ř

k=1

cak = c
8
ř

k=1

ak.

2.
8
ř

k=1

(ak + bk) =
8
ř

k=1

ak +
8
ř

k=1

bk.

3.
8
ř

k=1

(ak ´ bk) =
8
ř

k=1

ak ´
8
ř

k=1

bk.

Theorem 9.27: Cauchy Criteria

A series
8
ř

k=1

ak converges if and only if for every ε ą 0, there exists N ą 0 such that
ˇ

ˇ

ˇ

n+p
ÿ

k=n

ak

ˇ

ˇ

ˇ
ă ε whenever n ě N, p ě 0 .

Proof. Let Sn be the n-th partial sum of the series
8
ř

k=1

ak. Then by Remark 9.21,
8
ř

k=1

ak converges ô tSnu8
n=1 is a convergent sequence

ô tSnu8
n=1 is a Cauchy sequence

ô for every ε ą 0, there exists N ą 0 such that
|Sn ´ Sm| ă ε whenever n,m ě N

ô for every ε ą 0, there exists N ą 0 such that
|an + an+1 + ¨ ¨ ¨ + an+p| ă ε whenever n ě N and p ě 0. ˝



Corollary 9.28

If the series
8
ř

k=1

ak converges, then lim
kÑ8

ak = 0.

Remark 9.29. It is not true that lim
nÑ8

an = 0 implies the convergence of
8
ř

k=1

ak. For example,

we have shown in Example 8.47 that the harmonic series
8
ř

k=1

1

k
diverges to 8 while we know

that lim
nÑ8

1

n
= 0.

Corollary 9.30: n-th term test for divergence

Let tanu8
n=1 be a sequence. If lim

nÑ8
an ‰ 0 or does not exist, then the series

8
ř

k=1

ak

diverges.


	Series and Convergence

