微積分 MA1002-A 上課筆記(精簡版) 2019.05.21.

Ching-hsiao Arthur Cheng 鄭經教

Chapter 14

Multiple Integration

14.1 Double Integrals and Volume

Let R be a closed and bounded region in the plane, and $f: R \to \mathbb{R}$ be a non-negative continuous function. We are interested in the volume of the solid in the space

$$D = \{(x, y, z) \mid (x, y) \in R, 0 \le z \le f(x, y)\}.$$

First we assume that $R = [a, b] \times [c, b] = \{(x, y) \mid a \leq x \leq b, c \leq y \leq d\}$ be a rectangle. Let $\mathcal{P}_x = \{a = x_0 < x_1 < x_2 < \dots < x_n = b\}$ and $\mathcal{P}_y = \{c = y_0 < y_1 < \dots < y_m = d\}$ be partitions of [a, b] and [c, d], respectively, R_{ij} denote the rectangle $[x_{i-1}, x_i] \times [y_{j-1}, y_j]$, and $\{(\alpha_i, \beta_j)\}_{1 \leq i \leq n, 1 \leq j \leq m}$ be a collection of points such that $\alpha_i \in [x_{i-1}, x_i]$ and $\beta_j \in [y_{j-1}, y_j]$. Then as before, we consider an approximation of the volume of D given by

$$\sum_{i=1}^{n} \sum_{j=1}^{m} f(\alpha_i, \beta_j)(x_i - x_{i-1})(y_j - y_{j-1}).$$

Then the limit of the sum above, as $\|\mathcal{P}_x\|$, $\|\mathcal{P}_y\|$ approaches zero, is the volume of D. The collection of rectangles $\mathcal{P} = \{R_{ij}\}_{1 \leq i \leq n, 1 \leq j \leq m}$ is called a partition of R.

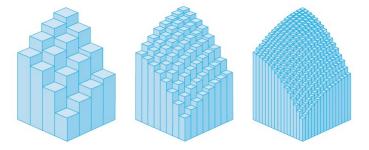


Figure 14.1: The volume of D can be obtained by making $\|\mathcal{P}_x\|, \|P_y\| \to 0$.

In general, by relabeling the rectangles as R_1, R_2, \dots, R_{nm} (thus $\mathcal{P} = \{R_k \mid 1 \leq k \leq nm\}$), and letting $\{(\xi_k, \eta_k)\}_{k=1}^{nm}$ be a collection of point in R such that $(\xi_k, \eta_k) \in R_k$, we can consider an approximation of the volume of the solid given by

$$\sum_{k=1}^{n} f(\xi_k, \eta_k) A_k \,,$$

where A_k is the area of the rectangle R_k . The sum above is called a **Riemann sum of** f for partition \mathcal{P} . With $\|\mathcal{P}\|$, called the norm of \mathcal{P} , denoting the maximum length of the diagonal of R_k ; that is,

 $\|\mathcal{P}\| = \max\left\{\ell_k \,\middle|\, \ell_k \text{ is the length of the diagonal of } R_k, 1 \leqslant k \leqslant nm\right\},$

then the volume of D is the "limit"

$$\lim_{\|\mathcal{P}\| \to 0} \sum_{k=1}^{n} f(\xi_k, \eta_k) A_k$$

as long as "the limit exists". Similar to the discussion of the limit of Riemann sums in the case of functions of one variable, we can remove the restrictions that f is continuous and non-negative on R and still consider the limit of the Riemann sums. We have the following

Definition 14.1

Let $R = [a, b] \times [c, d]$ be a rectangle in the plane, and $f : R \to \mathbb{R}$ be a function. f is said to be Riemann integrable on R if there exists a real number V such that for every $\varepsilon > 0$, there exists $\delta > 0$ such that if \mathcal{P} is partition of R satisfying $\|\mathcal{P}\| < \delta$, then any Riemann sums for the partition \mathcal{P} belongs to the interval $(V - \varepsilon, V + \varepsilon)$. Such a number V (is unique if it exists and) is called the **Riemann integral** or **double integral of** f **on** R and is denoted by $\iint f(x,y) \, dA$.