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Theorem 9.76: Taylor’s Theorem

Let f : (a,b) — R be (n + 1)-times differentiable, and ¢ € (a,b). Then for each

€ (a,b), there exists £ between x and ¢ such that
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fl@)=fle) + f'(e)(x—c) +

(x — )" + Ry(x), (9.7.1)
where Lagrange form of the remainder R, (x) is given by
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Using Taylor’s Theorem we also show that
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Definition 9.80: Power Series

Let ¢ be a real number. A power series (of one variable x) centered at ¢ is an infinite

+.-- Yze(0,1].
n

series of the form
o0

Zak(x—c)k =ap+ai(r—c)' +as(x—c)’ +--,
k=0
where ay, is independent of x and is called the coefficient of the k-th term.

Theorem 9.81
o0

a0
Let {ax};°, be a sequence of real numbers. If > ayd® converges, then Y ai(z — c)
k=0 k=0
converges absolutely for all z € (¢ — |d|,c+ |d]).

Definition 9.82: Radius of Convergence and Interval of Convergence

Let a power series centered at ¢ be given. The radius of convergence of a power series

k

centered at c is the greatest lower bound of the set
{r > 0] there exists z € (¢ — r,c + ) such that the power series diverges} .

The set of all values of x for which the power series converges is called the interval of

convergence of the power series.




Theorem 9.92: Properties of Functions Defined by Power Series

Suppose that the function f defined by power series

0

flx) = Zak(x—c)k =ag+a(z—c)+ay(z—c)*+---
k=0
has a radius of convergence of R > 0. Then

1. f is differentiable on (¢ — R, ¢+ R) and

f(x) = i kag(z — ) ' = ay + 2as(z — ¢) + 3as(z —c)* + - - - .
k=1

2. an anti-derivative of f on (¢ — R,c+ R) is given by
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ff(x)dxzo‘f';kﬁl(fﬂ—c)kﬂ=C+6Lo($—c)+3($—c)2+---.

The radius of convergence of the power series obtained by differentiating or integrating

a power series term by term is the same as the original power series.

Corollary 9.95

For a function defined by power series

(on a certain interval of convergence), the n-th Taylor polynomial for f at ¢ is the
n-th partial sum > a(z — ¢)* of the power series.
k=0

9.9 Representation of Functions by Power Series
e Geometric Power Series
o0
Recall that the geometric series Y| 7¥ converges if and only if |r| < 1. The function g(z) =

k=0
is defined on R\{1}, and by the fact that
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we find that if |z| < 1, then
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or equivalently,

a0
2 b—c’f“ —c)* Vee(c—|b—cl,c+|b—cl|).

Replacing x by —z, we find that

1 o (D
b+x:2m(x+c)k Vee(—c—|b—c|l,—c+1]b—¢|).
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Example 9.96. Find a power series representation for f(x) = —, centered at 1.
X
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To find the power series centered at 1, we rewrite — = ————; thus
xr 1+(x—-1)

1o 21—3: :Z( Dz -1 V]jz—-1]<1.

Example 9.97. Find a power series representation for f(z) = Inz centered at 1.

Note that a4 Inz = l; thus
dx T

%lnx—i(—l)k(x—l)k Vze(0,2).
k=0

Therefore, by Theorem 9.92,

x—l)k Vae (0,2).
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To determine the constant C', we let x = 1 and find that In1 = (C'; thus C' = 0 and we

conclude that
2 (-1

lnx:Z

k=1

(z — 1) Vxe(0,2).

We note that the power series converges at z = 2, and Example 9.78 shows that

o0
(1t

In2 = :

n2=) =
k=1

. & (1)L 5 .
In other words, the power series )’ (x — 1)% is continuous at 2.
k=1

e Operations with Power Series

a0 a0

Let f(z) = Y} ap(z — ¢)¥ have interval of convergence I; and g(z) = Y. bp(z —

k=0 k=0
interval of convergence I».

1. flax) = kioakak(x - E)k onl={zeR|azel}.

o
0

2. f(x)+g(x) = kzo(ak +bp)zFon I =1 N I,

0
3. Ifc=0and N €N, then f(zV) = ¥ axa™* on I = {z e R|2" € I}.
k=0

0 k
4. f(z)g(x) = Y, dp(x —c)f on I = I N Iy, where dy = >, apbj_y.
i=0

k=0
Example 9.98. Find a power series for f(z) = arctanz centered at 0.

d 1
Note that — arctanz = ——; thus
dx 1+ 22

d 1 S ko .2k
%arctanx =152 :kZ_O(—l) x Vre(—1,1).

By Theorem 9.92,
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and the constant C'is determined by applying the identity above at x = 0; thus C' = arctan 0

and
t i (_1)k 2k+1 V e ( 1 1)
arctan r = —7 re(—-1,1),
2k+1
k=0
1 1
We note that the power series converges at x = +1. Is it true that arctan1 =1 — 3 + 5T
1
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In general, suppose that the function f defined by power series > ax(x—c)* has a radius
k=0

of convergence R > 0, and ¢ is a continuous function defined on some interval I such that

f(z) = g(z) for all x € (¢ — R,c+ R) < I. If f is also defined on ¢+ R (or ¢ — R), by
Theorem 9.92 it is not clear if lianf(x) = g(c+ R) (or lime(x) = g(c — R)). The

following theorem concerns with this issue.
Theorem 9.97: Continuity of Power Series at End-points

Q0
Let the radius of convergence of the power series f(z) = > ax(x — ¢)* be r for some
k=0

r > 0.

o0
1. If >} apr* converges, then f is continuous at ¢ + 7.
k=0

o0
2. If > ap(—r)* converges, then f is continuous at ¢ — 7.
k=0

Therefore, it is true that

T 1+1 1+1+ +(*1)"
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9.10 Taylor and Maclaurin Series

Definition 9.98

If a function f has derivatives of all orders at x = ¢, then the series

2 F0)(c
Z f k|< )(l‘ o C)k
k=0 '

is called the Taylor series for f at c. It is also called the Maclaurin series for f if
c=0.




Theorem 9.99

Let f be a function that has derivatives of all orders at x = ¢, and P, be the n-
th Taylor polynomial for f at c¢. If R,, the remainder associated with P,, has the

property that
lim R,(z) =0 Veel

n—oo

for some interval I, then the Taylor series for f converges and equals f(z); that is,

© ),
f(a:)zsz'()(x—c)k Veel.

Corollary 9.100

Let f be a function that has derivatives of all orders in an open interval I containing
c. If there exists M > 0 such that ‘f(k) (x)! < M for all x € I and each k € N, then

D (k) (c
flz) = ka—!()(x—c)k Veel.

k=0

Proof. By the Taylor Theorem,
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for some & between ¢ and z. Since ‘f(k) (x)| < M for all x € I and k € N, we find that
M n
‘Rn(ﬂf)‘gm’.ﬁ—d +1 VYeel.
Therefore, by the fact that lim % = 0 for all a € R (the same reasoning as in Example
n—ao0 .

9.75), the Squeeze Theorem implies that

lim R,(z) =0 Veel

n—0o0
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and Theorem 9.99 further shows that f(z) = )] (x — )",
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