Calculus MA1001-B Quiz 6
National Central University, Nov. 5 2019
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Problem 1. (4pts) Let f : [a,b] — R be a function. Assuming that you know what a partition (but
nothing else) of an interval is, state the definition of the integrability of f on [a,b]. (XK ¥ F -
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Solution. f is said to be Riemann integrable on [a, b] if there exists a real number A such that for
every € > 0 there exists 6 > 0 such that if P = {a =pg < Ty < <Xy = b} is a partition of [a, b]
satisfying that max {xz — T ‘ 1<i< n} < ¢ and {cy,- -+ ,c,} satisfying that ¢; € [x;_1, z;] for all

1 <i < n, then
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Problem 2. (2pts) Write the limit lim }] 5o 25 an integral. Do NOT compute the integral.
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Solution. Let P ={0=uz <2y <--- <z, = 1} be a regular partition of [0,1]. Then
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which is a Riemann of f for P (using the right end-point rule), where f(x) = PP Therefore,
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Problem 3. (4pts) Find the area of the region enclosed by the graph of y = 23, the z-axis, and

xr = 2, using regular partitions of [0, 2] and the mid-point rule approximation of the area.

Solution. Let f(x) = 2° and P = {O =g < T <0 < Ty = 2} be a regular partition of [0, 2],
0

where x; = gz Using the mid-point rule, we find that the area of the region given above is the limit,

as n — o0, of the sum
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By the fact that >, 1=n, > i= n(n+1)7 it = nnt DR+l a >t = M, we find
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that
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Therefore, using that lim — = 0, we conclude that
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