Exercise Problem Sets 10
Nov. 22. 2019

Problem 1. Let I be an interval, and f : I — R be one-to-one, onto and continuous. Show that if

g : N — R is a function satisfying that lim f(g(n)) = b, then lim g(n) = f~1(b).
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Problem 2. Show that the following functions (defined by integrals) are one-to-one and find (f~1)’(0).

1 f(z) = E\/1+t2dt. 2. f(z) = L \/%

Problem 3. Let f be an one-to-one, twice differentiable function with an inverse function g.

1. Show that g is twice differentiable function and find ¢”.

2. Show that if in addition f is strictly increasing and the graph of f is concave upward, then the

graph of g is concave downward.
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Problem 4. Find the limit lim (n—n> through the following steps.
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1. Show that Z—ln— <J Inzdr < Z—ln—.
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2. Find lim }’ EES
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3. Find lim (”T'L)
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Hint: 1. Use the property of integrals.
3. Using problem 1.

Problem 5. Show that for all natural number n,
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Problem 6. Find the derivative of the following functions by first taking the logarithm (base €) and
then differentiating.

_ :c(xfl)% _ @+ )= -2)
1.y—ﬁ,x>1. 2.y—(x_1)x+2),x>2

Problem 7. Use implicit differentiation to find d—z, where (x,y) satisfies the relation 4xy-+In 2%y = 7.

Problem 8. Locate any relative extrema and points of inflection of the function y = 22 In g

Problem 9. Use the substitution of variable ¢t = tang to find the integral f cscx dx.



Problem 10. Find the following indefinite integrals.
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Problem 11. Show that -+ < 22 =11Y 1 o<z <y
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