Exercise Problem Sets 14
Dec. 27. 2019

Problem 1. Find at least two ways to compute the following integrals
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Problem 2. Find the following indefinite integrals using the techniques of partial fractions
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Problem 3. Determine if the following improper integral converges or not
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Problem 4. Show that if a > —1 and b > a + 1, then the integral J

—— dx is convergent.
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Problem 5. If f :

[0,0) — R is continuous, the Laplace transform of f, denoted by Z(f), is the
function defined by

2(f)(s) = j o

and the domain of Z(f) is the set consisting of all numbers s for which the integral converges

1. Find the Laplace transforms of the following functions

(i) f(t) = t*, where k e N u {0} (ii) f(t) = e sin(bt) (iii) f(t) = e™ cos(bt).
2. Let ke Nand f:[0,0) —

R is k-times continuously differentiable. Show that if £ (f) exists
for s > a, then

Z(I0)(s) = S L(P)s) = 7F(0) = #72f(0) =+ = 5£5D(0) = f4(0)

for s > a.



3. Suppose that m, k are positive numbers, b, w are non-negative numbers, and y : [0,00) — R is

a twice differentiable function satisfying
my"(t) + by'(t) + ky(t) = sin(wt) ~ y(0) =yo and y'(0) =y .
Find Z(y).
4. Suppose that you know that .Z is one-to-one, find y in the previous problem with the param-
eters (m, b, k,yo,y1) = (1,2,5,1,0).

Problem 6. In this problem we intend to compute
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1. Determine whether the integral above is an improper integral or not.

2. Prove the identities

J Insinx dr = 2 JQ Insin(2zx) dx
0 0
and

JQ Insinxz dx = JQ In cos z dx .
0
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3. Find J2 Insinz dx (using identities in 2).
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Problem 7. In the following, we are going to compute definite (improper) integrals using the tech-

niques of introducing a new variable ¢ in a suitable. For example, to compute the integral
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Since we are going to compute I(1), we may assume that ¢ > —1 and find that under our assumption,
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thus I(t) = In(t+ 1) + C. Since I(0) = 0, we find that C' = 0 which further implies that (1) = In 2.

In the following, we are going to assume that the change of order of taking limit (such as }ling))
el
1
and integration <such as f ) does not affect the outcome of the computations.
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1. Compute L ﬁdx.
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Hint: Let I(t) = J hlg(;x_:_ll)dx. Compute I’(t) by the assumption above and find the
0

integral using the techniques of partial fractions.
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2. Compute J dx.
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Hint: Let I(t) = J dx. Compute I'(t) by the assumption above and use the fact

0
that lim I(t) = 0.
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