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9.7 Taylor Polynomials and Approximations

Suppose that f : (a, b) Ñ R is (n + 1)-times continuously differentiable; that is, dkf

dxk
is

continuous on (a, b) for 1 ď k ď n + 1, then for x P (a, b), the Fundamental Theorem of
Calculus and integration-by-parts imply that

f(x) ´ f(c) =

ż x

c

f 1(t) dt = f 1(t)(t ´ x)
ˇ

ˇ

ˇ

t=x

t=c
´

ż x

c

f 11(t)(t ´ x) dt

= ´f 1(c)(c ´ x) ´

ż x

c

f 11(t)(t ´ x) dt

= f 1(c)(x ´ c) ´

[
f 11(t)

(t ´ x)2

2

ˇ

ˇ

ˇ

t=x

t=c
´

ż x

c

f 12(t)
(t ´ x)2

2
dt
]

= f 1(c)(x ´ c) ´

[
´

f 11(c)

2
(c ´ x)2 ´

ż x

c

f 12(t)
(t ´ x)2

2
dt
]

= f 1(c)(x ´ c) +
f 11(c)

2
(x ´ c)2 +

ż x

c

f 12(t)
(t ´ x)2

2
dt

= ¨ ¨ ¨ ¨ ¨ ¨

= f 1(c)(x ´ c) +
f 11(c)

2
(x ´ c)2 + ¨ ¨ ¨ +

f (n)(c)

n!
(x ´ c)n

+ (´1)n
ż x

c

f (n+1)(t)
(t ´ x)n

n!
dt ,

where the last equality can be shown by induction. Therefore,

f(x) =
n

ÿ

k=0

f (k)(c)

k!
(x ´ c)k + (´1)n

ż x

c

f (n+1)(t)
(t ´ x)n

n!
dt . (9.7.1)

Definition 9.69
If f has n derivatives at c, then the polynomial

Pn(x) =
n

ÿ

k=0

f (k)(c)

k!
(x ´ c)k

is called the n-th (order) Taylor polynomial for f at c. The n-th Taylor polynomial
for f at 0 is also called the n-th (order) Maclaurin polynomial for f .

Example 9.70. The n-th Maclaurin polynomial for the function f(x) = ex is

Pn(x) =
n

ÿ

k=0

f (k)(0)

k!
xk =

n
ÿ

k=0

1

k!
xk = 1 + x+

x2

2!
+

x3

3!
+ ¨ ¨ ¨ +

xn

n!
.



Example 9.71. The n-th Maclaurin polynomial for the function f(x) = ln(1 + x) is given
by

Pn(x) =
n

ÿ

k=0

f (k)(0)

k!
xk =

n
ÿ

k=1

f (k)(0)

k!
xk =

n
ÿ

k=1

(´1)k´1(k ´ 1)!

k!
xk =

n
ÿ

k=1

(´1)k´1

k
xk

= x ´
x2

2
+

x3

3
´

x4

4
+ ¨ ¨ ¨ +

(´1)n´1

n
xn ,

here we have used g(k)(x) = (´1)k´1(k ´ 1)!(x+ 1)´k to compute g(k)(0).
The n-th Taylor polynomial for the function g(x) = lnx at 1 is given by

Qn(x) =
n

ÿ

k=0

g(k)(1)

k!
(x ´ 1)k =

n
ÿ

k=1

g(k)(1)

k!
(x ´ 1)k =

n
ÿ

k=1

(´1)k´1(k ´ 1)!

k!
(x ´ 1)k

=
n

ÿ

k=1

(´1)k´1

k
(x ´ 1)k

= (x ´ 1) ´
(x ´ 1)2

2
+

(x ´ 1)3

3
´

(x ´ 1)4

4
+ ¨ ¨ ¨ +

(´1)n´1

n
(x ´ 1)n ,

here we have used g(k)(x) = (´1)k´1(k ´ 1)!x´k to compute g(k)(1). We note that Qn(x) =

Pn(x ´ 1) (and g(x) = f(x ´ 1)).

Example 9.72. The (2n)-th Maclaurin polynomial for the function f(x) = cosx is given
by

P2n(x) =
2n
ÿ

k=0

f (k)(0)

k!
xk = 1 +

2n
ÿ

k=1

f (k)(0)

k!
xk = 1 +

n
ÿ

k=1

f (2k´1)(0)

(2k ´ 1)!
x2k´1 +

n
ÿ

k=1

f (2k)(0)

(2k)!
x2k

= 1 +
n

ÿ

k=1

f (2k)(0)

(2k)!
x2k = 1 ´

x2

2
+

x4

4!
´

x6

6!
+ ¨ ¨ ¨ +

(´1)n

(2n)!
x2n ,

here we have used f (k)(x) = cos
(
x +

kπ

2

)
to compute f (k)(0). We also note that P2n(x) =

P2n+1(x) for all n P N.
The (2n ´ 1)-th Maclaurin polynomial for the function g(x) = sinx is given by

Q2n´1(x) =
2n´1
ÿ

k=0

g(k)(0)

k!
xk =

2n´1
ÿ

k=1

g(k)(0)

k!
xk =

n
ÿ

k=1

g(2k´1)(0)

(2k ´ 1)!
x2k´1 +

n
ÿ

k=1

g(2k)(0)

(2k)!
x2k

=
n

ÿ

k=1

g(2k´1)(0)

(2k ´ 1)!
x2k´1 = x ´

x3

3!
+

x5

5!
´

x7

7!
+ ¨ ¨ ¨ +

(´1)n´1

(2n ´ 1)!
x2n´1 ,

here we have used g(k)(x) = sin
(
x+

kπ

2

)
to compute g(k)(0). We also note that Q2n´1(x) =

Q2n(x) for all n P N.



Remark 9.73. Using the Maclaurin polynomial given in Example 9.70 and 9.72, concep-
tually we can explain why the Euler identity eiθ = cos θ + i sin θ. Note that the (2n)-th
Maclaurin polynomial for exp, cos, sin are

P e
2n(x) = 1 + x+

x2

2!
+ ¨ ¨ ¨ +

x2n

(2n)!
,

P c
2n(x) = 1 ´

x2

2!
+

x4

4!
+ ¨ ¨ ¨ +

(´1)n

(2n)!
x2n ,

P s
2n(x) = x ´

x3

3!
+

x5

5!
+ ¨ ¨ ¨ +

(´1)n´1

(2n ´ 1)!
x2n´1 .

Substitution x = iθ, we find that

P e
2n(iθ) = P c

2n(θ) + iP s
2n(θ) @ θ P R .

9.7.1 Remainder of Taylor Polynomials

To measure the accuracy of approximating a function value f(x) by the Taylor polynomial,
we look for the difference Rn(x) ” f(x) ´ Pn(x), where Pn is the n-th Taylor polynomial
for f (centered at a certain number c). The function Rn is called the remainder associated
with the approximation Pn.

‚ Integral form of the remainder

Suppose that f : (a, b) Ñ R is (n+1)-times continuously differentiable, and c, x P (a, b). By
(9.7.1), we find that if Pn is the n-th Taylor polynomial for f at c, then

Rn(x) = (´1)n
ż x

c

f (n+1)(t)
(t ´ x)n

n!
dt . (9.7.2)

Example 9.74. Consider the function f(x) = exp(x) = ex. If Pn is the n-th Maclaurin
polynomial for f , the remainder Rn associated with Pn is given by

Rn(x) = (´1)n
ż x

0

f (n+1)(t)
(t ´ x)n

n!
dt = (´1)n

ż x

0

et
(t ´ x)n

n!
dt .

Therefore, if x ą 0,

ˇ

ˇ

ˇ
ex ´

n
ÿ

k=0

xk

k!

ˇ

ˇ

ˇ
=

ˇ

ˇ

ˇ

ż x

0

et
(t ´ x)n

n!
dt

ˇ

ˇ

ˇ
ď

ż x

0

et
(x ´ t)n

n!
dt ď

ż x

0

ex
xn

n!
dt =

exxn+1

n!
. (9.7.3)



Note that for each x ą 0, the series
8
ř

k=0

ex
xn+1

n!
converges since

lim
nÑ8

ex
x(n+1)+1

(n+ 1)!

ex
xn+1

n!

= lim
nÑ8

x

n+ 1
= 0 ;

thus the n-th term test shows that lim
nÑ8

ex
xn+1

n!
= 0. Therefore, for each x ą 0,

lim
nÑ8

ˇ

ˇ

ˇ
ex ´

n
ÿ

k=0

xk

k!

ˇ

ˇ

ˇ
= 0

or equivalently,

ex =
8
ÿ

k=0

xk

k!
= 1 + x+

x2

2!
+

x3

3!
+ ¨ ¨ ¨ +

xn

n!
+ ¨ ¨ ¨ .

In particular, if x = 1, (9.7.3) implies that

ˇ

ˇ

ˇ
e ´

n
ÿ

k=0

1

k!

ˇ

ˇ

ˇ
ď

e

n!
;

thus
ˇ

ˇ

ˇ
e ´

17
ř

k=0

1

k!

ˇ

ˇ

ˇ
ă 10´8.
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