Calculus MA1001-B Quiz 8

National Central University, Nov. 19 2019

學號:_____ 姓名:____

Problem 1. (2pts) State the Fundamental Theorem of Calculus.

Solution. Theorem: Let $f:[a,b]\to\mathbb{R}$ be a continuous functions, and F be an anti-derivative of f on [a,b]. Then

 $\int_a^b f(x) \, dx = F(b) - F(a) \, .$

Moreover, if $G(x) = \int_a^x f(t) dt$, then G is an anti-derivative of f on [a, b].

Problem 2. (3pts) Find the definite integral $\int_0^1 \frac{dx}{(1+\sqrt{x})^4}$.

Solution. Let $u = 1 + \sqrt{x}$. Then $x = (u - 1)^2$; thus dx = 2(u - 1)du. By the substitution of variable,

$$\int_0^1 \frac{dx}{(1+\sqrt{x})^4} = \int_1^2 \frac{2(u-1)}{u^4} du = 2 \int_1^2 \left(u^{-3} - u^{-4}\right) du = 2\left(\frac{1}{3}u^{-3} - \frac{1}{2}u^{-2}\right)\Big|_{u=1}^{u=2}$$
$$= 2\left(\frac{1}{3} \cdot \frac{1}{8} - \frac{1}{2} \cdot \frac{1}{4}\right) - 2\left(\frac{1}{3} - \frac{1}{2}\right) = \frac{1}{6}.$$

Problem 3. (3pts) Let $f:[-1,1] \to \mathbb{R}$ be a continuous function. Show that

$$\int_0^{\pi} x f(\sin x) \, dx = \frac{\pi}{2} \int_0^{\pi} f(\sin x) \, dx \, .$$

Proof. Let $u = \pi - x$. Then du = -dx. By the substitution of variable,

$$\int_0^{\pi} x f(\sin x) \, dx = \int_{\pi}^0 (\pi - u) f(\sin u) (-du) = \int_0^{\pi} f(\sin u) \, du - \int_0^{\pi} u f(\sin u) \, du \, ;$$

thus by the fact that $\int_0^{\pi} u f(\sin u) du = \int_0^{\pi} x f(\sin x) dx$, we conclude that

$$\int_0^\pi x f(\sin x) \, dx = \frac{\pi}{2} \int_0^\pi f(\sin x) \, dx \,.$$

Problem 4. (2pts) Find, explain, and correct the mistake on the following computation of integral.

$$\int_{1}^{-1} \frac{dx}{1+x^{2}} \stackrel{(x=\tan u)}{=} \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{\sec^{2} u du}{1+\tan^{2} u} = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} du = \frac{3\pi}{4} - \frac{\pi}{4} = \frac{\pi}{2}.$$

Solution. In order to apply the substitution of variable formula

$$\int_{g(a)}^{g(b)} f(x) \, dx = \int_{a}^{b} f(g(u))g'(u) \, du \,,$$

it is requiremed that the function g is continuously differentiable on the interval [a,b] or [b,a]; however, tan is not differentiable at $\frac{\pi}{2} \in \left[\frac{\pi}{4}, \frac{3\pi}{4}\right]$, so the application of the substitution of variable is wrong. Instead, with the same substitution of variable,

$$\int_{1}^{-1} \frac{dx}{1+x^{2}} \stackrel{(x=\tan u)}{=} \int_{\frac{\pi}{4}}^{-\frac{\pi}{4}} \frac{\sec^{2}u du}{1+\tan^{2}u} = \int_{\frac{\pi}{4}}^{-\frac{\pi}{4}} du = \frac{-\pi}{4} - \frac{\pi}{4} = -\frac{\pi}{2}.$$