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14.5 Change of Variables Formula
In this section, we consider the version of substitution of variables in multiple integrals. We
have used the technique of substitution of variable to evaluate the iterated integrals in, for
example, Example 14.12 and 14.13; however, these substitutions of variable always assume
that other variables are independent of the new variable introduced by the substitution of
variable. We would like to investigate the effect of making a change of variables such as
x = r cos θ, y = r sin θ in computing the double integrals.

14.5.1 Double integrals in polar coordinates

We start our discussion with double integrals in polar coordinates. Suppose that R is the
shaded region shown in Figure 14.4 and f : R Ñ R is continuous.

Figure 14.3: Rectangle in polar coordinates

Then to compute the double integral
ĳ

R

f(x, y) dA using the Fubini theorem directly,

we need to divide R into three sub-regions R1, R2, R3 given by

R1 =
!

(x, y)
ˇ

ˇ

ˇ
ρ1 cosΘ2 ď x ď ρ2 cosΘ2,

b

ρ21 ´ x2 ď y ď x tanΘ2

)

,

R2 =
!

(x, y)
ˇ

ˇ

ˇ
ρ2 cosΘ2 ď x ď ρ1 cosΘ1,

b

ρ22 ´ x2 ď y ď

b

ρ21 ´ x2
)

,

R3 =
!

(x, y)
ˇ

ˇ

ˇ
ρ1 cosΘ1 ď x ď ρ2Θ2, x tanΘ1 ď y ď

b

ρ22 ´ x2
)

,

and write
ĳ

R

f(x, y) dA =

ĳ

R1

f(x, y) dA+

ĳ

R2

f(x, y) dA+

ĳ

R3

f(x, y) dA .



However, we know that the region R above is a rectangle in rθ-plane, where (r, θ) is the
polar coordinates on the plane. To be more precise, in polar coordinate the region R can be
expressed as R 1 ”

␣

(r, θ)
ˇ

ˇ ρ1 ď r ď ρ2,Θ1 ď θ ď Θ2u, which means that every point (x, y)

in R can be written as (r cos θ, r sin θ) for (r, θ) P R 1, and vice versa. One should expect
that it should be easier to write down the iterated integral for computing

ĳ

R

f(x, y) dA.

Let Pr = tρ1 = r0 ă r1 ă ¨ ¨ ¨ ă rn = ρ2u and Pθ = tΘ1 = θ0 ă θ1 ă ¨ ¨ ¨ ă θm = Θ2u

be partitions of [ρ1, ρ2] and [Θ1,Θ2], respectively, Rij = [ri´1, ri] ˆ [θj´1, θj] be rectangles
in the rθ-plane, Sij be the sub-region in the xy-plane corresponds to Rij under the polar
coordinate; that is,

Sij =
␣

(r cos θ, r sin θ)
ˇ

ˇ r P [ri´1, ri], θ P [θj´1, θj]
(

.

The collection P =
␣

Sij

ˇ

ˇ 1 ď i ď n, 1 ď j ď m
(

is called a partition of rectangles in polar
coordinates, and the norm of P , denoted by }P}, is the maximum diameter of Sij.

Figure 14.4: Rectangle in polar coordinates

A Riemann sum of f for partition P is of the form
n
ř

i=1

m
ř

j=1

f(ξij, ηij)|Sij|, where |Sij| is

the area of Sij and
␣

(ξij, ηij)
(

1ďiďn,1ďjďm
be collection of points satisfying (ξij, ηij) P Sij.

Then intuitively
ĳ

R

f(x, y) dA is the limit of Riemann sums of f for P as }P} approaches
zero.

To see the limit of Riemann sums, we choose a particular partition P and collection
␣

(ξij, ηij)
(

1ďiďn,1ďjďm
. We equally partition [ρ1, ρ2] and [Θ1,Θ2] into n and m sub-intervals.

Let ∆r =
ρ2 ´ ρ1

n
and ∆θ =

Θ2 ´ Θ1

m
, and ri = ρ1+i∆r and θj = Θ1+j∆θ, and ξij = ri cos θj

and ηij = ri sin θj. Noting that

|Sij| =
1

2
(r2i ´ r2i´1)(θj ´ θj´1) =

1

2
(ri + ri´1)∆r∆θ = ri∆r∆θ ´

1

2
∆r2∆θ ,



we find that
n
ÿ

i=1

m
ÿ

j=1

f(ξij, ηij)|Sij| =
n
ÿ

i=1

m
ÿ

j=1

f(ri cos θj, ri sin θj)ri∆r∆θ

´
∆r

2

n
ÿ

i=1

m
ÿ

j=1

f(ri cos θj, ri sin θj)∆r∆θ .

Let g(r, θ) = rf(r cos θ, r sin θ) and h(r, θ) = f(r cos θ, r sin θ), then
n
ÿ

i=1

m
ÿ

j=1

f(ξij, ηij)|Sij| =
n
ÿ

i=1

m
ÿ

j=1

g(ri, θj)∆r∆θ ´
∆r

2

n
ÿ

i=1

m
ÿ

j=1

h(ri, θj)∆r∆θ .

As n,m approach 8, we find that
n
ÿ

i=1

m
ÿ

j=1

g(ri, θj)∆r∆θ Ñ

ĳ

R 1

g(r, θ) d(r, θ) =

ĳ

R 1

f(r cos θ, r sin θ)r d(r, θ) ,

n
ÿ

i=1

m
ÿ

j=1

h(ri, θj)∆r∆θ Ñ

ĳ

R 1

h(r, θ) d(r, θ) =

ĳ

R 1

f(r cos θ, r sin θ) d(r, θ) ,

where the right-hand side integrals denotes the double integrals on the rectangle R 1. There-
fore, the limit of Riemann sums of f for P as }P} approaches zero is

ĳ

R 1

f(r cos θ, r sin θ)r d(r, θ) ;

thus
ĳ

R

f(x, y) d(x, y) =

ĳ

R 1

f(r cos θ, r sin θ)r d(r, θ) . (14.5.1)

14.5.2 Jacobian

Recall the substitution of variables formula for the integral of functions of one variable:
ż b

a

f
(
g(x)

)
g 1(x) dx =

ż g(b)

g(a)

f(u) du .

Suppose that g : [a, b] Ñ R is one-to-one. If g is increasing, then g 1 ě 0 and g([a, b]) =[
g(a), g(b)

]
; thus the formula above can be rewritten as

ż

g([a,b])

f(u) du =

ż

[a,b]

f(g(x))g 1(x) dx =

ż

[a,b]

f(g(x))
ˇ

ˇg 1(x)
ˇ

ˇ dx .



If g is decreasing, then g 1 ď 0 and g([a, b]) =
[
g(b), g(a)

]
; thus the formula above can be

written as
ż

g([a,b])

f(u) du = ´

ż

[a,b]

f(g(x))g 1(x) dx =

ż

[a,b]

f(g(x))
ˇ

ˇg 1(x)
ˇ

ˇ dx .

Therefore, in either cases we have a rewritten version of the substitution of variable formula
ż

g([a,b])

f(u) du =

ż

[a,b]

f(g(x))
ˇ

ˇg 1(x)
ˇ

ˇ dx .

In this section, we are concerned with the substitution of variable formula (usually called the
change of variables formula in the case of multiple integrals) for double and triple integrals,
here the substitution of variables is usually given by x = x(u, v), y = y(u, v) for the case
of double integrals and x = x(u, v, w), y = y(u, v, w), z = z(u, v, w) for the case of triple
integrals.

Consider the double integral
ĳ

R

f(x, y) dA. Suppose that we have the change of variables

x = x(u, v) and y = y(u, v), and the Fubini Theorem implies that the double integral can

be written as
ż ( ż

f(x, y) dy
)
dx, here we do not write the upper limit and lower limit

explicitly. Note the inner integral in the iterated integral is computed by assuming that y

is fixed. When x is a fixed constant, the relation x = x(u, v) gives a relation between u and
v, and the implicit differentiation provides that

du

dv
= ´

xv(u, v)

xu(u, v)

if xu ‰ 0. Making the substitution of the variable y = y(u, v) with u, v satisfying the relation
x = x(u, v), we find that

dy = yu(u, v)du+ yv(u, v)dv = yu(u, v)
du

dv
dv + yv(u, v)dv

=
xu(u, v)yv(u, v) ´ xv(u, v)yu(u, v)

xu(u, v)
dv ;

thus
ż

f(x, y) dy =

ż

f(x(u, v), y(u, v))
ˇ

ˇ

ˇ

xu(u, v)yv(u, v) ´ xv(u, v)yu(u, v)

xu(u, v)

ˇ

ˇ

ˇ
dv .



Therefore, the substitution of variable x = x(u, v), where “v is treated as a constant since
it has been integrated”, is

ż ( ż
f(x, y) dy

)
dx

=

ż ( ż
f(x(u, v), y(u, v))

ˇ

ˇ

ˇ

xu(u, v)yv(u, v) ´ xv(u, v)yu(u, v)

xu(u, v)

ˇ

ˇ

ˇ
dv

)
ˇ

ˇxu(u, v)
ˇ

ˇ du

=

ż ( ż
f(x(u, v), y(u, v))

ˇ

ˇxu(u, v)yv(u, v) ´ xv(u, v)yu(u, v)
ˇ

ˇ dv
)
du . (14.5.2)

Example 14.19. Consider the change of variables using polar coordinate x = r cos θ,
y = r sin θ (treat r, θ as the u, v variables, respectively). Then

|xuyv ´ xvyu| = | cos θ ¨ r cos θ ´ (´r sin θ) ¨ sin θ| = |r| = r ;

thus (14.5.2) implies the change of variables formula for polar coordinates (14.5.1).

Now we consider the possible change of variables formula for triple integrals. Suppose
that by the Fubini Theorem,

¡

Q

f(x, y, z) dV =

ż [ ż ( ż
f(x, y, z) dz

)
dy

]
dx ,

where again we do not state explicitly the upper and the lower limit of each integral. For a
given change of variables x = x(u, v, w), y = y(u, v, w) and z = z(u, v, w), the first integral
that we need to evaluate is

ż

f(x, y, z) dz, and this integral is computed by assuming that

x, y are fixed constants. When x and y are fixed constants, the relations x = x(u, v, w) and
y = y(u, v, w) give relations among u, v, w. Suppose that these relations imply that u and v

are differentiable functions of w, then the implicit differentiation (when applicable) provides
that

0 = xu(u, v, w)
du

dw
+ xv(u, v, w)

dv

dw
+ xw(u, v, w) ,

0 = yu(u, v, w)
du

dw
+ yv(u, v, w)

dv

dw
+ yw(u, v, w) ;

thus if xuyv ´ xvyu ‰ 0, we have
du

dw
=

xv(u, v, w)yw(u, v, w) ´ xw(u, v, w)yv(u, v, w)

xu(u, v, w)yv(u, v, w) ´ xv(u, v, w)yu(u, v, w)
,

dv

dw
=

xw(u, v, w)yu(u, v, w) ´ xu(u, v, w)yw(u, v, w)

xu(u, v, w)yv(u, v, w) ´ xv(u, v, w)yu(u, v, w)
,



and these identities further imply that

dz = zu(u, v, w)du+ zv(u, v, w)dv + zw(u, v, w)dw

=
[
zu

xvyw ´ xwyv
xuyv ´ xvyu

+ zv
xwyu ´ xuyw
xuyv ´ xvyu

+ zw

]
(u, v, w)dw

=
[xvywzu ´ xwyvzu + xwyuzv ´ xuywzv + xuyvzw ´ xvyuzw

xuyv ´ xvyu

]
(u, v, w)dw .

Therefore,
ż

f(x, y, z) dz =

ż

f(x(u, v, w), y(u, v, w), z(u, v, w))ˆ

ˆ

ˇ

ˇ

ˇ

xvywzu´xwyvzu+xwyuzv´xuywzv+xuyvzw´xvyuzw
xuyv´xvyu

ˇ

ˇ

ˇ
(u, v, w) dw ,

and (14.5.2), by treating w as a constant since it has been integrated, implies that
ż [ ż ( ż

f(x, y, z) dz
)
dy

]
dx

=

ż [ ż ( ż
f(x(u, v, w), y(u, v, w), z(u, v, w))ˆ

ˆ

ˇ

ˇ

ˇ

xvywzu ´ xwyvzu + xwyuzv ´ xuywzv + xuyvzw ´ xvyuzw
xuyv ´ xvyu

ˇ

ˇ

ˇ
(u, v, w) dw

)
ˆ

ˆ
ˇ

ˇxu(u, v, w)yv(u, v, w) ´ xv(u, v, w)yu(u, v, w)
ˇ

ˇ dv
]
du

=

ż [ ż ( ż
f(x(u, v, w), y(u, v, w), z(u, v, w))ˆ

ˆ
ˇ

ˇxvywzu ´ xwyvzu + xwyuzv ´ xuywzv + xuyvzw ´ xvyuzw
ˇ

ˇ(u, v, w) dw
)
dv

]
du .

The naive (but wrong) computations above motivate the following
Definition 14.20

If x = x(u, v) and y = y(u, v), the Jacobian of x and y with respect to u and v,

denoted by B (x, y)

B (u, v)
, is

B (x, y)

B (u, v)
=

ˇ

ˇ

ˇ

ˇ

xu xv

yu yv

ˇ

ˇ

ˇ

ˇ

= xuyv ´ xvyu .

If x = x(u, v, w), y = y(u, v, w) and z = z(u, v, w), the Jacobian of x, y and z with

respect to u, v and w, denoted by B (x, y, z)

B (u, v, w)
, is

B (x, y, z)

B (u, v, w)
=

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

xu xv xw

yu yv yw
zu zv zw

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

= xuyvzw + xwyuzv + xvywzu ´ xwyvzu ´ xvyuzw ´ xuywzv .
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