微積分 MA1002-A 上課筆記(精簡版) 2019.03.21.

Ching-hsiao Arthur Cheng 鄭經教

9.7 Taylor Polynomials and Approximations

Suppose that $f:(a,b)\to\mathbb{R}$ is (n+1)-times continuously differentiable; that is, $\frac{d^kf}{dx^k}$ is continuous on (a,b) for $1\leqslant k\leqslant n+1$, then for $x\in(a,b)$, the Fundamental Theorem of Calculus and integration-by-parts imply that

$$f(x) - f(c) = \int_{c}^{x} f'(t) dt = f'(t)(t-x) \Big|_{t=c}^{t=x} - \int_{c}^{x} f''(t)(t-x) dt$$

$$= -f'(c)(c-x) - \int_{c}^{x} f''(t)(t-x) dt$$

$$= f'(c)(x-c) - \left[f''(t) \frac{(t-x)^{2}}{2} \Big|_{t=c}^{t=x} - \int_{c}^{x} f'''(t) \frac{(t-x)^{2}}{2} dt \right]$$

$$= f'(c)(x-c) - \left[-\frac{f''(c)}{2}(c-x)^{2} - \int_{c}^{x} f'''(t) \frac{(t-x)^{2}}{2} dt \right]$$

$$= f'(c)(x-c) + \frac{f''(c)}{2}(x-c)^{2} + \int_{c}^{x} f'''(t) \frac{(t-x)^{2}}{2} dt$$

$$= \cdots$$

$$= f'(c)(x-c) + \frac{f''(c)}{2}(x-c)^{2} + \cdots + \frac{f^{(n)}(c)}{n!}(x-c)^{n}$$

$$+ (-1)^{n} \int_{c}^{x} f^{(n+1)}(t) \frac{(t-x)^{n}}{n!} dt,$$

where the last equality can be shown by induction. Therefore,

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!} (x - c)^k + (-1)^n \int_{c}^{x} f^{(n+1)}(t) \frac{(t - x)^n}{n!} dt.$$
 (9.7.1)

Definition 9.69

If f has n derivatives at c, then the polynomial

$$P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!} (x - c)^k$$

is called the n-th (order) Taylor polynomial for f at c. The n-th Taylor polynomial for f at 0 is also called the n-th (order) Maclaurin polynomial for f.

Example 9.70. The *n*-th Maclaurin polynomial for the function $f(x) = e^x$ is

$$P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(0)}{k!} x^k = \sum_{k=0}^n \frac{1}{k!} x^k = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!}.$$

Example 9.71. The *n*-th Maclaurin polynomial for the function $f(x) = \ln(1+x)$ is given by

$$P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(0)}{k!} x^k = \sum_{k=1}^n \frac{f^{(k)}(0)}{k!} x^k = \sum_{k=1}^n \frac{(-1)^{k-1}(k-1)!}{k!} x^k = \sum_{k=1}^n \frac{(-1)^{k-1}}{k} x^k$$
$$= x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + \frac{(-1)^{n-1}}{n} x^n,$$

here we have used $g^{(k)}(x) = (-1)^{k-1}(k-1)!(x+1)^{-k}$ to compute $g^{(k)}(0)$.

The *n*-th Taylor polynomial for the function $g(x) = \ln x$ at 1 is given by

$$Q_n(x) = \sum_{k=0}^n \frac{g^{(k)}(1)}{k!} (x-1)^k = \sum_{k=1}^n \frac{g^{(k)}(1)}{k!} (x-1)^k = \sum_{k=1}^n \frac{(-1)^{k-1} (k-1)!}{k!} (x-1)^k$$
$$= \sum_{k=1}^n \frac{(-1)^{k-1}}{k} (x-1)^k$$
$$= (x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \frac{(x-1)^4}{4} + \dots + \frac{(-1)^{n-1}}{n} (x-1)^n,$$

here we have used $g^{(k)}(x) = (-1)^{k-1}(k-1)!x^{-k}$ to compute $g^{(k)}(1)$. We note that $Q_n(x) = P_n(x-1)$ (and g(x) = f(x-1)).

Example 9.72. The (2n)-th Maclaurin polynomial for the function $f(x) = \cos x$ is given by

$$P_{2n}(x) = \sum_{k=0}^{2n} \frac{f^{(k)}(0)}{k!} x^k = 1 + \sum_{k=1}^{2n} \frac{f^{(k)}(0)}{k!} x^k = 1 + \sum_{k=1}^{n} \frac{f^{(2k-1)}(0)}{(2k-1)!} x^{2k-1} + \sum_{k=1}^{n} \frac{f^{(2k)}(0)}{(2k)!} x^{2k} = 1 + \sum_{k=1}^{n} \frac{f^{(2k)}(0)}{(2k)!} x^{2k} = 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + \frac{(-1)^n}{(2n)!} x^{2n},$$

here we have used $f^{(k)}(x) = \cos\left(x + \frac{k\pi}{2}\right)$ to compute $f^{(k)}(0)$. We also note that $P_{2n}(x) = P_{2n+1}(x)$ for all $n \in \mathbb{N}$.

The (2n-1)-th Maclaurin polynomial for the function $g(x) = \sin x$ is given by

$$Q_{2n-1}(x) = \sum_{k=0}^{2n-1} \frac{g^{(k)}(0)}{k!} x^k = \sum_{k=1}^{2n-1} \frac{g^{(k)}(0)}{k!} x^k = \sum_{k=1}^n \frac{g^{(2k-1)}(0)}{(2k-1)!} x^{2k-1} + \sum_{k=1}^n \frac{g^{(2k)}(0)}{(2k)!} x^{2k}$$
$$= \sum_{k=1}^n \frac{g^{(2k-1)}(0)}{(2k-1)!} x^{2k-1} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + \frac{(-1)^{n-1}}{(2n-1)!} x^{2n-1},$$

here we have used $g^{(k)}(x) = \sin\left(x + \frac{k\pi}{2}\right)$ to compute $g^{(k)}(0)$. We also note that $Q_{2n-1}(x) = Q_{2n}(x)$ for all $n \in \mathbb{N}$.

Remark 9.73. Using the Maclaurin polynomial given in Example 9.70 and 9.72, conceptually we can explain why the Euler identity $e^{i\theta} = \cos \theta + i \sin \theta$. Note that the (2n)-th Maclaurin polynomial for exp, cos, sin are

$$P_{2n}^{e}(x) = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{2n}}{(2n)!},$$

$$P_{2n}^{c}(x) = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \dots + \frac{(-1)^{n}}{(2n)!}x^{2n},$$

$$P_{2n}^{s}(x) = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots + \frac{(-1)^{n-1}}{(2n-1)!}x^{2n-1}.$$

Substitution $x = i\theta$, we find that

$$P_{2n}^e(i\theta) = P_{2n}^c(\theta) + iP_{2n}^s(\theta) \qquad \forall \theta \in \mathbb{R}.$$

9.7.1 Remainder of Taylor Polynomials

To measure the accuracy of approximating a function value f(x) by the Taylor polynomial, we look for the difference $R_n(x) \equiv f(x) - P_n(x)$, where P_n is the *n*-th Taylor polynomial for f (centered at a certain number c). The function R_n is called the remainder associated with the approximation P_n .

• Integral form of the remainder

Suppose that $f:(a,b)\to\mathbb{R}$ is (n+1)-times continuously differentiable, and $c,x\in(a,b)$. By (9.7.1), we find that if P_n is the n-th Taylor polynomial for f at c, then

$$R_n(x) = (-1)^n \int_c^x f^{(n+1)}(t) \frac{(t-x)^n}{n!} dt.$$
 (9.7.2)

Example 9.74. Consider the function $f(x) = \exp(x) = e^x$. If P_n is the *n*-th Maclaurin polynomial for f, the remainder R_n associated with P_n is given by

$$R_n(x) = (-1)^n \int_0^x f^{(n+1)}(t) \frac{(t-x)^n}{n!} dt = (-1)^n \int_0^x e^t \frac{(t-x)^n}{n!} dt.$$

Therefore, if x > 0,

$$\left| e^x - \sum_{k=0}^n \frac{x^k}{k!} \right| = \left| \int_0^x e^t \frac{(t-x)^n}{n!} dt \right| \leqslant \int_0^x e^t \frac{(x-t)^n}{n!} dt \leqslant \int_0^x e^x \frac{x^n}{n!} dt = \frac{e^x x^{n+1}}{n!}. \tag{9.7.3}$$

Note that for each x > 0, the series $\sum_{k=0}^{\infty} e^x \frac{x^{n+1}}{n!}$ converges since

$$\lim_{n \to \infty} \frac{e^x \frac{x^{(n+1)+1}}{(n+1)!}}{e^x \frac{x^{n+1}}{n!}} = \lim_{n \to \infty} \frac{x}{n+1} = 0;$$

thus the *n*-th term test shows that $\lim_{n\to\infty} e^x \frac{x^{n+1}}{n!} = 0$. Therefore, for each x > 0,

$$\lim_{n \to \infty} \left| e^x - \sum_{k=0}^n \frac{x^k}{k!} \right| = 0$$

or equivalently,

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots$$

In particular, if x = 1, (9.7.3) implies that

$$\left| e - \sum_{k=0}^{n} \frac{1}{k!} \right| \leqslant \frac{e}{n!};$$

thus
$$\left| e - \sum_{k=0}^{17} \frac{1}{k!} \right| < 10^{-8}$$
.