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Definition 9.1: Sequence

A sequence of real numbers (or simply a real sequence) is a function f : N — R.
We usually use f, to denote f(n), the n-th term of a sequence f : N — R, and this
sequence is usually denoted by {f,}’°_; or simply {f,}.

Definition 9.5

A sequence of real numbers {a, }*_; is said to converge to L if for every € > 0, there

exists N > 0 such that |a, — L| < € whenever n = N. Such an L (must be a real
number and) is called a limit of the sequence. If {a,}r , converges to L, we write

a, — T as n — oo.
A sequence of real number {a,}* ; is said to be convergent if there exists L € R
such that {a,}>_; converges to L. If no such L exists we say that {a,}_, does not

converge or simply diverges.

Proposition 9.6

If {a,}>_, is a sequence of real numbers, and a, — a and a,, — b as n — o, then
a=b (F|ach & - ).

e Notation: Since the limit of a convergent sequence is unique, we use lim a, to denote
n—0o0

this unique limit of a convergent sequence {a,}%_,.
e Completeness of Real Numbers:

One important property of the real numbers is that they are complete. The complete-
ness axiom for real numbers states that “every bounded sequence of real numbers has a least
upper bound and a greatest lower bound”; that is, if {a,}>_, is a bounded sequence of
real numbers, then there exists an upper bound M and a lower bound m of {a,}’2_; such

that there is no smaller upper bound nor greater lower bound of {a,}_;.

Theorem 9.20: Monotone Sequence Property (MSP)

Let {a,}y”; be a monotone sequence of real numbers. Then {a,};_, converges if and

only if {a,}*_; is bounded.

Remark 9.21. A sequence of real numbers {a,}r_, is called a Cauchy sequence if for

every € > () there exists N > 0 such that

lan, — am| < € whenever n,m > N.



A convergent sequence must be a Cauchy sequence. Moreover, the completeness of real

numbers is equivalent to that “every Cauchy sequence of real number converges”.

9.2 Series and Convergence

Definition 9.22

e¢]

The series Z ay, is said to converge to S if the sequence of the partial sum, denoted
k=

by {Sn}, and defined by

Sp= D ap=a1+ax+ - +ay,

k=1
0¢]
converges to S. S, is called the n-th partial sum of the series Y] ay.
When the series converges, we write S = > ax and . ay is said to be convergent.
k=1 k=1
If {S,}°_, diverges, the series is said to be divergent or diverge. If lim S,, = « (or

n—ao0
—0), the series is said to diverge to oo (or —o0).

9.3 The Integral Test and p-Series

9.3.1 The integral test

Suppose that the sequence {a,}¥, is obtained by evaluating a non-negative continuous
decreasing function f : [1,0) — R on N; that is, f(n) = a,. Then

J flz)dx < S, = Z ar < ap + r f(x)dz. (9.3.1)

Since the sequence of partial sums {S,}>°; of the series Z ay, is increasing, the complete-
k=1
ness of real numbers implies that {S,}/°, converges if and only if the improper integral

Q0
f f(x) dx converges.
1

Theorem 9.31

Let f i [1,0) - R be a non-negative continuous decreasing function. The series

Z f(k) converges if and only if the improper integral J f(z) dx converges.
k=1
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Example 9.32. The series ), converges since
k=1

— k2 +1
* dx b dx =b
f 5 = lim J = lim arctanz| = lim (arctanb — arctan 1) = U
1 e + 1 b—00 1 x2 + 1 b—00 r=1 b—o0 4

and the function f(z) = is non-negative continuous and decreasing on [1, c0).
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Example 9.33. The series ),
e

———— diverges since
L k2 +1 &

0 . b _ ln(ac2+1) - 1 )
L x2+1d$_blg§3 P 22+ dl’—blgngzl——blgg[ln(b +1)—In2] =

and the function f(x) = % is non-negative continuous and decreasing on [1, c0).
x
o0
Example 9.34. The series ), converges since
i—o klnk
© dx , b de (z=e") b ety , b gy u=Inb
= lim ! lim = lim — =limnu
9 xlnx bv>w )y, xlne b—0 Ji 9 €¥Iner  bow o u bow u=In2
= lim(Inlnb —Inln2) =
b—o0

and the function f(z) = is non-negative continuous and decreasing on [2, o0).

zlnz
9.3.2 p-series

A series of the form 5 4 1
Z wolty Tt

is called a p-series. The series is a function of p, and this function is usually called the

Riemann zeta function; that is,
_ i 1
- s
A harmonic series is the p-series with p = 1, and a general harmonic series is of the form

e¢]
g k+b

By Theorem 8.48 and 9.31, the p-series converges if and only if p > 1.
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Remark 9.35. It can be shown that ] % = % In fact, for all integer £ > 2, the number
k=1

o0

1 ., . .
2. — can be computed by hand (even though it is very time consuming).
k=1"

Remark 9.36. Using (9.3.1), we find that

<l4+lnn VneN.

| =

In(n+1) < Z
k=1

Therefore, the sequence {a,}*_, defined by

51
n = ——1
a Ek nn
k=1
is bounded. Moreover,
1 Gl 1 1
n—Gpi1 =y, ——Inn—» —+1 H=In(1+-)— .
Ap — Qpg1 2% nn k221k+n(n+) n ( +n) ]

Since the derivative of the function f(z) = In(1 + z) — il is positive on [0, 1], we find
X

that f is increasing on [0, 1]; thus
1 1 0

1
5)_n+1:f(ﬁ)>f(0>:1n1_120 VneN

ln(l—i—

which shows that a,, > a,41. Therefore, {a,}°_, is monotone decreasing and bounded from
below (by 0). The completeness of real numbers then implies the convergence of the sequence
{a,}? ;. The limit

is called Euler’s constant.

9.4 Comparisons of Series

When the sequence {a,}>_, is not obtained by a, = f(n) for some decreasing function
Q0

f :[1,0) - R, the convergence of the series ), ay cannot be judged by the convergence
k=1

0
of the improper integral J f(z)dz. To determine the convergence of this kind of series,
1

usually one uses comparison tests.



9.4.1 Direct Comparison Test

Theorem 9.37

Let {a,}2, {bn}; be sequences of real numbers, and 0 < a,, < b,, for all n € N.

o0 o]
1. If >} by converges, then > aj converges.
k=1 k=1

o0 0
2. If > ay diverges, then > a; diverges.
k=1 k=1

0 o0

Proof. Let S,, and T,, be the n-th partial sum of the series > ay and )] by, respectively;
k=1 k=1

that is, n

Sn:Zak and Tn:ibk.
k=1 k=1

Then by the assumption that 0 < a,, < b, for all n € N, we find that 0 < S,, < T, for all

neN, and {S,}*, and {T,}*_, are monotone increasing sequences.

0
1. If )] by converges, lim T,, = T exists; thus 0 < S, < T, < T for all n € N. Since
n—00

{S,}2_, is increasing, the monotone sequence property shows that lim S, exists; thus
n—ao0
e}

> ay converges.
k=1

2. If Z ay diverges, hm S, = o0; thus by the fact that S, < T, for all n € N, we find

k=1
that lim T, = co. Therefore, Z by diverges (to o). o

Remark 9.38. It does not require that 0 < a,, < b,, for all n € N for the direct comparison
test to hold. The condition can be relaxed by that “0 < a,, < b,, for all n > N” for some N

since the sum of the first N — 1 terms does not affect the convergence of the series.

nk . 1+ si 2
Example 9.39. The series Z % converges since % <3 for all n € N and the
k=1
0
p-series Y, 73 converges.
k=1
- . 1 1
Example 9.40. The series S5 converges since < — for all n € N and the
Z2+3 2+37 - 3n

0
geometrlc series kzl 3714: converges.
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Example 9.41. The series )|

=12+ Vk
p-series i BN i L diverges
i—13vVE 3o VEk '
1
One can also use the fact that
2+4/n

o0

1

that ——— diverges.
k§1 2+ \/E &

=

SHE

1 1
diverges since > for all n € N and the

2+4n " 34yn

o0
for all n > 4 and ), % diverges to conclude
k=1
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