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Let Q be a bounded region in the space, and f : Q Ñ R be a non-negative function
which described the point density of the region. We are interested in the mass of Q.

We start with the simple case that Q = [a, b] ˆ [c, d] ˆ [r, s] is a cube. Let

Px = ta = x0 ă x1 ă ¨ ¨ ¨ ă xn = bu ,

Py = tc = y0 ă y1 ă ¨ ¨ ¨ ă ym = du ,

Pz = tr = z0 ă z1 ă ¨ ¨ ¨ ă zp = su ,

be partitions of [a, b], [c, d], [r, s], respectively, and P be a collection of non-overlapping
cubes given by

P =
␣

Rijk

ˇ

ˇRijk = [xi´1, xi] ˆ [yj´1, yj] ˆ [zk´1, zk], 1 ď i ď n, 1 ď j ď m, 1 ď k ď p
(

.

Such a collection P is called a partition of Q, and the norm of P is the maximum of the
length of the diagonals of all Rijk; that is

}P} = max
!
b

(xi ´ xi´1)2 + (yj ´ yj´1)2 + (zk ´ zk´1)2
ˇ

ˇ

ˇ
1 ď i ď n, 1 ď j ď m, 1 ď k ď p

)

.

A Riemann sum of f for this partition P is given by
n
ÿ

i=1

m
ÿ

j=1

p
ÿ

k=1

f(ξijk, ηijk, ζijk)(xi ´ xi´1)(yj ´ yj´1)(zk ´ zk´1) ,

where
␣

(ξijk, ηijk, ζijk)
(

1ďiďn,1ďjďm,1ďkďp
is a collection of points satisfying (ξijk, ηijk, ζijk) P

Qijk for all 1 ď i ď n, 1 ď j ď m and 1 ď k ď p. The mass of Q then should be the
“limit” of Riemann sums as }P} approaches zero. In general, we can remove the restrictions
that f is non-negative on R and still consider the limit of the Riemann sums. We have the
following
Theorem 14.14

Let Q = [a, b]ˆ [c, d]ˆ [r, s] be a cube in the space, and f : Q Ñ R be a function. f is
said to be Riemann integrable on Q if there exists a real number I such that for every
ε ą 0, there exists δ ą 0 such that if P is a partition of Q satisfying }P} ă δ, then
any Riemann sum of f for P belongs to (I ´ ε, I + ϵ). Such a number I (is unique if
it exists and) is called the Riemann integral or triple integral of f on Q and is

denoted by
¡

Q

f(x, y, z) dV .

For general bounded region Q in the space, let r ą 0 be such that Q Ď [´r, r]3, and we



define
¡

Q

f(x, y, z) dV as
¡

[´r,r]3

rf(x, y, z) dV , where rf is the zero extension of f given by

rf(x, y, z) =

"

f(x, y, z) if (x, y, z) P R ,

0 if (x, y, z) R R .

Some of the properties of double integrals in Theorem 14.4 can be restated in terms of
triple integrals.

1.
¡

Q

(cf)(x, y, z) dV = c

¡

Q

f(x, y, z) dV for all Riemann integrable function f .

2.
¡

Q

(f + g)(x, y, z) dV =

¡

Q

f(x, y, z) dV +

¡

Q

g(x, y, z) dV for all Riemann inte-

grable functions f, g.

3.
¡

Q1YQ2

f(x, y, z) dV =

¡

Q1

f(x, y, z) dV +

¡

Q2

f(x, y, z) dV for all “non-overlapping”

solid regions Q1 and Q2 and Riemann integrable function f .

Similar to Fubini’s Theorem for the evaluation of double integrals, we have the following
Theorem 14.15: Fubini’s Theorem

Let Q be a region in the space, and f : Q Ñ R be continuous. If Q is given by
Q =

␣

(x, y, z)
ˇ

ˇ (x, y) P R, g1(x, y) ď z ď g2(x, y)
(

for some region R in the xy-plane,
then (f is Riemann integrable on Q and)

¡

Q

f(x, y, z) dV =

ĳ

R

( ż g2(x,y)

g1(x,y)

f(x, y, z) dz
)
dA .

In particular, if R is expressed by R =
␣

(x, y)
ˇ

ˇ a ď x ď b, h1(x) ď y ď h2(y)
(

, then
¡

Q

f(x, y, z) dV =

ż b

a

[ ż h2(x)

h1(x)

( ż g2(x,y)

g1(x,y)

f(x, y, z) dz
)
dy

]
dx .

The integral which appears in the right-hand side of the last line of the theorem above
is also an iterated integral.

Example 14.16. Find the volume of the region Q bounded below by the paraboloid z =

x2 + y2 and above by the sphere x2 + y2 + z2 = 6.



Suppose Q is a solid region in the space with uniform density 1 (or say, this region is
occupied by water). Then the volume of Q is identical to the mass (in terms of its numerical
value); thus we find that the volume of Q is given by

¡

Q

1 dV . To apply the Fubini Theorem,

we need to express Q as
␣

(x, y, z)
ˇ

ˇ (x, y) P R, g1(x, y) ď z ď g2(x, y)
(

. Nevertheless, if R is
the bounded region in the plane enclosed by the curve (x2 + y2)2 + x2 + y2 = 6 (which in
fact gives x2 + y2 = 2), then

Q =
␣

(x, y, z)
ˇ

ˇ (x, y) P R, x2 + y2 ď z ď
a

6 ´ x2 ´ y2
(

and the Fubini Theorem implies that

the volume of Q =

ż

R

( ż ?
6´x2´y2

x2+y2
1 dz

)
dA .

Solving for R, we find that R =
␣

(x, y)
ˇ

ˇ ´
?
2 ď x ď

?
2,´

?
2 ´ x2 ď y ď

?
2 ´ x2

(

; thus
by the Fubini Theorem we find that

the volume of Q =

ż

?
2

´
?
2

[ ż ?
2´x2

´
?
2´x2

( ż ?
6´x2´y2

x2+y2
1 dz

)
dy

]
dx .

Example 14.17. Evaluate
ż

?
π/2

0

[ ż ?
π/2

x

( ż 3

1
sin(y2) dz

)
dy

]
dx.

Let R =
␣

(x, y)
ˇ

ˇ 0 ď x ď
a

π/2, x ď y ď
a

π/2
(

, then the domain of integration is
given by

Q =
␣

(x, y, z)
ˇ

ˇ 0 ď x ď
a

π/2, x ď y ď
a

π/2, 1 ď z ď 3
(

and the iterated integral given above is the triple integral
¡

Q

sin(y2) dV .

Since R can also be expressed as R =
␣

(x, y)
ˇ

ˇ 0 ď y ď
a

π/2, 0 ď x ď y
(

, by the Fubini
Theorem we find that
ż

?
π/2

0

[ ż ?
π/2

x

( ż 3

1

sin(y2) dz
)
dy

]
dx =

¡

Q

sin(y2) dV

=

ż

?
π/2

0

[ ż y

0

( ż 3

1

sin(y2) dz
)
dx

]
dy =

ż

?
π/2

0

2y sin(y2) dy = ´ cos(y2)
ˇ

ˇ

ˇ

y=
?

π/2

y=0
= 1 .



Example 14.18. Compute the iterated integrals
ż 6

0

[ ż 3

z
2

( ż y

z
2

dx
)
dy

]
dz +

ż 6

0

[ ż 12´z
2

3

( ż 6´y

z
2

dx
)
dy

]
dz ,

then write the sum above as a single iterated integral in the order dydzdx and dzdydx.
We compute the two integrals above as follows:

ż 6

0

[ ż 3

z

2

( ż y

z

2

dx
)
dy

]
dz =

ż 6

0

[ ż 3

z

2

(
y ´

z

2

)
dy

]
dz =

ż 6

0

(
y2 ´ yz

2

ˇ

ˇ

ˇ

y=3

y= z
2

)
dz

=
1

2

ż 6

0

(
9 ´ 3z +

z2

4

)
dz =

1

2

(
9z ´

3z2

2
+

z3

12

)ˇ
ˇ

ˇ

z=6

z=0
= 9 ,

and
ż 6

0

[ ż 12´z
2

3

( ż 6´y

z
2

dx
)
dy

]
dz =

ż 6

0

[ ż 12´z
2

3

(
6 ´ y ´

z

2

)
dy

]
dz

=
1

2

ż 6

0

(
12y ´ y2 ´ yz

)ˇ
ˇ

ˇ

y= 12´z
2

y=3
dz

=
1

2

ż 6

0

[
6(12 ´ z) ´

144 ´ 24z + z2

4
´

(12 ´ z)z

2
´ 36 + 9 + 3z

)
dz

=
1

2

ż 6

0

(
72 ´ 6z ´ 36 + 6z ´

z2

4
´ 6z +

z2

2
´ 27 + 3z

)
dz

=
1

2

ż 6

0

(
9 ´ 3z +

z2

4

)
dz =

1

2

(
9z ´

3z2

2
+

z3

12

)ˇ
ˇ

ˇ

z=6

z=0
= 9 .

Therefore, the sum of the two integrals is 18.
Let

Q1 =
!

(x, y, z)
ˇ

ˇ

ˇ
0 ď z ď 6,

z

2
ď y ď 3,

z

2
ď x ď y

)

,

Q2 =
!

(x, y, z)
ˇ

ˇ

ˇ
0 ď z ď 6, 3 ď y ď

12 ´ z

2
,
z

2
ď x ď 6 ´ y

)

.

Then the Fubini Theorem implies that
ż 6

0

[ ż 3

z
2

( ż y

z
2

dx
)
dy

]
dz =

¡

Q1

dV ,

ż 6

0

[ ż 12´z
2

3

( ż 6´y

z
2

dx
)
dy

]
dz =

¡

Q2

dV .

Let Q = Q1 Y Q2. Since Q1 and Q2 are non-overlapping solid regions (their intersection is
a subset of the plane y = 3). Then

¡

Q1

dV +

¡

Q2

dV =

¡

Q

dV .



1. Let R be the projection of Q onto the xz-plane. Then R =
␣

(x, z)
ˇ

ˇ 0 ď x ď 3, 0 ď

z ď 2x
(

(where z = 2x is the projection of the plane x =
z

2
onto the xz-plane), and

Q can also be expressed as

Q =
␣

(x, y, z)
ˇ

ˇ (x, z) P R, x ď y ď 6 ´ x
(

.

Therefore, the volume of Q is given by
ż 3

0

[ ż 2x

0

( ż 6´x

x

dy
)
dz

]
dx =

ż 3

0

[ ż 2x

0

(6 ´ 2x) dz
]
dx

=

ż 3

0

2x(6 ´ 2x) dx =
(
6x2 ´

4x3

3

)ˇ
ˇ

ˇ

x=3

x=0
= 54 ´ 36 = 18 .

2. Let S be the projection of Q onto the xy-plane. Then S =
␣

(x, y)
ˇ

ˇ 0 ď x ď 3, x ď

y ď 6 ´ x
(

, and Q can also be expressed as

Q =
␣

(x, y, z)
ˇ

ˇ (x, y) P S, 0 ď z ď 2x
(

.

Therefore, the volume of Q is given by
ż 3

0

[ ż 6´x

x

( ż 2x

0

dz
)
dy

]
dx =

ż 3

0

[ ż 6´x

x

2x dy
]
dx =

ż 3

0

2x(6 ´ 2x) dx = 18 .


