oAt~ MAL1002-A F 3 e (Hf5w)
2019.03.07.

Ching-hsiao Arthur Cheng #% 5%



Definition 9.1: Sequence

A sequence of real numbers (or simply a real sequence) is a function f : N — R.
We usually use f, to denote f(n), the n-th term of a sequence f : N — R, and this
sequence is usually denoted by {f,}’°_; or simply {f,}.

Definition 9.5

A sequence of real numbers {a, }*_; is said to converge to L if for every € > 0, there

exists N > 0 such that |a, — L| < € whenever n = N. Such an L (must be a real
number and) is called a limit of the sequence. If {a,}r , converges to L, we write

A, — T as n — oo.
A sequence of real number {a,}> ;| is said to be convergent if there exists L € R
such that {a,}> ; converges to L. If no such L exists we say that {a,}_, does not

converge or simply diverges.

Proposition 9.6

If {a,}>_, is a sequence of real numbers, and a, — a and a,, — b as n — o, then
a=b. (F|ach & - ).

e Notation: Since the limit of a convergent sequence is unique, we use lim a, to denote

n—a0
this unique limit of a convergent sequence {a,}>_,.

Theorem 9.7

Let L be a real number, and f : [1,00) — R be a function of a real variable such that
lim f(z) = L. If {a,}_, is a sequence such that f(n) = a, for every positive integer
r—00

n, then lim a, = L.
n—0o0

Theorem 9.11

Let {a,}; and {b,}r_, be sequences of real numbers such that lim a, = L and

n—ao0
lim b, = K. Then

n—ao0

1. lim(a, +b,) = L+ K.

n—ao0

2. lim (anb,) = LK. In particular, lim (ca,) = cL if ¢ is a real number.
n—a0 n—o0

3. 1im“£:%1fz(¢0.

n— 0Op




Theorem 9.12: Squeeze Theorem

Let {a,}?2;, {b,}2; and {c,}>_; be sequences of real numbers such that a,, < ¢, < b,

foralln > N. If lim a, = lim b,, = L, then lim ¢, = L.
n—aoo n—0 n—aoo

Theorem 9.13: Absolute Value Theorem

Let {a,}2; be a sequence of real numbers. If lim |a,| = 0, then lim a, = 0.
n—00 n—00

Definition 9.14: Monotonicity of Sequences

A sequence {a,}>_; < R is said to be

1. (monotone) increasing if a,1 > a, for all n € N;
2. (monotone) decreasing if a,,; < a, for all n e N;

3. monotone if {a,}’ , is an increasing sequence or a decreasing sequence.

Definition 9.16: Boundedness of Sequences

Let {a,}>_; be a sequence of real numbers.

1. {a,}y, is said to be bounded (3 % ¢7)if there exists M € R such that |a,| < M
for all n € N.

2. {an}y_; is said to be bounded from above (F } J ) if there exists B € R,
called an upper bound of the sequence, such that a, < B for all n € N. Such

a number B is called an upper bound of the sequence.

3. {ay}r, is said to be bounded from below (3 T # ) if there exists A € R,
called a lower bound of the sequence, such that A < a,, for all n € N. Such a

number A is called a lower bound of the sequence.

Proposition 9.18

A convergent sequence of real numbers is bounded (#7|jzar<s 7 &) .

e Completeness of Real Numbers:
One important property of the real numbers is that they are complete. The complete-
ness axiom for real numbers states that “every bounded sequence of real numbers has a least

upper bound and a greatest lower bound”; that is, if {a,}° , is a bounded sequence of



real numbers, then there exists an upper bound M and a lower bound m of {a,}’2_; such

that there is no smaller upper bound nor greater lower bound of {a,}>_;.

Theorem 9.20: Monotone Sequence Property (MSP)

Let {a,};”; be a monotone sequence of real numbers. Then {a,};_, converges if and

only if {a,}*_; is bounded.

Proof. Tt suffices to show the “<” direction.

Without loss of generality, we can assume that {a,}_; is increasing and bounded. By
the completeness of real numbers, there exists a least upper bound M for the sequence
{antnzy-

Let € > 0 be given. Since M is the least upper bound for {a,}>_,, M —¢ is not an upper
bound; thus there exists NV € N such that ay > M —e. Since {a,}_, is increasing, a, > ay
for all n = N. Therefore,

M—-—c<a, <M Vn>=N

which implies that
la, — M| < ¢ Vn=>=N.

The statement above shows that {a,}?_; converges to M. o

Remark 9.21. A sequence of real numbers {a,}>_, is called a Cauchy sequence if for

every € > ( there exists N > 0 such that
la, —am| <€ whenever n,m > N .

A convergent sequence must be a Cauchy sequence. Moreover, the completeness of real

numbers is equivalent to that “every Cauchy sequence of real number converges”.

9.2 Series and Convergence

An infinite series is the “sum” of an infinite sequence. If {a,}*_; is a sequence of real
numbers, then

0

Zak:a1+a2—i—---+an—l—--~

k=1
is an infinite series (or simply series). The numbers a;, ag, as, --- are called the terms of

the series. For convenience, the sum could begin the index at n = 0 or some other integer.



Definition 9.22

e}
The series Y] ay is said to converge to S if the sequence of the partial sum, denoted

k=1
by {S,}?2_; and defined by

EZ k—a1+a2—|—--~+an,

o0
converges to S. S, is called the n-th partial sum of the series Y] ay.
k=1
o0 o0
When the series converges, we write S = Y a; and ] aj is said to be convergent.
k=1 k=1
If {S,};2, diverges, the series is said to be divergent or diverge. If lim S, = o (or
n—:0o0
—0), the series is said to diverge to oo (or —o0).
Example 9.23. The n-th partial sum of the series 21 k(kl—kl) is
& “ 1 1 1 1 1
- R B
k:k:—|—1 Z( k:+1) < 2+2 3+ +n n+1
k=1 k=1
1
=1-
n+ 1’
hus th 3 1, and P
thus the series converges to 1, and we write —_— =
=1 k(k+1) =1 k(k+1)
Example 9.24. The n-th partial sum of the series Z 4k22— 7
Z Ak2 — 1 Z _ - Z ( 1 )
k14k 1 k:l (2k — 1)( 2k+1) S N\2k—1 2k+1
1 1 1 1
(D G- e a1
( ) ot 2n—1 2n+1 2n+1
hus th 1, and we write Y —
thus the series Z 4k:2 Converges to 1, and we write k§1 o1

The series in the previous two examples are series of the form
Z k_bk+l (bl_62)+(b2—bg)+'~-—|—(bn—bn+1)+...’

and are called telescoping series. A telescoping series converges if and only if lim b, con-
n—0o0

verges.



e 0]

Example 9.25. The series > 7%, where 7 is a real number, is called a geometric series
k=1

(with ratio r). Note that the n-th partial sum of the series is

n 1—7°n+1 if 1
Sn=ZTk:1+7’+r2+'-~+r”: — trrh
k=1 n+1 ifr=1.

Therefore, the geometric series converges if and only if the common ratio r satisfies |r| < 1.

Theorem 9.26

o 0

Let > ar and ). be convergent series, and c¢ is a real number. Then
k=1 k=1

Q0 0

L. > cap=c ) a.
k=1 k=1
Qa0 o0 o0
k=1 k=1 k=1
o0 o0 Q0

3. Z(ak—bk): Z ap — Z bk
k=1 k=1 k=1

Theorem 9.27: Cauchy Criteria

a0
A series Y. ay converges if and only if for every e > 0, there exists N > 0 such that
k=1

)Zak‘<s whenever n > N,p>0.

0
Proof. Let S, be the n-th partial sum of the series > ax. Then by Remark 9.21,
k=1
Q0
> ax converges < {S,}°_, is a convergent sequence
k=1
< {S,}7_, is a Cauchy sequence

< for every € > 0, there exists N > 0 such that
|Sy, — S| < € whenever n,m > N
< for every ¢ > 0, there exists N > 0 such that

|an, + Qpy1 + -+ + anip| < € whenever n = N and p = 0. o



Corollary 9.28

o]
If the series )] aj converges, then klim ar = 0.
k=1 —®©

0
Remark 9.29. It is not true that lim a,, = 0 implies the convergence of >’ a;. For example,
n—ao0 k=1

o0
1
we have shown in Example 8.47 that the harmonic series ) Z diverges to co while we know
k=1
that lim 1o 0.

n—o n

Corollary 9.30: n-th term test for divergence

0
Let {a,}?, be a sequence. If lim a, # 0 or does not exist, then the series > aj
n—00 k=1

diverges.
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