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Theorem 13.37

Let z = f(z,y) be a differentiable function (of z and y). If z = ¢(¢) and y = h(t) are
differentiable functions (of ¢), then z(t) = f(z(t),y(t)) is differentiable and

2(t) = fo(2(t),y(®) 2" () + £y (), y()y'(t) -

Corollary 13.38
Let z = f(z,y) be a differentiable function (of z and y).

1. If 2 = u(s,t) and y = v(s, t) are such that gu and gv exist, then the first partial
S S
derivative % of the function z(s,t) = f(u(s,t),v(s,t)) exists and

z5(s,t) = fu(u(s, t),v(s, 1)) us(s, t) + f (u(s, t),v(s,t))vs(s, ).

2. If x = u(s,t) and y = v(s, t) are such that é’az: and g: exist, then the first partial
derivative % of the function z(s,t) = f(u(s,t),v(s,t)) exists and

z(s,t) = fo(uls,t),v(s,t))u(s, t) + fy(uls, t),v(s,t))vi(s,t).

Theorem 13.41: Implicit Function Theorem (Special case)

Let F' be a function of n variables (zq,z9, -+ ,x,) such that F, , F.,, -, Fy,
are continuous in a neighborhood of (ay,as, -+ ,a,. If F(aj,as, -+ ,a,) = 0 and
F, (ai,as, -+ ,a,) # 0, then locally near (aj,as,---,a,) there exists a unique
continuous function f satisfying F(xy, -+, 2,1, f(z1, -+ ,2p—1)) = 0 and a, =
flay, -+ ,a,_1). Moreover, for 1 < j<n-—1,

ﬁ(iﬁv e mn) = _ij(xh s T, f(Tr, e Te) .

0, Fo (w1, s, f(21, 0 Tn1))

Example 13.42. Find % if (x,y) satisfies y> +y* — 5y —2? +4 = 0.
Let F(z,y) = y* + y* — by — 2* + 4. Then F,(z,y) = —2z and F,(z,y) = 3y* + 2y — 5.

Therefore,
dy  Fi(z,y) 2z

dr — Fy(x,y) 32 +2y—5"
Example 13.43. Find SZ and gz if (z,y,2) satisfies 3x2z — x%y? + 22° + 3yz — 5 = 0.
€T Yy




Let F(z,y,2) = 32?2z —a*y* +22° + 3yz — 5. Then F,(x,y,2) = 6xz —2zy?, Fy(z,y,2) =
—22%y + 3z and F,(x,vy,2) = 32% + 622 + 3y. Therefore,

0z  Fy(z,y,z)  2xy®—6zz
oxr  F.w,y,z) 322+622+ 3y

and
0z  Fy(x,y,z)  22°y—3z

oy F.z,y,2) 3224622 +3y

13.6 Directional Derivatives and Gradients

Let f be a function of two variables. From the discussion above we know that the existence
of f; and f, does not guarantee the differentiability of f. Since f, and f, are the rate of
change of the function f in two special directions (1,0) and (0,1), we can ask ourselves

whether f is differentiable if the rate of change of f exist in all direction.

Definition 13.44

Let f be a function of two variables x and y, and let u = cos #i+sin 05, where ¢ = (1,0)

and j = (0,1), be a unit vector. The directional derivative of f in the direction of w
at (a,b), denoted by (D,f)(a,b), is the limit

.. fla+hcosO,b+ hsind) — f(a,b)
(Duf)(a.b) = lim ~

provided this limit exists.

Example 13.45. Find the direction derivative of f(z,y) = x?sin 2y at (1, g) in the direc-
tion of v = 37 — 4j.

We first normalize the vector v and find that u = gz — % j is in the same direction of v
and has unit length. Therefore, for h # 0,

3h 4h h . h . . 8h
f(1+§>g_§)_f(17g) :(l—l—i)%m(ﬁ—i)—l%mﬂ: 1+3h)2sms.

h h 5

sin h

=1, we find that

thus by the fact that }llirr(l]

3h 4h

055 -5) 705
lim = lim (1+ =
h—0 h h—0 5




When f is differentiable, the directional derivative can be computed using the chain rule,

and we have the following

Theorem 13.46

Let R < R? be an open region in the plane, and f : R — R be a function of two

variables. If f is differentiable at (xg, o) € R, then for all unit vector v = cos #i+sin 6,

(Duf)(0,90) = falo,y0) cosd + fy(ﬂﬁo,yo) sinf = (D f)(zo,40) - .

Proof. Let g(t) = f(xg + tcosf,yo + tsinf). Then by the chain rule for functions of two

variables,

(Duf)(x0,%0) = %{%L;g@ =g'(0) = fe(zo,y0) cos O + fy(20,y0)sind. O

Example 13.47. In this example we re-compute of the direction derivative in Example 13.45
using Theorem 13.46. Note that f(x,y) = x?sin2y is differentiable on R? since f,(z,y) =
2xsin2y and f,(z,y) = 2x? cos2y are continuous (so that Theorem 13.35 guarantees the
differentiability of f). Therefore, Theorem 13.46 implies that

3 4 3 . 4 8
(Duf)(lag) = 5fz(17g) —gfy(l,g) = 5'2‘SIH7T—5'2'12'COS7T: 5

Unfortunately, the existence of directional derivative of f in all directions does not imply
the differentiability of f.

Example 13.48. Let f : R?> — R be given by

Wy (z,y) # (0,0)
f(x’y) — $2+y4 Y ) )

and u = (cos 6, sin #) € R? be a unit vector. Then if cosf # 0 (or equivalently, 6 # g, 3%),
. f(hcosB, hsinf) — f(0,0) . h3 cos 6 sin 62 sin 0*
Du , = l = l =
(Duf)(0,0) B h - h(h?cos 62 + h*uj)  cosf

while if cos§ = 0,

f(hcos®, hsin®) — f(0,0)
h

(Duf)(0,0) = Jim 0.



Therefore, the directional derivative of f at (0,0) exist in all directions. However, f is not

continuous at (0,0) since

li =0
<z,y>1—r»ro<lo,0) flz,y)
o

and
2 2
. .Yty 1
l :]_ =
o, f@y) =l = =3

z=y2

which shows that the limit of f at (0,0) does not exist.

Definition 13.49

Let z = f(x,y) be a function of x and y such that f,(a,b) and f,(a,b) exists. Then
the gradient of f at (a,b), denoted by (Vf)(a,b) or (gradf)(a,b), is the vector
(fz(a,b), f,(a,b)); that is,

(Vf)(a,b) = (fola,b), fy(a,b)) = fola,b)i+ fy(a,b)j.

e Functions of three variables

Definition 13.50

Let f be a function of three variables. The directional derivative of f at (a,b,c) in

the direction u = (uy, uz, u3), where u? + u3 + u? = 1, is the limit

hu, b+ h hus) — Fla.b
(Ddﬂmadzg%fm+ %7+w;+m> fla,b,c)

provided that the limit exists. The gradient of f at (a,b,c) is (Vf)(a,b,c) =
(fg;(a,b,C),fy(CL, b,c),fz(a,b,c)).

Let f be a function of three variables. If f is differentiable at (a,b,c) and w is a unit

vector, then

(Duf)(a,b,c) = (Vf)(a,b,c) u.




13.7 Tangent Planes and Normal Lines

e The tangent plane of surfaces

Any three points in the space that are not collinear defines a plane. Suppose that S is a
“surface” (which we have not define yet, but please use the common sense to think about
it), and Py = (¢, Yo, 20) is a point on the plane. Given another two point P, = (z1,y1, 21)
and P, = (z3,y2, 22) on the surface such that Py, Py, P, are not collinear, let Tp p, denote
the plane determined by F,, P; and Ps. If the plane “approaches” a certain plane as Py, P
approaches Py, the “limit” is called the tangent plane of S at Fj.
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