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Theorem 13.41: Implicit Function Theorem (Special case)

Let F' be a function of n variables (zq,z9, -+ ,x,) such that F, , F,,, -+, Fy,
are continuous in a neighborhood of (ay,as, -+ ,a,. If F(aj,as, -+ ,a,) = 0 and
F, (ai,as, - ,a,) # 0, then locally near (aj,as,---,a,) there exists a unique
continuous function f satisfying F(xy, -+, 2,1, f(21, - ,2p—1)) = 0 and a, =
flai, -+ ,an,_1). Moreover, for 1 < j<n-—1,

ﬁ(xh e mn) = _ij(xl, o T, [T, ) .

0, By (01, 2, f(21, 0, T01))
Let f be a function of n variables. The directional derivative of f at (a1, as,- - ,ay)
in the direction w = (uy,ug, - ,u,), where u? + u3 + - -+ +u2 = 1, is the limit

. a, + huy, as + hua, -+, a, + huy,) — f(ay, as, -+, ap
(Duf)(abaz,“-,an):’lg%f(1 1, %2 2 - ) — flai, as )

provided that the limit exists. The gradient of f at (aj,as,---,a,), denoted by
(Vf)(ar,as, - ,ay), is the vector

(vf)(a17a27"' 7an) = (le(ah“' 7a7L>afw2(a’17”' 7a7L)7"' 7fwn(a17"' 7an))'

Theorem 13.51

Let f be a function of n variables. If f is differentiable at (aj,as, -+ ,a,) and u =

(uy,ug, -+ ,uy,) is a unit vector, then

(Duf)(a1, 0z, an) = (Vf)(ar, - an) - u.

13.7 Tangent Planes and Normal Lines

e The tangent plane of surfaces

Any three points in the space that are not collinear defines a plane. Suppose that S is a

“surface” (which we have not define yet, but please use the common sense to think about

it), and Py = (x¢, Yo, 20) is a point on the plane. Given another two point P, = (x1, 41, 21)

and P = (z3,Ys, 22) on the surface such that Py, Py, P, are not collinear, let Tp p, denote



the plane determined by F,, P; and P5. If the plane “approaches” a certain plane as Py, P,
approaches Py, the “limit” is called the tangent plane of S at Fj.

Now suppose that the surface S is the graph of a function of two variables z = f(x,y).
Consider the tangent plane of S at Py = (xo, %o, 20), where zo = f(xg,yo). For h,k # 0, let
Py = (zo+ h,y0, f(zo+ h,v)) and P = (z0,y0 + k, f(z0,yo + k)), as well as

f(xo+h,y0) — f($07y0)>

u = (1,0, N

and v = (O, 1,

J(xo,y0 + k) — f(wo,yo))
- .

Then the plane Tp, p, is given by
(ux ) (x— 20,y — Yo, 2 — 20) =0,
where u - v and u x v are the inner product and the cross product of w and v defined by
u-v= (U101 + ugve + ugv3) and wu x v = (ugv3 — U3V, U3V — UV3, UV — UgV1) ,

respectively. In other words, the plane T, p, is given by

h,yo) — k) —
(_f(onr ,yof)l f(on,yo)’_f(l’Oa?/OJrli f(xo’yo)J).(:c—xo,y—yo,z—zo)z()-

Suppose that f is differentiable at (xg, o). Passing to the limit as (h, k) — (0,0), we
find that the limit is

(_fx(x(byO)v _fy($0790)a 1) ) (517 —20,Y — Yo, 2 — f(f’?myo)) =0

or equivalently (using zo = f(xq, y0)),

z = f(x0,Y0) + fo(0, y0)(x — 20) + fy (70, %0) (Y — Yo) -

On the other hand, if f is differentiable at (xq, o), then

f(@,y) = f(z0,90) + [o(xo, o) (x — 20) + fy (0, Y0) (¥ — Yo)
+e(w,y)(x — m0) + &2(, ) (Y — o)
for some functions €1, ey satisfying ~ lim  e(x,y) = lim  es(x,y) = 0. This shows

(z,y)—(z0,y0) (z,y)—(z0,y0)
that the rate of convergence of the quantity

|f(z,y) — f(zo,50) — folao, o) (x — x0) — fy (20, y0) (¥ — o)
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as (z,y) approaches (xg, yo), is “faster than linear” and this is exactly what we have in mind

when talking about tangent planes. Therefore, we conclude that

Let R < R? be an open region in the plane, and f : R — R be a function of two

variables. If f is differentiable at (x, o) € R, the tangent plane of the graph of
f at (o, vo, f(70,90)) is given by

z = f(xo,v0) + fo(0, y0)(x — 0) + fy(T0, Y0) (Y — %o) ,

and the vector (f,(xo, o), fy(%0,y0), —1) is a normal vector to the graph of f at
(ZL'(), Yo, f(x()v ?JO))

Now suppose that the function of three variables w = F(z, vy, z) is continuously differen-
tiable; that is, F,, F, F, are continuous. Suppose that for some (zg, yo, 29) in the domain,
(VF)(z0,90,20) # 0. W.L.O.G., we assume that F,(zo, Yo, 20) # 0. Define

G(ZE,y7Z) = F([E,y,Z) - F($07y0, ZO) .

Then G, = F,, G, = F, and G, = F},, and the Implicit Function Theorem (Theorem 13.41)

implies that there exists a unique differentiable function z = f(z,y) such that

G(%y,f(x,y)) =0 and z20 = f(x07y0) .

In other words, the graph of f is a subset of the level surface F(z,y,z) = F(xo, %o, 20). By
the discussion above, the tangent plane of the graph of f at (o, yo, 20) is given by

z = 2o+ fo(20,y0) (& — o) + [y(%0, Y0) (¥ — %o)

and the implicit partial differentiation further shows that the tangent plane above can be

rewritten as
Zx<l'(),y(),2«’()) T ) ]y(x()ayOaZO)
I (= x) — L

o F.(z0, 0, 20) F.(z0, 90, 20) = %0)-

zZ =2z
Therefore, the tangent plane of the graph of f at (xg, 3o, z0) is given by
(VE)(0,90,20) - (x — 20,y — Yo, 2 — 20) = 0.

On the other hand, note that the graph of f is the same as the level surface F(x,y,z) =



F(x0, Yo, 20); thus we conclude that

Let w = F(x,y, z) be a function of three variables such that F,, F, and F, are
continuous. If (VF)(zo, yo, 20) # 0, then the tangent plane of the level surface
F(z,y,2) = F(xo, Y0, 20) at (o, Yo, 20) Is given by

(VE) (%o, Y0, 20) - (x — %0,y — Yo, 2 — 20) =0,

and the vector (VF)(zo, o, 20) is a normal vector to the level surface F'(z,y, z)

= F(zo, Yo, 20)-

e Properties of the gradient

Theorem 13.52

Let F' be a function of three variables. If F' has continuous first partial deriva-
tives F,, F,, F, in a neighborhood of (z¢,%0,20) and (VF)(zo,%0,20) # 0, then
(VF)(xo,yo, 20) is perpendicular /normal to the level surface F(z,y, z) = F(xo, yo, 20)

at (o, Yo, 20). Moreover, the value of F' at (¢, yo, 20) increase most rapidly in the direc-

(VF) (o, yo, 20) (VF)(@o,yo, 20)
H(VF)(‘Q:07Z/07ZO)H H(VF)(.%'(),y(),Z())H’

where | - || denotes the length of the vector.

tion and decreases most rapidly in the direction —

Remark 13.53. The terminology “the value of f at (¢, yo, 20) increase most rapidly in the
direction w”, where w is a unit vector, means that the directional derivative (D, f)(xo, Yo, 20),

treated as a function of v, attains its maximum at v = wu.

Proof of Theorem 13.52. We have shown that (VF)(xg, yo, 20) is perpendicular to the level
surface F(x,y,z) = F(xo,yo,20), so it suffices to show that (D,F)(zo,yo,20) attains its

maximum at v = u. Nevertheless, by Theorem 13.51, we find that

(DoF)(z0, Yo, 20) = (VE) (20, Y0, 20) - v = |(VF)(0, Yo, 20) | cos b,

where 0 is the angle between (VF)(xg, yo,20) and v. Clearly (D,F)(zo, o, 20) attains its

maximum when 6 = 0 which shows that (D,F)(zo,vo, 20) attains its maximum at v =
(VF)(z0,%0, 20) =
I(VE) (o, Yo, 20) |




Similarly, for functions of two variables, we have the following
Let f be a function of two variables. If f has continuous first partial derivatives
f= and f, in a neighborhood of (z¢,y0) and (Vf)(zo,y0) # 0, then (Vf)(xo,yo) is
perpendicular/normal to the level curve f(z,y) = f(zo,vy0) at (xo,yo). Moreover,

(Vf)(ﬂ?o,y()) and

(V) (o, yo)|
where | - | denotes the length

the value of f at (xo,7p) increase most rapidly in the direction

(V£)(zo,90)
I(V f) (o, 90)]

decreases most rapidly in the direction —

of the vector.

Example 13.55. Find an equation of the normal line and the tangent plane to the paraboloid

1
-1 — 2 42
2 10(:154— )
at the point (1 1 1)
772

1 1 14
Let F(.T,y72’) =z—1+ T0<x2+4y2> Then FZ(1717§) = (

55
13.52 implies that the tangent plane of the given paraboloid at (1, 1, %) is

1) # 0; thus Theorem

3 1

4 4
D) —S(y—1D =2 —Zp—Zy.
(r—1) 5(y ) 5 5T Y

N | —
U] =

z =

. . Iy . .
An equation of the normal line at (1, 1, 5) is given by

z—1 y—1 2z-1/2
/5  4/5 1




	Tangent Planes and Normal Lines

