微積分 MA1002-A 上課筆記(精簡版) 2019.03.19.

Ching-hsiao Arthur Cheng 鄭經教

Definition 9.22

The series $\sum_{k=1}^{\infty} a_k$ is said to converge to S if the sequence of the partial sum, denoted by $\{S_n\}_{n=1}^{\infty}$ and defined by

$$S_n \equiv \sum_{k=1}^n a_k = a_1 + a_2 + \dots + a_n,$$

converges to S. S_n is called the *n*-th partial sum of the series $\sum_{k=1}^{\infty} a_k$.

When the series converges, we write $S = \sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} a_k$ is said to be convergent.

If $\{S_n\}_{n=1}^{\infty}$ diverges, the series is said to be divergent or diverge. If $\lim_{n\to\infty} S_n = \infty$ (or $-\infty$), the series is said to diverge to ∞ (or $-\infty$).

Theorem 9.27: Cauchy Criteria

A series $\sum_{k=1}^{\infty} a_k$ converges if and only if for every $\varepsilon > 0$, there exists N > 0 such that $\left| \sum_{k=1}^{n+p} a_k \right| < \varepsilon$ whenever $n \ge N, p \ge 0$.

Theorem 9.31

Let $f:[1,\infty)\to\mathbb{R}$ be a non-negative continuous decreasing function. The series $\sum_{k=1}^{\infty} f(k)$ converges if and only if the improper integral $\int_{1}^{\infty} f(x) dx$ converges.

Theorem 9.37

Let $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$ be sequences of real numbers, and $0 \le a_n \le b_n$ for all $n \in \mathbb{N}$.

- 1. If $\sum_{k=1}^{\infty} b_k$ converges, then $\sum_{k=1}^{\infty} a_k$ converges.
- 2. If $\sum_{k=1}^{\infty} a_k$ diverges, then $\sum_{k=1}^{\infty} a_k$ diverges.

Theorem 9.42

Let $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$ be sequences of real numbers, $a_n, b_n > 0$ for all $n \in \mathbb{N}$, and

$$\lim_{n \to \infty} \frac{a_n}{b_n} = L,$$

where L is a non-zero real number. Then $\sum_{k=1}^{\infty} a_k$ converges if and only if $\sum_{k=1}^{\infty} b_k$ converges.

Theorem 9.46: Ratio Test

Let $\sum_{k=1}^{\infty} a_k$ be a series with positive terms.

- 1. The series $\sum_{k=1}^{\infty} a_k$ converges if $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} < 1$.
- 2. The series $\sum_{k=1}^{\infty} a_k$ diverges (to ∞) if $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} > 1$.

Theorem 9.51: Root Test

Let $\sum_{k=1}^{\infty} a_k$ be a series with positive terms.

- 1. The series $\sum_{k=1}^{\infty} a_k$ converges if $\lim_{n\to\infty} \sqrt[n]{a_n} < 1$.
- 2. The series $\sum_{k=1}^{\infty} a_k$ diverges (to ∞) if $\lim_{n\to\infty} \sqrt[n]{a_n} > 1$.

9.6 Absolute and Conditional Convergence

In the previous three sections we consider the convergence of series whose terms do not have different signs. How about the convergence of series like

$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^p}, \qquad \sum_{k=1}^{\infty} \frac{\sin k}{k^p} \quad \text{and etc.}$$

In the following two sections, we will focus on how to judge the convergence of a series that has both positive and negative terms.

Definition 9.57

An infinite series $\sum_{k=1}^{\infty} a_k$ is said to be absolutely convergent or converge absolutely if the series $\sum_{k=1}^{\infty} |a_k|$ converges. An infinite series $\sum_{k=1}^{\infty} a_k$ is said to be conditionally convergent or converge conditionally if $\sum_{k=1}^{\infty} a_k$ converges but $\sum_{k=1}^{\infty} |a_k|$ diverges (to ∞).

Example 9.58. The series $\sum_{k=1}^{\infty} \frac{(-1)^k}{k^p}$ converge absolutely for p > 1 but does not converge absolutely for $p \leqslant 1$ since the p-series $\sum_{k=1}^{\infty} \frac{1}{k^p}$ converges for p > 1 and diverges for $p \leqslant 1$.

Example 9.59. The series $\sum_{k=1}^{\infty} \frac{\sin k}{k^p}$ converges absolutely for p > 1 since

$$0 \leqslant \left| \frac{\sin n}{n^p} \right| \leqslant \frac{1}{n^p} \qquad \forall \, n \in \mathbb{N}$$

and the *p*-series $\sum_{k=1}^{\infty} \frac{1}{k^p}$ converges for p > 1.

Theorem 9.60

An absolutely convergent series is convergent. (絕對收斂則收斂)

Proof. Let $\sum_{k=1}^{\infty} a_k$ be an absolutely convergent series, and $\varepsilon > 0$ be given. Since $\sum_{k=1}^{\infty} |a_k|$ converges, the Cauchy criteria implies that there exists N > 0 such that

$$\left| \sum_{k=n}^{n+p} |a_k| \right| < \varepsilon \quad \text{whenever } n \geqslant N \text{ and } p \geqslant 0.$$

Therefore, if $n \ge N$ and $p \ge 0$,

$$\left|\sum_{k=n}^{n+p} a_k\right| \leqslant \sum_{k=n}^{n+p} |a_k| < \varepsilon$$

thus the Cauchy criteria implies that $\sum_{k=1}^{\infty} a_k$ converges.

Corollary 9.61: Ratio and Root Tests

The series $\sum_{k=1}^{\infty} a_k$ converges if $\lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|} < 1$ or $\lim_{n\to\infty} \sqrt[n]{|a_n|} < 1$.

Example 9.62. The series $\sum_{k=1}^{\infty} \frac{(-1)^{k+1} k!}{1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2k+1)}$ converges since

$$\lim_{n \to \infty} \frac{\left| \frac{(-1)^{n+2}(n+1)!}{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n+3)} \right|}{\left| \frac{(-1)^{n+1}n!}{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n+1)} \right|} = \lim_{n \to \infty} \frac{\frac{(n+1)!}{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n+3)}}{\frac{n!}{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n+1)}} = \lim_{n \to \infty} \frac{n+1}{2n+3} = \frac{1}{2} < 1$$

which shows the absolute convergence of the series $\sum_{k=1}^{\infty} \frac{(-1)^{k+1} k!}{1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2k+1)}.$

9.6.1 Alternating Series

In the previous two sections we consider the convergence of series whose terms do not have different signs. How about the convergence of series like

$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}, \quad \sum_{k=1}^{\infty} \frac{\sin k}{k} \quad \text{and etc.}$$

In the following two sections, we will focus on how to judge the convergence of a series that has both positive and negative terms.

Theorem 9.63: Abel's Test

Let $\{a_n\}_{n=1}^{\infty}$, $\{p_n\}_{n=1}^{\infty}$ be sequences of real numbers such that

- 1. the sequence of partial sums of the series $\sum_{k=1}^{\infty} a_k$ is bounded; that is, there exists $M \in \mathbb{R}$ such that $\left|\sum_{k=1}^{n} a_k\right| \leq M$ for all $n \in \mathbb{N}$.
- 2. $\{p_n\}_{n=1}^{\infty}$ is a decreasing sequence, and $\lim_{n\to\infty} p_n = 0$.

Then $\sum_{k=1}^{\infty} a_k p_k$ converges.

Proof. Let $\varepsilon > 0$ be given. Since $\{p_n\}_{n=1}^{\infty}$ is decreasing and $\lim_{n \to \infty} p_n = 0$, there exists N > 0 such that

$$0 \le p_n < \frac{\varepsilon}{2M+1}$$
 whenever $n \ge N$.

Define $S_n = \sum_{k=1}^n a_k$. Then if $n \ge N$ and $\ell \ge 0$,

$$\left| \sum_{k=n}^{n+\ell} a_k p_k \right| = \left| (S_n - S_{n-1}) p_n + (S_{n+1} - S_n) p_{n+1} + (S_{n+2} - S_{n+1}) p_{n+2} + \cdots + (S_{n+\ell-1} - S_{n+\ell-2}) p_{n+\ell-1} + (S_{n+\ell} - S_{n+\ell-1}) p_{n+\ell} \right|$$

$$= \left| -S_{n-1} p_n + S_n (p_n - p_{n+1}) + S_{n+1} (p_{n+1} - p_{n+2}) + \cdots + S_{n+\ell-1} (p_{n+\ell-1} - p_{n+\ell}) + S_{n+\ell} p_{n+\ell} \right|$$

$$\leq \left| S_{n-1} p_n \right| + \left| S_n (p_n - p_{n+1}) \right| + \left| S_{n+1} (p_{n+1} - p_{n+2}) \right| + \cdots + \left| S_{n+\ell} (p_{n+\ell-1} - p_{n+\ell}) \right|$$

$$+ \left| S_{n+\ell+1} p_{n+\ell} \right|$$

$$\leq M p_n + M (p_n - p_{n+1}) + M (p_{n+1} - p_{n+2}) + \cdots + M (p_{n+\ell-1} - p_{n+\ell}) + M p_{n+\ell}$$

$$= 2M p_n < \frac{2M \varepsilon}{2M + 1} < \varepsilon.$$

Corollary 9.64

Let $\{p_n\}_{n=1}^{\infty}$ be a decreasing sequence of real numbers. If $\lim_{n\to\infty} p_n = 0$, then $\sum_{k=1}^{\infty} (-1)^k p_k$ and $\sum_{k=1}^{\infty} (-1)^{k+1} p_k$ converge.

Example 9.65. The series $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^p}$ converges conditionally for 0 since

1. $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^p}$ converges due the fact that

 $\left|\sum_{k=1}^{n} (-1)^{k+1}\right| \le 1$ and $\left\{\frac{1}{n^p}\right\}_{n=1}^{\infty}$ is decreasing and converges to 0.

2. $\sum_{k=1}^{\infty} \left| \frac{(-1)^{k+1}}{k^p} \right|$ diverges for it is a *p*-series with p=1.

Similarly, $\sum_{k=1}^{\infty} \frac{(-1)^k}{\ln(k+1)}$ converges conditionally.

Example 9.66. The series $\sum_{k=1}^{\infty} \frac{\sin k}{k^p}$ converges for p > 0 since

1.
$$\sum_{k=1}^{n} \sin k = \frac{\cos \frac{1}{2} - \cos \frac{2k+1}{2}}{2\sin \frac{1}{2}}$$
; $\left(\text{thus } \left| \sum_{k=1}^{n} \sin k \right| \le \frac{1}{\sin \frac{1}{2}} \right)$.

2. $\left\{\frac{1}{n^p}\right\}_{n=1}^{\infty}$ is decreasing and $\lim_{n\to\infty}\frac{1}{n^p}=0$.

We remark here that $\sum_{k=1}^{\infty} \frac{\sin k}{k} = \frac{\pi - 1}{2}$. In fact, $\sum_{k=1}^{\infty} \frac{\sin(kx)}{k}$ is the Fourier series of the function $\frac{\pi - x}{2}$.

• Alternating Series Remainder

Theorem 9.67

Let $\{a_n\}_{n=1}^{\infty}$, $\{p_n\}_{n=1}^{\infty}$ be sequences of real numbers satisfying conditions in Theorem 9.63. Then

$$\left| \sum_{k=1}^{\infty} a_k p_k - \sum_{k=1}^{n} a_k p_k \right| = \left| \sum_{k=n+1}^{\infty} a_k p_k \right| \leqslant 2M p_{n+1} \qquad \forall n \in \mathbb{N}.$$

Moreover, if $a_k = (-1)^k$, and $S = \sum_{k=1}^{\infty} (-1)^k p_k$ be an alternating series, and S_n be the n-th partial sum of the series, then

$$|S - S_n| \leqslant p_{n+1} \quad \forall n \in \mathbb{N}.$$

Example 9.68. Approximate the sum of the series $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k!}$ by its first six terms, we obtain that

$$\sum_{k=1}^{6} (-1)^{k+1} \frac{1}{k!} = \frac{1}{1!} - \frac{1}{2!} + \frac{1}{3!} - \frac{1}{4!} + \frac{1}{5!} - \frac{1}{6!} \approx 0.63194.$$

Moreover, by Theorem 9.69, we find that

$$\Big| \sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k!} - \sum_{k=1}^{6} (-1)^{k+1} \frac{1}{k!} \Big| \leqslant \frac{1}{7!} = \frac{1}{5040} \approx 0.0002.$$