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Definition 9.1: Sequence
A sequence of real numbers (or simply a real sequence) is a function f : N Ñ R.
We usually use fn to denote f(n), the n-th term of a sequence f : N Ñ R, and this
sequence is usually denoted by tfnu8

n=1 or simply tfnu.

Definition 9.5
A sequence of real numbers tanu8

n=1 is said to converge to L if for every ε ą 0, there
exists N ą 0 such that |an ´ L| ă ε whenever n ě N . Such an L (must be a real
number and) is called a limit of the sequence. If tanu8

n=1 converges to L, we write
an Ñ x as n Ñ 8.
A sequence of real number tanu8

n=1 is said to be convergent if there exists L P R
such that tanu8

n=1 converges to L. If no such L exists we say that tanu8
n=1 does not

converge or simply diverges.

Proposition 9.6
If tanu8

n=1 is a sequence of real numbers, and an Ñ a and an Ñ b as n Ñ 8, then
a = b. (若收斂則極限唯一).

‚ Notation: Since the limit of a convergent sequence is unique, we use lim
nÑ8

an to denote
this unique limit of a convergent sequence tanu8

n=1.

‚ Completeness of Real Numbers:
One important property of the real numbers is that they are complete. The complete-

ness axiom for real numbers states that “every bounded sequence of real numbers has a least
upper bound and a greatest lower bound”; that is, if tanu8

n=1 is a bounded sequence of
real numbers, then there exists an upper bound M and a lower bound m of tanu8

n=1 such
that there is no smaller upper bound nor greater lower bound of tanu8

n=1.
Theorem 9.20: Monotone Sequence Property (MSP)

Let tanu8
n=1 be a monotone sequence of real numbers. Then tanu8

n=1 converges if and
only if tanu8

n=1 is bounded.

Remark 9.21. A sequence of real numbers tanu8
n=1 is called a Cauchy sequence if for

every ε ą 0 there exists N ą 0 such that

|an ´ am| ă ε whenever n,m ě N .



A convergent sequence must be a Cauchy sequence. Moreover, the completeness of real
numbers is equivalent to that “every Cauchy sequence of real number converges”.

9.2 Series and Convergence
Definition 9.22

The series
8
ř

k=1

ak is said to converge to S if the sequence of the partial sum, denoted

by tSnu8
n=1 and defined by

Sn ”

n
ÿ

k=1

ak = a1 + a2 + ¨ ¨ ¨ + an,

converges to S. Sn is called the n-th partial sum of the series
8
ř

k=1

ak.

When the series converges, we write S =
8
ř

k=1

ak and
8
ř

k=1

ak is said to be convergent.

If tSnu8
n=1 diverges, the series is said to be divergent or diverge. If lim

nÑ8
Sn = 8 (or

´8), the series is said to diverge to 8 (or ´8).

9.3 The Integral Test and p-Series
9.3.1 The integral test

Suppose that the sequence tanu8
n=1 is obtained by evaluating a non-negative continuous

decreasing function f : [1,8) Ñ R on N; that is, f(n) = an. Then
ż n+1

1

f(x) dx ď Sn ”

n
ÿ

k=1

ak ď a1 +

ż n

1

f(x) dx . (9.3.1)

Since the sequence of partial sums tSnu8
n=1 of the series

8
ř

k=1

ak is increasing, the complete-

ness of real numbers implies that tSnu8
n=1 converges if and only if the improper integral

ż 8

1
f(x) dx converges.

Theorem 9.31
Let f : [1,8) Ñ R be a non-negative continuous decreasing function. The series

8
ř

k=1

f(k) converges if and only if the improper integral
ż 8

1
f(x) dx converges.



Example 9.32. The series
8
ř

k=1

1

k2 + 1
converges since

ż 8

1

dx

x2 + 1
= lim

bÑ8

ż b

1

dx

x2 + 1
= lim

bÑ8
arctanx

ˇ

ˇ

ˇ

x=b

x=1
= lim

bÑ8
(arctan b ´ arctan 1) =

π

4

and the function f(x) =
1

x2 + 1
is non-negative continuous and decreasing on [1,8).

Example 9.33. The series
8
ř

k=1

k

k2 + 1
diverges since

ż 8

1

x

x2 + 1
dx = lim

bÑ8

ż b

1

x

x2 + 1
dx = lim

bÑ8

ln(x2 + 1)

2

ˇ

ˇ

ˇ

x=b

x=1
=

1

2
lim
bÑ8

[
ln(b2 + 1) ´ ln 2

]
= 8

and the function f(x) =
x

x2 + 1
is non-negative continuous and decreasing on [1,8).

Example 9.34. The series
8
ř

k=2

1

k ln k
converges since

ż 8

2

dx

x lnx
= lim

bÑ8

ż b

2

dx

x lnx

(x=eu)
= lim

bÑ8

ż ln b

ln 2

eudu

eu ln eu
= lim

bÑ8

ż ln b

ln 2

du

u
= lim

bÑ8
lnu

ˇ

ˇ

ˇ

u=ln b

u=ln 2

= lim
bÑ8

(ln ln b ´ ln ln 2) = 8

and the function f(x) =
1

x lnx
is non-negative continuous and decreasing on [2,8).

9.3.2 p-series

A series of the form
8
ÿ

k=1

1

kp
= 1 +

1

2p
+

1

3p
+ ¨ ¨ ¨

is called a p-series. The series is a function of p, and this function is usually called the
Riemann zeta function; that is,

ζ(s) ”

8
ÿ

n=1

1

ns
.

A harmonic series is the p-series with p = 1, and a general harmonic series is of the form
8
ÿ

k=1

1

ak + b
.

By Theorem 8.48 and 9.31, the p-series converges if and only if p ą 1.



Remark 9.35. It can be shown that
8
ř

k=1

1

k2
=

π2

6
. In fact, for all integer k ě 2, the number

8
ř

k=1

1

nk
can be computed by hand (even though it is very time consuming).

Remark 9.36. Using (9.3.1), we find that

ln(n+ 1) ď

n
ÿ

k=1

1

k
ď 1 + lnn @n P N .

Therefore, the sequence tanu8
n=1 defined by

an =
n

ÿ

k=1

1

k
´ lnn

is bounded. Moreover,

an ´ an+1 =
n

ÿ

k=1

1

k
´ lnn ´

n+1
ÿ

k=1

1

k
+ ln(n+ 1) = ln

(
1 +

1

n

)
´

1

n+ 1
.

Since the derivative of the function f(x) = ln(1 + x) ´
x

x+ 1
is positive on [0, 1], we find

that f is increasing on [0, 1]; thus

ln
(
1 +

1

n

)
´

1

n+ 1
= f

( 1
n

)
ě f(0) = ln 1 ´

0

1
= 0 @n P N

which shows that an ě an+1. Therefore, tanu8
n=1 is monotone decreasing and bounded from

below (by 0). The completeness of real numbers then implies the convergence of the sequence
tanu8

n=1. The limit

lim
nÑ8

( n
ÿ

k=1

1

k
´ lnn

)
is called Euler’s constant.

9.4 Comparisons of Series
When the sequence tanu8

n=1 is not obtained by an = f(n) for some decreasing function
f : [1,8) Ñ R, the convergence of the series

8
ř

k=1

ak cannot be judged by the convergence

of the improper integral
ż 8

1
f(x) dx. To determine the convergence of this kind of series,

usually one uses comparison tests.



9.4.1 Direct Comparison Test
Theorem 9.37

Let tanu8
n=1, tbnu8

n=1 be sequences of real numbers, and 0 ď an ď bn for all n P N.

1. If
8
ř

k=1

bk converges, then
8
ř

k=1

ak converges.

2. If
8
ř

k=1

ak diverges, then
8
ř

k=1

ak diverges.

Proof. Let Sn and Tn be the n-th partial sum of the series
8
ř

k=1

ak and
8
ř

k=1

bk, respectively;
that is,

Sn =
n

ÿ

k=1

ak and Tn =
n

ÿ

k=1

bk .

Then by the assumption that 0 ď an ď bn for all n P N, we find that 0 ď Sn ď Tn for all
n P N, and tSnu8

n=1 and tTnu8
n=1 are monotone increasing sequences.

1. If
8
ř

k=1

bk converges, lim
nÑ8

Tn = T exists; thus 0 ď Sn ď Tn ď T for all n P N. Since

tSnu8
n=1 is increasing, the monotone sequence property shows that lim

nÑ8
Sn exists; thus

8
ř

k=1

ak converges.

2. If
8
ř

k=1

ak diverges, lim
nÑ8

Sn = 8; thus by the fact that Sn ď Tn for all n P N, we find

that lim
nÑ8

Tn = 8. Therefore,
8
ř

k=1

bk diverges (to 8). ˝

Remark 9.38. It does not require that 0 ď an ď bn for all n P N for the direct comparison
test to hold. The condition can be relaxed by that “0 ď an ď bn for all n ě N” for some N

since the sum of the first N ´ 1 terms does not affect the convergence of the series.

Example 9.39. The series
8
ř

k=1

1 + sin k

k2
converges since 1 + sinn

n2
ď

2

n2
for all n P N and the

p-series
8
ř

k=1

2

k2
converges.

Example 9.40. The series
8
ř

k=1

1

2 + 3k
converges since 1

2 + 3n
ď

1

3n
for all n P N and the

geometric series
8
ř

k=1

1

3k
converges.



Example 9.41. The series
8
ř

k=1

1

2 +
?
k

diverges since 1

2 +
?
n

ě
1

3
?
n

for all n P N and the

p-series
8
ř

k=1

1

3
?
k
=

1

3

8
ř

k=1

1
?
k

diverges.

One can also use the fact that 1

2 +
?
n

ě
1

n
for all n ě 4 and

8
ř

k=1

1

k
diverges to conclude

that
8
ř

k=1

1

2 +
?
k

diverges.
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