Problem 1. Note that in class we have introduced two new functions "arcsin" and "arccos" whose graphs are (the blue and green) part of the curve consisting of points (x, y) satisfying $\sin y = x$ and $\cos y = x$, respectively, given below

Figure 1: The graph of functions $y = \arcsin x$ and $y = \arccos x$

- 1. Find the domain and the range of the two functions arcsin and arccos.
- 2. Show that $\sin(\arcsin x) = x$ for all x in the domain of \arcsin and $\cos(\arccos x) = x$ whenever x in the domain of \arccos .
- 3. Is it true that $\arcsin(\sin x) = x$ or $\arccos(\cos x) = x$?
- 4. Find $\sin(\arccos x)$ and $\cos(\arcsin x)$.
- 5. Show that $\frac{d}{dx}\Big|_{x=c}$ (arcsin $x + \arccos x$) = 0 for all c in both domains.
- 6. Find $\frac{d}{dx} \arcsin \frac{1}{x}$ and $\frac{d}{dx} (\arccos x)^2$.

Problem 2. The function arctan is defined similarly to functions arcsin and arccos: consider the collection of all points (x, y) satisfying $\tan y = x$ (see the figure below), and the blue part is the graph of a function called "arctan".

Figure 2: The graph of function $y = \arctan x$

- 1. Find the domain and the range of the function arctan.
- 2. Show that $tan(\arctan x) = x$ for all x in the domain of arctan.
- 3. Is is true that $\arctan(\tan x) = x$ for all x in the domain of tan?
- 4. Find $\frac{d}{dx} \arctan x$.

Problem 3. Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ if $\sin(x+y) = y^2 \cos x$.

Problem 4. The line that is normal to the curve $x^2 + 2xy - 3y^2 = 0$ at (1,1) intersects the curve at what other point?

Problem 5. Show that the sum of the x- and y-intercepts of any tangent line to the curve $\sqrt{x} + \sqrt{y} = \sqrt{c}$ is equal to c.

Problem 6. The Bessel function of order 0, denoted by $y = J_0(x)$, satisfies the differential equation

$$xy'' + y' + xy = 0$$

for all values of x and its value at 0 is $J_0(0) = 1$.

- 1. Find $J_0'(0)$.
- 2. Use implicit differentiation to find $J_0''(0)$.