Problem 1. Let I be an open interval in \mathbb{R} , $c \in I$, and $f : I \to \mathbb{R}$ be a function. Show that f is continuous at c if and only if $\lim_{h\to 0} f(c+h) = f(c)$.

Problem 2. Let $f: \mathbb{R} \to \mathbb{R}$ be a function satisfying f(a+b) = f(a)f(b) for all $a, b \in \mathbb{R}$.

- 1. Show that $f(x) \ge 0$ for all $x \in \mathbb{R}$.
- 2. Show that if f is continuous at 0, then f is continuous on \mathbb{R} (that is, f is continuous at every point of \mathbb{R}).

Problem 3. Let I be an interval in \mathbb{R} and $f,g:I\to\mathbb{R}$ be continuous functions. Show that if f(x)=g(x) for all $x\in\mathbb{Q}\cap I$, then f(x)=g(x) for all $x\in I$.

Problem 4. Let I be an interval, $c \in I$, and $f: I \to \mathbb{R}$ be a continuous function. Show that if $f(c) \neq 0$, there exists $\delta > 0$ such that f(x)f(c) > 0 whenever $|x - c| < \delta$ and $x \in I$.

Problem 5. Construct a function $f: \mathbb{R} \to \mathbb{R}$ so that f is continuous at all integers but nowhere else.

Problem 6. Find the following limits:

- 1. $\lim_{x \to \infty} (2x + \sqrt{4x^2 + 3x 2})$.
- 2. $\lim_{x \to \infty} (x \sqrt[3]{x^3 + 2x 3}).$
- 3. $\lim_{x \to \infty} \frac{\llbracket x \rrbracket}{x}$, where $\llbracket \cdot \rrbracket$ is the floor function.

Problem 7. Show that the equation $x^3 - 15x + 1 = 0$ has three solutions in the interval [-4, 4].

Problem 8. Suppose that a and b are positive constants. Show that the equation

$$\frac{a}{x^3 + 2x^2 - 1} + \frac{b}{x^3 + x - 2} = 0$$

has at least one solution in the interval (-1,1).

Problem 9. True or False: Determine whether the following statements are true or false. If it is true, prove it. Otherwise, give a counter-example.

- 1. If |f| is continuous at c, so is f.
- 2. Let I be an interval and $f: I \to \mathbb{R}$ be a continuous function. If $f(x) \neq 0$ for all $x \in I$, then f never change signs; that is, either f(x) > 0 for all $x \in I$ or f(x) < 0 for all $x \in I$.
- 3. If $\lim_{x\to c} f(x) = \infty$ and $\lim_{x\to c} [f(x) g(x)] = 0$, then $\lim_{x\to c} g(x) = \infty$.