微積分 MA1002-A 上課筆記(精簡版) 2019.05.28.

Ching-hsiao Arthur Cheng 鄭經教

Suppose that $R = [a, b] \times [c, b] = \{(x, y) \mid a \leq x \leq b, c \leq y \leq d\}$ is a rectangular region in the plane, $f: R \to \mathbb{R}$ is a non-negative continuous function. Let $\mathcal{P}_x = \{a = x_0 < x_1 < x_2 < \dots < x_n = b\}$ and $\mathcal{P}_y = \{c = y_0 < y_1 < \dots < y_m = d\}$ be partitions of [a, b] and [c, d], respectively, and R_{ij} denote the rectangle $[x_{i-1}, x_i] \times [y_{j-1}, y_j]$. The collection of rectangles $\mathcal{P} = \{R_k \mid 1 \leq k \leq nm\}$ is called a partition of R. A Riemann sum of f for \mathcal{P} is of the form

$$\sum_{i=1}^{n} \sum_{j=1}^{m} f(\xi_{ij}, \eta_{ij}) A_{ij} ,$$

where $\{(\xi_{ij}, \eta_{ij})\}_{1 \leq i \leq n, 1 \leq j \leq m}$ is a collection of point in R such that $(\xi_{ij}, \eta_{ij}) \in R_{ij}$, and $A_{ij} = (x_i - x_{i-1})(y_j - y_{j-1})$ is the area of the rectangle R_{ij} . Define the norm of \mathcal{P} , denoted by $\|\mathcal{P}\|$, as the maximum length of the diagonal of R_{ij} .

Definition 14.1

Let $R = [a, b] \times [c, d]$ be a rectangle in the plane, and $f : R \to \mathbb{R}$ be a function. f is said to be Riemann integrable on R if there exists a real number V such that for every $\varepsilon > 0$, there exists $\delta > 0$ such that if \mathcal{P} is partition of R satisfying $\|\mathcal{P}\| < \delta$, then any Riemann sums of f for the partition \mathcal{P} belongs to the interval $(V - \varepsilon, V + \varepsilon)$. Such a number V (is unique if it exists and) is called the **Riemann integral** or **double integral of** f **on** R and is denoted by $\iint_{\mathbb{R}} f(x,y) \, dA$.

For general bounded region R in the plane, let r > 0 be such that $R \subseteq [-r, r]^2$, and we define $\iint_R f(x, y) dA$ as $\iint_{[-r, r]^2} \widetilde{f}(x, y) dA$, where \widetilde{f} is the zero extension of f.

Theorem 14.7: Fubini's Theorem

Let R be a region in the plane, and $f: R \to \mathbb{R}$ be continuous (but no necessary non-negative).

1. If R is given by $R = \{(x,y) \mid a \leqslant x \leqslant b, g_1(x) \leqslant y \leqslant g_2(x)\}$, then

$$\iint_{R} f(x,y) dA = \int_{a}^{b} \left(\int_{g_{1}(x)}^{g_{2}(x)} f(x,y) dy \right) dx.$$

2. If R is given by $R = \{(x,y) \mid c \leq y \leq d, g_1(x) \leq y \leq g_2(x)\}$, then

$$\iint_{B} f(x,y) dA = \int_{c}^{d} \left(\int_{h_{1}(y)}^{h_{2}(y)} f(x,y) dx \right) dy.$$

Example 14.8. Find the volume of the solid region bounded by the paraboloid $z = 4 - x^2 - 2y^2$ and the xy-plane. By the definition of double integrals, the volume of this solid is given by $\iint_R (4 - x^2 - 2y^2) dA$, where R is the region $\{(x,y) \mid x^2 + 2y^2 \le 4\}$. Writing R as

$$R = \left\{ (x,y) \mid -2 \leqslant x \leqslant 2, -\sqrt{\frac{4-x^2}{2}} \leqslant y \leqslant \sqrt{\frac{4-x^2}{2}} \right\}$$

or

$$R = \{(x,y) \mid -\sqrt{2} \le y \le \sqrt{2}, -\sqrt{4-2y^2} \le x \le \sqrt{4-2y^2} \}$$

the Fubini Theorem then implies that

$$\iint_{R} (4 - x^{2} - 2y^{2}) dA = \int_{-2}^{2} \left(\int_{-\sqrt{\frac{4 - x^{2}}{2}}}^{\sqrt{\frac{4 - x^{2}}{2}}} (4 - x^{2} - 2y^{2}) dy \right) dx$$
$$= \int_{-\sqrt{2}}^{\sqrt{2}} \left(\int_{-\sqrt{4 - 2y^{2}}}^{\sqrt{4 - 2y^{2}}} (4 - x^{2} - 2y^{2}) dx \right) dy.$$

1. Integrating in y first then integrating in x: for fixed $x \in [-2, 2]$

$$\int_{-\sqrt{\frac{4-x^2}{2}}}^{\sqrt{\frac{4-x^2}{2}}} (4-x^2-2y^2) \, dy = \int_{-\sqrt{\frac{4-x^2}{2}}}^{\sqrt{\frac{4-x^2}{2}}} (4-x^2) \, dy - 2 \int_{-\sqrt{\frac{4-x^2}{2}}}^{\sqrt{\frac{4-x^2}{2}}} y^2 \, dy$$
$$= \sqrt{2} (4-x^2)^{\frac{3}{2}} - \frac{4}{3} \left(\sqrt{\frac{4-x^2}{2}}\right)^3 = \frac{2\sqrt{2}}{3} (4-x^2)^{\frac{3}{2}} \, .$$

Therefore, by the substitution $x = 2\sin\theta$ (so that $dx = 2\cos\theta d\theta$),

$$\iint_{R} (4 - x^{2} - 2y^{2}) dA = \frac{2\sqrt{2}}{3} \int_{-2}^{2} (4 - x^{2})^{\frac{3}{2}} dx = \frac{2\sqrt{2}}{3} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 8 \cos^{3} \theta \cdot 2 \cos \theta d\theta$$

$$= \frac{32\sqrt{2}}{3} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^{4} \theta d\theta = \frac{64\sqrt{2}}{3} \int_{0}^{\frac{\pi}{2}} \cos^{4} \theta d\theta$$

$$= \frac{64\sqrt{2}}{3} \int_{0}^{\frac{\pi}{2}} \left(\frac{1 + \cos 2\theta}{2}\right)^{2} d\theta$$

$$= \frac{16\sqrt{2}}{3} \int_{0}^{\frac{\pi}{2}} \left(1 + 2\cos 2\theta + \frac{1 + \cos 4\theta}{2}\right) d\theta$$

$$= \frac{16\sqrt{2}}{3} \left[\frac{3}{2} \cdot \frac{\pi}{2} + \sin\left(2 \cdot \frac{\pi}{2}\right) + \frac{1}{8}\sin\left(4 \cdot \frac{\pi}{2}\right)\right] = 4\sqrt{2}\pi.$$

2. Integrating in x first then integrating in y: for fixed $y \in [-\sqrt{2}, \sqrt{2}]$

$$\int_{-\sqrt{4-2y^2}}^{\sqrt{4-2y^2}} (4-x^2-2y^2) \, dx = \int_{-\sqrt{4-2y^2}}^{\sqrt{4-2y^2}} (4-2y^2) \, dx - \int_{-\sqrt{4-2y^2}}^{\sqrt{4-2y^2}} x^2 \, dx$$
$$= 2(4-2y^2)^{\frac{3}{2}} - \frac{2}{3}(4-2y^2)^{\frac{3}{2}} = \frac{4}{3}(4-2y^2)^{\frac{3}{2}};$$

thus by the substitution of variable $y = \sqrt{2} \sin \theta$ (so that $dy = \sqrt{2} \cos \theta \, d\theta$),

$$\iint_{R} (4 - x^{2} - 2y^{2}) dA = \frac{4}{3} \int_{-\sqrt{2}}^{\sqrt{2}} (4 - 2y^{2})^{\frac{3}{2}} dy = \frac{4}{3} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 8 \cos^{3} \theta \cdot \sqrt{2} \cos \theta d\theta$$
$$= \frac{32\sqrt{2}}{3} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^{4} \theta d\theta = \frac{64\sqrt{2}}{3} \int_{0}^{\frac{\pi}{2}} \cos^{4} \theta d\theta = 4\sqrt{2}\pi.$$

Example 14.9. Find the volume of the solid region bounded above by the paraboloid $z = 1 - x^2 - y^2$ and below by the plane z = 1 - y.

Let R be the region in the plane whose boundary points (x,y) satisfies $1-x^2-y^2=1-y$ or equivalently, $x^2+y^2-y=0$. Then the volume of the solid described above is given by $\iint_R \left[(1-x^2-y^2)-(1-y) \right] dA.$ Note that the region R is a disk centered at $\left(0,\frac{1}{2}\right)$ with radius $\frac{1}{2}$ and can be written as

$$R = \{(x,y) \mid 0 \le y \le 1, -\sqrt{y-y^2} \le x \le \sqrt{y-y^2} \}$$

Therefore,

$$\iint_{R} \left[(1 - x^2 - y^2) - (1 - y) \right] dA = \int_{0}^{1} \left(\int_{-\sqrt{y - y^2}}^{\sqrt{y - y^2}} (y - x^2 - y^2) dx \right) dy$$

$$= \int_{0}^{1} \left(2(y - y^2)^{\frac{3}{2}} - \frac{2}{3}(y - y^2)^{\frac{3}{2}} \right) dy = \frac{4}{3} \int_{0}^{1} (y - y^2)^{\frac{3}{2}} dy = \frac{4}{3} \int_{0}^{1} \left[\frac{1}{4} - \left(y - \frac{1}{2} \right)^2 \right]^{\frac{3}{2}} dy.$$

Making the substitution of variable $y - \frac{1}{2} = \frac{1}{2}\sin\theta$ (so that $dy = \frac{1}{2}\cos\theta \,d\theta$),

$$\iint\limits_{R} \left[(1 - x^2 - y^2) - (1 - y) \right] dA = \frac{4}{3} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos^3 \theta}{8} \cdot \frac{1}{2} \cos \theta \, d\theta = \frac{1}{6} \int_{0}^{\frac{\pi}{2}} \cos^4 \theta \, d\theta = \frac{\pi}{32} \, .$$

Example 14.10. Find the iterated integral $\int_0^1 \left(\int_u^1 e^{-x^2} dx \right) dy$.

Let $R = \{(x,y) \mid 0 \le y \le 1, y \le x \le 1\}$. Since R can also be expressed as $R = \{(x,y) \mid 0 \le x \le 1, 0 \le y \le x\}$, by the Fubini Theorem we find that

$$\int_0^1 \left(\int_y^1 e^{-x^2} dx \right) dy = \iint_R e^{-x^2} dA = \int_0^1 \left(\int_0^x e^{-x^2} dy \right) dx = \int_0^1 x e^{-x^2} dx$$
$$= -\frac{1}{2} e^{-x^2} \Big|_{x=0}^{x=1} = \frac{1}{2} (1 - e^{-1}).$$

14.3 Surface Area

Let $R = [a, b] \times [c, d]$ be a rectangle in the plane, and $f : R \to \mathbb{R}$ be a continuously differentiable function. We are interested in the area of the surface

$$S = \{(x, y, z) \mid (x, y) \in R, z = f(x, y)\}.$$

Let $\mathcal{P} = \{R_{ij} \mid 1 \leqslant i \leqslant n, 1 \leqslant j \leqslant m\}$ be a partition of R. Partition each rectangle $R_{ij} = [x_{i-1}, x_i] \times [y_{j-1}, y_j]$ into two triangles Δ^1_{ij} and Δ^2_{ij} , where Δ^1_{ij} has vertices (x_{i-1}, y_{j-1}) , $(x_i, y_{j-1}), (x_{i-1}, y_j)$ and Δ^2_{ij} has vertices $(x_i, y_j), (x_{i-1}, y_j), (x_i, y_{j-1})$. Then intuitively, the area of the surface $f(\Delta^1_{ij})$ can be approximated by the area of the triangle T^1_{ij} with vertices $(x_{i-1}, y_{j-1}, f(x_{i-1}, y_{j-1})), (x_i, y_{j-1}, f(x_i, y_{j-1}))$ and $(x_i, y_j, f(x_i, y_j))$, while the area of the surface $f(\Delta^2_{ij})$ can be approximated by the area of the triangle T^2_{ij} with vertices $(x_i, y_j, f(x_i, y_j)), (x_{i-1}, y_j, f(x_{i-1}, y_j))$ and $(x_i, y_{j-1}, f(x_i, y_{j-1}))$. Therefore, the area of the surface $f(R_{ij})$ can be approximated by the sum of area of triangles T^1_{ij} and T^2_{ij} , and the area of the surface S can be approximated by the sum of the area of the triangles T^1_{ij} and T^2_{ij} , where is sum is taken over all $1 \leqslant i \leqslant n$ and $1 \leqslant j \leqslant m$.