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Theorem 13.41: Implicit Function Theorem (Special case)

Let F be a function of n variables (x1, x2, ¨ ¨ ¨ , xn) such that Fx1 , Fx2 , ¨ ¨ ¨ , Fxn

are continuous in a neighborhood of (a1, a2, ¨ ¨ ¨ , an. If F (a1, a2, ¨ ¨ ¨ , an) = 0 and
Fxn(a1, a2, ¨ ¨ ¨ , an) ‰ 0, then locally near (a1, a2, ¨ ¨ ¨ , an) there exists a unique
continuous function f satisfying F (x1, ¨ ¨ ¨ , xn´1, f(x1, ¨ ¨ ¨ , xn´1)) = 0 and an =

f(a1, ¨ ¨ ¨ , an´1). Moreover, for 1 ď j ď n ´ 1,

Bf

Bxj
(x1, ¨ ¨ ¨ , xn´1) = ´

Fxj
(x1, ¨ ¨ ¨ , xn´1, f(x1, ¨ ¨ ¨ , xn´1))

Fxn(x1, ¨ ¨ ¨ , xn´1, f(x1, ¨ ¨ ¨ , xn´1))
.

Definition 13.50
Let f be a function of n variables. The directional derivative of f at (a1, a2, ¨ ¨ ¨ , an)

in the direction u = (u1, u2, ¨ ¨ ¨ , un), where u2
1 + u2

2 + ¨ ¨ ¨ + u2
n = 1, is the limit

(Duf)(a1, a2, ¨ ¨ ¨ , an) = lim
hÑ0

f(a1 + hu1, a2 + hu2, ¨ ¨ ¨ , an + hun) ´ f(a1, a2, ¨ ¨ ¨ , an)

h

provided that the limit exists. The gradient of f at (a1, a2, ¨ ¨ ¨ , an), denoted by
(∇f)(a1, a2, ¨ ¨ ¨ , an), is the vector

(∇f)(a1, a2, ¨ ¨ ¨ , an) =
(
fx1(a1, ¨ ¨ ¨ , an), fx2(a1, ¨ ¨ ¨ , an), ¨ ¨ ¨ , fxn(a1, ¨ ¨ ¨ , an)

)
.

Theorem 13.51
Let f be a function of n variables. If f is differentiable at (a1, a2, ¨ ¨ ¨ , an) and u =

(u1, u2, ¨ ¨ ¨ , un) is a unit vector, then

(Duf)(a1, a2, ¨ ¨ ¨ , an) = (∇f)(a1, ¨ ¨ ¨ , an) ¨ u .

13.7 Tangent Planes and Normal Lines
‚ The tangent plane of surfaces

Any three points in the space that are not collinear defines a plane. Suppose that S is a
“surface” (which we have not define yet, but please use the common sense to think about
it), and P0 = (x0, y0, z0) is a point on the plane. Given another two point P1 = (x1, y1, z1)

and P2 = (x2, y2, z2) on the surface such that P0, P1, P2 are not collinear, let TP1P2 denote



the plane determined by P0, P1 and P2. If the plane “approaches” a certain plane as P1, P2

approaches P0, the “limit” is called the tangent plane of S at P0.
Now suppose that the surface S is the graph of a function of two variables z = f(x, y).

Consider the tangent plane of S at P0 = (x0, y0, z0), where z0 = f(x0, y0). For h, k ‰ 0, let
P1 = (x0 + h, y0, f(x0 + h, y0)) and P2 = (x0, y0 + k, f(x0, y0 + k)), as well as

u =
(
1, 0,

f(x0 + h, y0) ´ f(x0, y0)

h

)
and v =

(
0, 1,

f(x0, y0 + k) ´ f(x0, y0)

k

)
.

Then the plane TP1P2 is given by

(u ˆ v) ¨ (x ´ x0, y ´ y0, z ´ z0) = 0 ,

where u ¨ v and u ˆ v are the inner product and the cross product of u and v defined by

u ¨ v = (u1v1 + u2v2 + u3v3) and u ˆ v = (u2v3 ´ u3v2, u3v1 ´ u1v3, u1v2 ´ u2v1) ,

respectively. In other words, the plane TP1P2 is given by(
´

f(x0 + h, y0) ´ f(x0, y0)

h
,´

f(x0, y0 + k) ´ f(x0, y0)

k
, 1
)

¨ (x ´ x0, y ´ y0, z ´ z0) = 0 .

Suppose that f is differentiable at (x0, y0). Passing to the limit as (h, k) Ñ (0, 0), we
find that the limit is(

´fx(x0, y0),´fy(x0, y0), 1
)

¨
(
x ´ x0, y ´ y0, z ´ f(x0, y0)

)
= 0

or equivalently (using z0 = f(x0, y0)),

z = f(x0, y0) + fx(x0, y0)(x ´ x0) + fy(x0, y0)(y ´ y0) .

On the other hand, if f is differentiable at (x0, y0), then

f(x, y) = f(x0, y0) + fx(x0, y0)(x ´ x0) + fy(x0, y0)(y ´ y0)

+ ε1(x, y)(x ´ x0) + ε2(x, y)(y ´ y0)

for some functions ε1, ε2 satisfying lim
(x,y)Ñ(x0,y0)

ε1(x, y) = lim
(x,y)Ñ(x0,y0)

ε2(x, y) = 0. This shows
that the rate of convergence of the quantity

ˇ

ˇf(x, y) ´ f(x0, y0) ´ fx(x0, y0)(x ´ x0) ´ fy(x0, y0)(y ´ y0)
ˇ

ˇ ,



as (x, y) approaches (x0, y0), is “faster than linear” and this is exactly what we have in mind
when talking about tangent planes. Therefore, we conclude that

Let R Ď R2 be an open region in the plane, and f : R Ñ R be a function of two
variables. If f is differentiable at (x0, y0) P R, the tangent plane of the graph of
f at (x0, y0, f(x0, y0)) is given by

z = f(x0, y0) + fx(x0, y0)(x ´ x0) + fy(x0, y0)(y ´ y0) ,

and the vector (fx(x0, y0), fy(x0, y0),´1) is a normal vector to the graph of f at
(x0, y0, f(x0, y0)).

Now suppose that the function of three variables w = F (x, y, z) is continuously differen-
tiable; that is, Fx, Fy, Fz are continuous. Suppose that for some (x0, y0, z0) in the domain,
(∇F )(x0, y0, z0) ‰ 0. W.L.O.G., we assume that Fz(x0, y0, z0) ‰ 0. Define

G(x, y, z) = F (x, y, z) ´ F (x0, y0, z0) .

Then Gx = Fx, Gy = Fy and Gz = Fy, and the Implicit Function Theorem (Theorem 13.41)
implies that there exists a unique differentiable function z = f(x, y) such that

G(x, y, f(x, y)) = 0 and z0 = f(x0, y0) .

In other words, the graph of f is a subset of the level surface F (x, y, z) = F (x0, y0, z0). By
the discussion above, the tangent plane of the graph of f at (x0, y0, z0) is given by

z = z0 + fx(x0, y0)(x ´ x0) + fy(x0, y0)(y ´ y0)

and the implicit partial differentiation further shows that the tangent plane above can be
rewritten as

z = z0 ´
Fx(x0, y0, z0)

Fz(x0, y0, z0)
(x ´ x0) ´

Fy(x0, y0, z0)

Fz(x0, y0, z0)
(y ´ y0) .

Therefore, the tangent plane of the graph of f at (x0, y0, z0) is given by

(∇F )(x0, y0, z0) ¨ (x ´ x0, y ´ y0, z ´ z0) = 0 .

On the other hand, note that the graph of f is the same as the level surface F (x, y, z) =



F (x0, y0, z0); thus we conclude that

Let w = F (x, y, z) be a function of three variables such that Fx, Fy and Fz are
continuous. If (∇F )(x0, y0, z0) ‰ 0, then the tangent plane of the level surface
F (x, y, z) = F (x0, y0, z0) at (x0, y0, z0) is given by

(∇F )(x0, y0, z0) ¨ (x ´ x0, y ´ y0, z ´ z0) = 0 ,

and the vector (∇F )(x0, y0, z0) is a normal vector to the level surface F (x, y, z)

= F (x0, y0, z0).

‚ Properties of the gradient

Theorem 13.52
Let F be a function of three variables. If F has continuous first partial deriva-
tives Fx, Fy, Fz in a neighborhood of (x0, y0, z0) and (∇F )(x0, y0, z0) ‰ 0, then
(∇F )(x0, y0, z0) is perpendicular/normal to the level surface F (x, y, z) = F (x0, y0, z0)

at (x0, y0, z0). Moreover, the value of F at (x0, y0, z0) increase most rapidly in the direc-

tion (∇F )(x0, y0, z0)

}(∇F )(x0, y0, z0)}
and decreases most rapidly in the direction ´

(∇F )(x0, y0, z0)

}(∇F )(x0, y0, z0)}
,

where } ¨ } denotes the length of the vector.

Remark 13.53. The terminology “the value of f at (x0, y0, z0) increase most rapidly in the
direction u”, where u is a unit vector, means that the directional derivative (Dvf)(x0, y0, z0),
treated as a function of v, attains its maximum at v = u.

Proof of Theorem 13.52. We have shown that (∇F )(x0, y0, z0) is perpendicular to the level
surface F (x, y, z) = F (x0, y0, z0), so it suffices to show that (DvF )(x0, y0, z0) attains its
maximum at v = u. Nevertheless, by Theorem 13.51, we find that

(DvF )(x0, y0, z0) = (∇F )(x0, y0, z0) ¨ v = }(∇F )(x0, y0, z0)} cos θ ,

where θ is the angle between (∇F )(x0, y0, z0) and v. Clearly (DvF )(x0, y0, z0) attains its
maximum when θ = 0 which shows that (DvF )(x0, y0, z0) attains its maximum at v =

(∇F )(x0, y0, z0)

}(∇F )(x0, y0, z0)}
.



Similarly, for functions of two variables, we have the following
Theorem 13.54

Let f be a function of two variables. If f has continuous first partial derivatives
fx and fy in a neighborhood of (x0, y0) and (∇f)(x0, y0) ‰ 0, then (∇f)(x0, y0) is
perpendicular/normal to the level curve f(x, y) = f(x0, y0) at (x0, y0). Moreover,

the value of f at (x0, y0) increase most rapidly in the direction (∇f)(x0, y0)

}(∇f)(x0, y0)}
and

decreases most rapidly in the direction ´
(∇f)(x0, y0)

}(∇f)(x0, y0)}
, where } ¨ } denotes the length

of the vector.

Example 13.55. Find an equation of the normal line and the tangent plane to the paraboloid

z = 1 ´
1

10
(x2 + 4y2)

at the point
(
1, 1,

1

2

)
.

Let F (x, y, z) = z ´ 1 +
1

10
(x2 + 4y2). Then Fz

(
1, 1,

1

2

)
”

(1
5
,
4

5
, 1
)

‰ 0; thus Theorem

13.52 implies that the tangent plane of the given paraboloid at
(
1, 1,

1

2

)
is

z =
1

2
´

1

5
(x ´ 1) ´

4

5
(y ´ 1) =

3

2
´

1

5
x ´

4

5
y .

An equation of the normal line at
(
1, 1,

1

2

)
is given by

x ´ 1

1/5
=

y ´ 1

4/5
=

z ´ 1/2

1
.
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