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Theorem 5.41: Cauchy Mean Value Theorem

Let F,G : [a,b] — R be continuous on [a,b] and differentiable on (a,b). If G'(x) # 0
for all z € (a,b), then there exists ¢ € (a,b) such that

F'(e) _ F(b) = F(a)

G'(c)  G()—G(a)’

Definition 9.69

If f has n derivatives at ¢, then the polynomial

Zf )z — o)t

is called the n-th (order) Taylor polynomial for f at ¢. The n-th Taylor polynomial
for f at 0 is also called the n-th (order) Maclaurin polynomial for f.

e The Maclaurin polynomials for some elementary functions:
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e Remainder of Taylor Polynomials

The difference R, (z) = f(x)— P,(z), where P, is the n-th Taylor polynomial for f (centered

at a certain number c) is called the remainder associated with the approximation P,.




e Integral form of the remainder

Suppose that f : (a,b) — R is (n + 1)-times continuously differentiable, and ¢,z € (a,b).
Then the remainder R,, associated with the n-th Taylor polynomial for f at c is given by
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Example 9.74. We have shown last time that if z > 0, then
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The identity above holds for x < 0, and the proof is left as an exercise.

Example 9.75. Consider the function f(z) = cosz and its (2n)-th Maclaurin polynomial
Py, in Example 9.72. If z > 0,
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while if x < 0,
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and
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the ratio test implies that Z m and Z m converge; thus for each x € R,
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Therefore,
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Using (9.7.2), we conclude that
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thus cos(0.1) = > ((2]3‘ (0.1)%* ~ 0.995004165 which is accurate to nine decimal points.
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e Lagrange form of the remainder

Theorem 9.76: Taylor’s Theorem

Let f : (a,b) — R be (n + 1)-times differentiable, and ¢ € (a,b). Then for each

€ (a,b), there exists £ between x and ¢ such that
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where the Lagrange form of the remainder R, (x) is given by
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Proof. We first show that if h : (a,b) — R is m-times differentiable, and ¢ € (a,b). Then for
all d € (a,b) and d # c there exists £ between ¢ and d such that
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Let F(z) = h(z) — Z x J (r — ¢)f and G(x) = (x — ¢)™*!. Then F,G are continuous on
k=0

[e,d] (or [d, c]) and differentiable on (¢, d) (or (d,c)), and G'(x) # 0 for all x # c. Therefore,

the Cauchy Mean Value Theorem implies that there exists £ between ¢ and d such that

F(d) - F(e) _ F'(§)

G(d) = G(c)  G'(§)°

and (9.7.5) is exactly the explicit form of the equality above.
Now we apply (9.7.5) successfully for h = f, f', f”, --- and f and find that
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forsomec<{<d,<d, 1< - <dy<d(ord<d; <dy<---<d,<&<c); thus
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(9.7.4) then follows from the equality above since d € (a,b) is given arbitrary. o

B e e
k=0

Example 9.77. In Example 9.71 we compute the Taylor polynomial P, for the function
y = In(1 4 z). Note that the Taylor Theorem implies that for all x > —1,

In(1+xz) = P,(z) + R,(z),



where
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