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9.7 Taylor Polynomials and Approximations
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Suppose that f : (a,b) — R is (n + 1)-times continuously differentiable; that is, TR is

continuous on (a,b) for 1 < k < n + 1, then for z € (a,b), the Fundamental Theorem of
Calculus and integration-by-parts imply that
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where the last equality can be shown by induction. Therefore,
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Definition 9.69

If f has n derivatives at ¢, then the polynomial
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is called the n-th (order) Taylor polynomial for f at ¢. The n-th Taylor polynomial
for f at 0 is also called the n-th (order) Maclaurin polynomial for f.

Example 9.70. The n-th Maclaurin polynomial for the function f(z) = €” is
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Example 9.71. The n-th Maclaurin polynomial for the function f(z) = In(1 4 z) is given
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here we have used ¢ (z) = (=1)*1(k — 1)!(z + 1)~* to compute ¢ (0).
The n-th Taylor polynomial for the function g(z) = Inx at 1 is given by
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here we have used ¢ (z) = (—1)*1(k — 1)!2™ to compute ¢*)(1). We note that @, (z) =
Po(z —1) (and g(z) = f(z — 1)).

Example 9.72. The (2n)-th Maclaurin polynomial for the function f(z) = cosx is given
by
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here we have used f®(z) = cos (z + %T) to compute f*)(0). We also note that Py, (r) =
Py,11(x) for all n e N.

The (2n — 1)-th Maclaurin polynomial for the function g(x) = sinx is given by
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here we have used ¢ (z) = sin (x + km ) to compute ¢®(0). We also note that Qan_1(z) =
Qan(x) for all n e N.



Remark 9.73. Using the Maclaurin polynomial given in Example 9.70 and 9.72, concep-
tually we can explain why the Euler identity ¢ = cosf + isinf. Note that the (2n)-th

Maclaurin polynomial for exp, cos, sin are
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Substitution x = 6, we find that

P (i0) = P5(0) + iP5, (0)  VOeR.

9.7.1 Remainder of Taylor Polynomials

To measure the accuracy of approximating a function value f(x) by the Taylor polynomial,
we look for the difference R, (z) = f(x) — P,(x), where P, is the n-th Taylor polynomial
for f (centered at a certain number c¢). The function R, is called the remainder associated

with the approximation P,.

e Integral form of the remainder

Suppose that f : (a,b) — R is (n+ 1)-times continuously differentiable, and ¢, x € (a,b). By
(9.7.1), we find that if P, is the n-th Taylor polynomial for f at ¢, then
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Example 9.74. Consider the function f(z) = exp(z) = e*. If P, is the n-th Maclaurin

polynomial for f, the remainder R,, associated with P, is given by
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Therefore, if x > 0,
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Note that for each x > 0, the series )] e® converges since
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thus the n-th term test shows that lim e*—— = 0. Therefore, for each x > 0,
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In particular, if x = 1, (9.7.3) implies that
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