Problem 1. Compute $\int_{-\sqrt{\frac{3}{2}}}^{1} \frac{dx}{\sqrt{2-x^2}}$ using the following substitution of variables:

1.
$$x = \sqrt{2} \sin t$$

2.
$$x = -\sqrt{2}\sin t$$

3.
$$x = \sqrt{2}\cos t$$

1.
$$x = \sqrt{2}\sin t$$
. 2. $x = -\sqrt{2}\sin t$. 3. $x = \sqrt{2}\cos t$. 4. $x = -\sqrt{2}\cos t$.

Problem 2. Find the definite integral $\int_{0}^{\frac{\pi}{2}} \frac{\sin x dx}{1 + \cos^{2} x}.$

Problem 3. Find the following indefinite integrals:

$$1. \int \frac{\cos\sqrt{x}}{\sqrt{x}} \, dx.$$

2.
$$\int \frac{1}{x^3} \cos^2 \frac{1}{x^2} dx$$
.

$$3. \int \frac{1}{x^2} \cos^3 \frac{1}{x} dx.$$

1.
$$\int \frac{\cos\sqrt{x}}{\sqrt{x}} dx$$
. 2. $\int \frac{1}{x^3} \cos^2 \frac{1}{x^2} dx$. 3. $\int \frac{1}{x^2} \cos^3 \frac{1}{x} dx$. 4. $\int \frac{\sin\sqrt{x}}{\sqrt{x} \cos^3 \sqrt{x}} dx$.

Problem 4. Find the following indefinite integrals.

- 1. $\int \tan^3 x \sec^2 x \, dx$, $\int \frac{\sec^2 x}{\tan^2 x} \, dx$, $\int \tan^2 x \sec^2 x \, dx$. Use your experience on these three integrals to find $\int \tan^m x \sec^2 x \, dx$ for $m \neq -1$.
- 2. $\int \sec^3 x \tan x \, dx$, $\int \sec^5 x \tan x \, dx$, $\int \frac{\tan x}{\sec^3 x} \, dx$. Use your experience on these three integrals to find $\int \sec^m x \tan x \, dx$ for $m \neq 0$.

Problem 5. Compute the indefinite integral $\int \sin^6 x \, dx$ by the following steps:

1. Write $\sin^6 x = \sin^3 x \cdot \sin^3 x$, and use the triple and double angle formula, as well as the product to sum formula, to show that

$$\sin^6 x = -\frac{1}{32}\cos 6x + \frac{3}{16}\cos 4x - \frac{15}{32}\cos 2x + \frac{5}{16}.$$

2. Find the indefinite integral $\int \sin^6 x \, dx$ using the identity above.

Problem 6. Compute the indefinite integral $\int \cos^5 x \, dx$ by the following steps:

1. Write $\cos^5 x = \cos^3 x \cdot \cos^2 x$, and use the triple and double angle formula, as well as the product to sum formula, to show that

$$\cos^5 x = \frac{1}{16}\cos 5x + \frac{5}{16}\cos 3x + \frac{5}{8}\cos x.$$

2. Find the indefinite integral $\int \cos^5 x \, dx$ using the identity above.

Problem 7. Let y be a twice differentiable function satisfying

$$\frac{d^2y}{dx^2} = 4\sec^{-2}2x\tan 2x, \quad y(0) = -1, y'(0) = 4.$$

Find y.

Problem 8. 1. Let $f:[0,a]\to\mathbb{R}$ be a continuous function. Find $\int_0^a \frac{f(x)}{f(x)+f(a-x)}\,dx$.

2. Find
$$\int_0^1 \frac{\sin x}{\sin x + \sin(1-x)} dx.$$
 3. Find
$$\int_0^3 \frac{\sqrt{x}}{\sqrt{x} + \sqrt{3-x}} dx.$$

Problem 9. Let $f:[-1,1] \to \mathbb{R}$ be a continuous function.

1. Show that

$$\int_0^{\frac{\pi}{2}} f(\sin x) \, dx = \int_0^{\frac{\pi}{2}} f(\cos x) \, dx \, .$$

2. Use the identity above to find the integrals $\int_0^{\frac{\pi}{2}} \cos^2 x \, dx$ and $\int_0^{\frac{\pi}{2}} \sin^2 x \, dx$.

Problem 10. Let a and b be positive (rational) numbers. Show that

$$\int_0^1 x^a (1-x)^b dx = \int_0^1 x^b (1-x)^a dx.$$

Problem 11. Let a_0, a_1, \dots, a_n be real numbers satisfying

$$\frac{a_0}{1} + \frac{a_1}{2} + \frac{a_2}{3} + \dots + \frac{a_n}{n+1} = 0.$$

Show that the polynomial $p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$ has at least one real zero.