微積分 MA1002-A 上課筆記(精簡版) 2019.06.06.

Ching-hsiao Arthur Cheng 鄭經斅

Let Q be a bounded region in the space, and $f: Q \to \mathbb{R}$ be a non-negative function which described the point density of the region. We are interested in the mass of Q.

We start with the simple case that $Q = [a, b] \times [c, d] \times [r, s]$ is a cube. Let

$$\mathcal{P}_x = \{ a = x_0 < x_1 < \dots < x_n = b \},$$

$$\mathcal{P}_y = \{ c = y_0 < y_1 < \dots < y_m = d \},$$

$$\mathcal{P}_z = \{ r = z_0 < z_1 < \dots < z_p = s \},$$

be partitions of [a, b], [c, d], [r, s], respectively, and \mathcal{P} be a collection of non-overlapping cubes given by

$$\mathcal{P} = \left\{ R_{ijk} \, \middle| \, R_{ijk} = [x_{i-1}, x_i] \times [y_{j-1}, y_j] \times [z_{k-1}, z_k], 1 \leqslant i \leqslant n, 1 \leqslant j \leqslant m, 1 \leqslant k \leqslant p \right\}.$$

Such a collection \mathcal{P} is called a partition of Q, and the norm of \mathcal{P} is the maximum of the length of the diagonals of all R_{ijk} ; that is

$$\|\mathcal{P}\| = \max \left\{ \sqrt{(x_i - x_{i-1})^2 + (y_j - y_{j-1})^2 + (z_k - z_{k-1})^2} \,\middle|\, 1 \leqslant i \leqslant n, 1 \leqslant j \leqslant m, 1 \leqslant k \leqslant p \right\}.$$

A Riemann sum of f for this partition \mathcal{P} is given by

$$\sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{k=1}^{p} f(\xi_{ijk}, \eta_{ijk}, \zeta_{ijk})(x_i - x_{i-1})(y_j - y_{j-1})(z_k - z_{k-1}),$$

where $\{(\xi_{ijk}, \eta_{ijk}, \zeta_{ijk})\}_{1 \leq i \leq n, 1 \leq j \leq m, 1 \leq k \leq p}$ is a collection of points satisfying $(\xi_{ijk}, \eta_{ijk}, \zeta_{ijk}) \in Q_{ijk}$ for all $1 \leq i \leq n, 1 \leq j \leq m$ and $1 \leq k \leq p$. The mass of Q then should be the "limit" of Riemann sums as $\|\mathcal{P}\|$ approaches zero. In general, we can remove the restrictions that f is non-negative on R and still consider the limit of the Riemann sums. We have the following

Theorem 14.14

Let $Q = [a, b] \times [c, d] \times [r, s]$ be a cube in the space, and $f : Q \to \mathbb{R}$ be a function. f is said to be Riemann integrable on Q if there exists a real number I such that for every $\varepsilon > 0$, there exists $\delta > 0$ such that if \mathcal{P} is a partition of Q satisfying $\|\mathcal{P}\| < \delta$, then any Riemann sum of f for \mathcal{P} belongs to $(I - \varepsilon, I + \epsilon)$. Such a number I (is unique if it exists and) is called the **Riemann integral** or **triple integral of** f **on** Q and is denoted by $\iiint f(x, y, z) \, dV$.

For general bounded region Q in the space, let r > 0 be such that $Q \subseteq [-r, r]^3$, and we

define $\iiint\limits_Q f(x,y,z)\,dV$ as $\iiint\limits_{[-r,r]^3} \widetilde{f}(x,y,z)\,dV$, where \widetilde{f} is the zero extension of f given by

$$\widetilde{f}(x,y,z) = \left\{ \begin{array}{ll} f(x,y,z) & \text{if } (x,y,z) \in R, \\ 0 & \text{if } (x,y,z) \notin R. \end{array} \right.$$

Some of the properties of double integrals in Theorem 14.4 can be restated in terms of triple integrals.

1.
$$\iiint\limits_{Q}(cf)(x,y,z)\,dV=c\iiint\limits_{Q}f(x,y,z)\,dV \text{ for all Riemann integrable function } f.$$

2.
$$\iiint\limits_{Q}(f+g)(x,y,z)\,dV=\iiint\limits_{Q}f(x,y,z)\,dV+\iiint\limits_{Q}g(x,y,z)\,dV \text{ for all Riemann integrable functions } f,g.$$

3.
$$\iiint\limits_{Q_1\cup Q_2} f(x,y,z)\,dV = \iiint\limits_{Q_1} f(x,y,z)\,dV + \iiint\limits_{Q_2} f(x,y,z)\,dV \text{ for all "non-overlapping"}$$
 solid regions Q_1 and Q_2 and Riemann integrable function f .

Similar to Fubini's Theorem for the evaluation of double integrals, we have the following

Theorem 14.15: Fubini's Theorem

Let Q be a region in the space, and $f: Q \to \mathbb{R}$ be continuous. If Q is given by $Q = \{(x, y, z) \mid (x, y) \in R, g_1(x, y) \leq z \leq g_2(x, y)\}$ for some region R in the xy-plane, then (f is Riemann integrable on Q and)

$$\iiint\limits_{O} f(x,y,z) dV = \iint\limits_{R} \left(\int_{g_1(x,y)}^{g_2(x,y)} f(x,y,z) dz \right) dA.$$

In particular, if R is expressed by $R = \{(x,y) \mid a \leq x \leq b, h_1(x) \leq y \leq h_2(y)\}$, then

$$\iiint\limits_{Q} f(x,y,z) \, dV = \int_{a}^{b} \left[\int_{h_{1}(x)}^{h_{2}(x)} \left(\int_{g_{1}(x,y)}^{g_{2}(x,y)} f(x,y,z) \, dz \right) dy \right] dx \, .$$

The integral which appears in the right-hand side of the last line of the theorem above is also an iterated integral.

Example 14.16. Find the volume of the region Q bounded below by the paraboloid $z = x^2 + y^2$ and above by the sphere $x^2 + y^2 + z^2 = 6$.

Suppose Q is a solid region in the space with uniform density 1 (or say, this region is occupied by water). Then the volume of Q is identical to the mass (in terms of its numerical value); thus we find that the volume of Q is given by $\iiint_Q 1 \, dV$. To apply the Fubini Theorem,

we need to express Q as $\{(x,y,z) \mid (x,y) \in R, g_1(x,y) \leq z \leq g_2(x,y)\}$. Nevertheless, if R is the bounded region in the plane enclosed by the curve $(x^2 + y^2)^2 + x^2 + y^2 = 6$ (which in fact gives $x^2 + y^2 = 2$), then

$$Q = \left\{ (x, y, z) \, \middle| \, (x, y) \in R, x^2 + y^2 \leqslant z \leqslant \sqrt{6 - x^2 - y^2} \right\}$$

and the Fubini Theorem implies that

the volume of
$$Q = \int_{R} \left(\int_{x^2+y^2}^{\sqrt{6-x^2-y^2}} 1 \, dz \right) dA$$
.

Solving for R, we find that $R = \{(x,y) \mid -\sqrt{2} \le x \le \sqrt{2}, -\sqrt{2-x^2} \le y \le \sqrt{2-x^2}\}$; thus by the Fubini Theorem we find that

the volume of
$$Q = \int_{-\sqrt{2}}^{\sqrt{2}} \left[\int_{-\sqrt{2-x^2}}^{\sqrt{2-x^2}} \left(\int_{x^2+y^2}^{\sqrt{6-x^2-y^2}} 1 \, dz \right) dy \right] dx$$
.

Example 14.17. Evaluate $\int_0^{\sqrt{\pi/2}} \left[\int_x^{\sqrt{\pi/2}} \left(\int_1^3 \sin(y^2) \, dz \right) dy \right] dx.$

Let $R = \{(x,y) \mid 0 \le x \le \sqrt{\pi/2}, x \le y \le \sqrt{\pi/2}\}$, then the domain of integration is given by

$$Q = \left\{ (x, y, z) \,\middle|\, 0 \leqslant x \leqslant \sqrt{\pi/2}, x \leqslant y \leqslant \sqrt{\pi/2}, 1 \leqslant z \leqslant 3 \right\}$$

and the iterated integral given above is the triple integral $\iiint_{Q} \sin(y^2) dV$.

Since R can also be expressed as $R = \{(x,y) \mid 0 \le y \le \sqrt{\pi/2}, 0 \le x \le y\}$, by the Fubini Theorem we find that

$$\int_0^{\sqrt{\pi/2}} \left[\int_x^{\sqrt{\pi/2}} \left(\int_1^3 \sin(y^2) \, dz \right) dy \right] dx = \iiint_Q \sin(y^2) \, dV$$

$$= \int_0^{\sqrt{\pi/2}} \left[\int_0^y \left(\int_1^3 \sin(y^2) \, dz \right) dx \right] dy = \int_0^{\sqrt{\pi/2}} 2y \sin(y^2) \, dy = -\cos(y^2) \Big|_{y=0}^{y=\sqrt{\pi/2}} = 1 \, .$$

Example 14.18. Compute the iterated integrals

$$\int_{0}^{6} \left[\int_{\frac{z}{2}}^{3} \left(\int_{\frac{z}{2}}^{y} dx \right) dy \right] dz + \int_{0}^{6} \left[\int_{3}^{\frac{12-z}{2}} \left(\int_{\frac{z}{2}}^{6-y} dx \right) dy \right] dz,$$

then write the sum above as a single iterated integral in the order dydzdx and dzdydx.

We compute the two integrals above as follows:

$$\int_{0}^{6} \left[\int_{\frac{z}{2}}^{3} \left(\int_{\frac{z}{2}}^{y} dx \right) dy \right] dz = \int_{0}^{6} \left[\int_{\frac{z}{2}}^{3} \left(y - \frac{z}{2} \right) dy \right] dz = \int_{0}^{6} \left(\frac{y^{2} - yz}{2} \Big|_{y = \frac{z}{2}}^{y = 3} \right) dz$$
$$= \frac{1}{2} \int_{0}^{6} \left(9 - 3z + \frac{z^{2}}{4} \right) dz = \frac{1}{2} \left(9z - \frac{3z^{2}}{2} + \frac{z^{3}}{12} \right) \Big|_{z=0}^{z=6} = 9,$$

and

$$\int_{0}^{6} \left[\int_{3}^{\frac{12-z}{2}} \left(\int_{\frac{z}{2}}^{6-y} dx \right) dy \right] dz = \int_{0}^{6} \left[\int_{3}^{\frac{12-z}{2}} \left(6 - y - \frac{z}{2} \right) dy \right] dz$$

$$= \frac{1}{2} \int_{0}^{6} \left(12y - y^{2} - yz \right) \Big|_{y=3}^{y=\frac{12-z}{2}} dz$$

$$= \frac{1}{2} \int_{0}^{6} \left[6(12-z) - \frac{144 - 24z + z^{2}}{4} - \frac{(12-z)z}{2} - 36 + 9 + 3z \right) dz$$

$$= \frac{1}{2} \int_{0}^{6} \left(72 - 6z - 36 + 6z - \frac{z^{2}}{4} - 6z + \frac{z^{2}}{2} - 27 + 3z \right) dz$$

$$= \frac{1}{2} \int_{0}^{6} \left(9 - 3z + \frac{z^{2}}{4} \right) dz = \frac{1}{2} \left(9z - \frac{3z^{2}}{2} + \frac{z^{3}}{12} \right) \Big|_{z=0}^{z=6} = 9.$$

Therefore, the sum of the two integrals is 18.

Let

$$Q_{1} = \left\{ (x, y, z) \middle| 0 \leqslant z \leqslant 6, \frac{z}{2} \leqslant y \leqslant 3, \frac{z}{2} \leqslant x \leqslant y \right\},$$

$$Q_{2} = \left\{ (x, y, z) \middle| 0 \leqslant z \leqslant 6, 3 \leqslant y \leqslant \frac{12 - z}{2}, \frac{z}{2} \leqslant x \leqslant 6 - y \right\}.$$

Then the Fubini Theorem implies that

$$\int_{0}^{6} \left[\int_{\frac{z}{2}}^{3} \left(\int_{\frac{z}{2}}^{y} dx \right) dy \right] dz = \iiint_{Q_{1}} dV, \qquad \int_{0}^{6} \left[\int_{3}^{\frac{12-z}{2}} \left(\int_{\frac{z}{2}}^{6-y} dx \right) dy \right] dz = \iiint_{Q_{2}} dV.$$

Let $Q = Q_1 \cup Q_2$. Since Q_1 and Q_2 are non-overlapping solid regions (their intersection is a subset of the plane y = 3). Then

$$\iiint\limits_{Q_1} dV + \iiint\limits_{Q_2} dV = \iiint\limits_{Q} dV.$$

1. Let R be the projection of Q onto the xz-plane. Then $R = \{(x,z) \mid 0 \le x \le 3, 0 \le z \le 2x\}$ (where z = 2x is the projection of the plane $x = \frac{z}{2}$ onto the xz-plane), and Q can also be expressed as

$$Q = \{(x, y, z) \mid (x, z) \in R, x \le y \le 6 - x\}.$$

Therefore, the volume of Q is given by

$$\int_0^3 \left[\int_0^{2x} \left(\int_x^{6-x} dy \right) dz \right] dx = \int_0^3 \left[\int_0^{2x} (6-2x) dz \right] dx$$
$$= \int_0^3 2x (6-2x) dx = \left(6x^2 - \frac{4x^3}{3} \right) \Big|_{x=0}^{x=3} = 54 - 36 = 18.$$

2. Let S be the projection of Q onto the xy-plane. Then $S=\big\{(x,y)\,\big|\,0\leqslant x\leqslant 3, x\leqslant y\leqslant 6-x\big\},$ and Q can also be expressed as

$$Q = \{(x, y, z) \mid (x, y) \in S, 0 \le z \le 2x\}.$$

Therefore, the volume of Q is given by

$$\int_0^3 \left[\int_x^{6-x} \left(\int_0^{2x} dz \right) dy \right] dx = \int_0^3 \left[\int_x^{6-x} 2x \, dy \right] dx = \int_0^3 2x (6-2x) \, dx = 18 \, .$$