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Let @ be a bounded region in the space, and f : ) — R be a non-negative function
which described the point density of the region. We are interested in the mass of Q.

We start with the simple case that @) = [a,b] x [¢,d] x [r, s] is a cube. Let

P.={a=xg<mz < - <x, =0},
Py={c=yw <y < <ym=d},

P.={r=z<zn<--<z, =5},

be partitions of [a,b], [c,d], [r,s], respectively, and P be a collection of non-overlapping

cubes given by
P = {Riji| Riji = [mim1, ] % [yj—1, ;] ¥ [ze-1, 26, 1 <i<n,1<j<m,1<k<p}.

Such a collection P is called a partition of ), and the norm of P is the maximum of the

length of the diagonals of all R;;;; that is

1P| = maX{\/(l’i —xi)?+ (Y — Y1) (e — )P |1 <i<n 1l <j<m,l<k< p} :

A Riemann sum of f for this partition P is given by

Z Z D F e mies G (i — wim0) (= yj1) (26 — 251

where {(&jk,mjk, Cijk)}lgign,lgjgm,Kkgp is a collection of points satisfying (&;k, Mijk, Cijk) €
Qijp forall 1 <7< n, 1 <j<mandl <k < p. The mass of ) then should be the
“limit” of Riemann sums as |P| approaches zero. In general, we can remove the restrictions
that f is non-negative on R and still consider the limit of the Riemann sums. We have the
following

Let @ = [a,b] x [c,d] x [r, s] be a cube in the space, and f : @ — R be a function. f is
said to be Riemann integrable on () if there exists a real number I such that for every
e > 0, there exists § > 0 such that if P is a partition of @ satisfying |P| < J, then
any Riemann sum of f for P belongs to (I — e, I + €). Such a number [ (is unique if

it exists and) is called the Riemann integral or triple integral of f on () and is

denoted by ijf(a:, y,z)dV.
Q

For general bounded region @ in the space, let r > 0 be such that Q < [~r,7]3, and we



define Jf f(z,y,z)dV as Jf f x,y, z)dV, where f is the zero extension of f given by

[=rr]3

flz,y,2) if (z,y,2) € R,

f(x,y,z>={ 0 if(z,4,2) ¢ R.

Some of the properties of double integrals in Theorem 14.4 can be restated in terms of

triple integrals.

L. Jff(cf)(x, y,z)dV = cJJff(a:, y,z)dV for all Riemann integrable function f.
Q Q

2. JJ (f+9)(z,y,2)dV = JJ flz,y,2)dV + fijg(x,y, z)dV for all Riemann inte-

grable functions f,g.

JJJ flz,y,2)dV = ffff x,y,z)dV + ffff x,y,z)dV for all “non-overlapping”

Q1uQ2
solid regions (); and Q2 and Riemann mtegrable function f.

Similar to Fubini’s Theorem for the evaluation of double integrals, we have the following

Theorem 14.15: Fubini’s Theorem

Let ) be a region in the space, and f : @ — R be continuous. If @) is given by

Q= {(z,y,2 ! z,y) € R, g1(z,y) < 2z < ga(z,y)} for some region R in the zy-plane,

then (f is Riemann integrable on Q and)

m]fxy )dV = H JQQW :cy,z)dz)dA.

In particular, if R is expressed by R = {(z,y {a <z <bh(z) <y < ha(y)}, then

ﬂ fla,y, 2)dV = Lb H:(()) (ng,y) fla,y, 2) dz> dy] dr |
Q

91(,y)

The integral which appears in the right-hand side of the last line of the theorem above

is also an iterated integral.

Example 14.16. Find the volume of the region ) bounded below by the paraboloid z =
22 + y* and above by the sphere 22 + y? + 2% = 6.



Suppose @ is a solid region in the space with uniform density 1 (or say, this region is

occupied by water). Then the volume of @) is identical to the mass (in terms of its numerical

value); thus we find that the volume of () is given by j j 1dV. To apply the Fubini Theorem,

Q
we need to express Q as {(z,y,2) | (z,y) € R, g1(z,y) < z < g2(z,y)}. Nevertheless, if R is
the bounded region in the plane enclosed by the curve (22 + 4?)? + 2% + y? = 6 (which in
fact gives 2% + y? = 2), then

Q={(z,y,2)|(z.y) e B2’ + > < 2 < /6 — 2% — 32}

and the Fubini Theorem implies that

4/ 6—x2—y2
the volume of ) = J (J 1 dz) dA .
R

2 +y2

Solving for R, we find that R = {(z,y) ’ — V2 <2 <V2, V2 — 2% <y < V2 —2?}; thus

by the Fubini Theorem we find that

V2—z2 6— zgfy
the volume of @ = f J f 1 dz) dy] dz .
2

+y?

J ( f sin(y?) d= ) dy| dr.

Let R = {(x,y)]O Sz < A7m/2)x <y < /7 }, then the domain of integration is
given by

Example 14.17. Evaluate J

Q= {(a:,y,z)‘()é:cé\/7r/2,x<y<«/7r/2,1 <z<3}

and the iterated integral given above is the triple integral f f f sin(y?) dV.

Since R can also be expressed as R = { x,y) ’ Sy</n/2,0< 2 < y}, by the Fubini
Theorem we find that

Jom [Lm (f sin(y”) dZ) d?/] dr = Jﬂ sin(y?

_ Lm on (f sin(y?) dz)da;} dy = fm 2y sin(y?) dy = — cos(y?) VR

1 0 y=0



Example 14.18. Compute the iterated integrals

f ”j (de)dy}dzjuf U;? (J;ydx>dy]dz,

then write the sum above as a single iterated integral in the order dydzdxr and dzdydz.

y=3
) dz
y=%

We compute the two integrals above as follows:

f [E (Jgdm>dy]dz:f()6 [E (y—g)dy}dzzf <y22yz

1 (° 22 1 322 23\ |77
_L (9-32+ ) de=5(92— "o+ 3)
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and

6 . 2 B
[ 612 2) - 14 et (2UE 3649432 dz
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(72—6z—36+6z—z—6z+5—27+3z)dz

(-

(-

2=6
=9.
z=0
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[

22 1 322 23
0 (9—3z+z)dz_§(9z—7+ﬁ)

Therefore, the sum of the two integrals is 18.
Let

Ql = {(x,y,Z)‘O<Z<6,

Q?Z {(:B,y,Z)‘O<Z<6,

Then the Fubini Theorem implies that

f U; (Edw)dy]d;:: gjdm f [Lu'; <J;_ydx>dy]d22£{fdv,

Let @ = Q1 U Q2. Since 1 and @)y are non-overlapping solid regions (their intersection is

a subset of the plane y = 3). Then

gjdmgfdvzjﬂdv.



1. Let R be the projection of ) onto the xz-plane. Then R = {(m,z) ‘ 0<zx<30<
z < 2:6} (where z = 2x is the projection of the plane z = % onto the zz-plane), and

(@ can also be expressed as
Q={(z.y,2)|(z,2) e Rx <y<6—uz}.

Therefore, the volume of @) is given by

LU w02 ]

T

3 4]73
_ _ — 2 _ 7
—L 2x(6 — 2z) dx (6:1: 3 )

r=3
=54 —-36=18.
=0

2. Let S be the projection of @ onto the zy-plane. Then S = {(z,y) ‘ 0<z<3x

y<6— m}, and () can also be expressed as

N

Q= {(az,y,z)‘(w,y)eS,0<z<2x}.

Therefore, the volume of @) is given by

J: [Jﬁ—x (J:x dz>dy} dr = fog [J6_x 2 dy] dr = Lg 22(6 — 2z) dor = 18.
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