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Chapter 0

Preliminary

0.1 Functions and Their Graphs
Definition 0.1: Real-Valued Functions of a Real Variable

Let X,Y Ď R be subsets of real numbers. A real-valued function f of a real variable
x from X to Y is a correspondence that assigns to each element x in X exactly one
number y in Y . Here X is called the domain of f and is usually denoted by Dom(f),
Y is called “the” co-domain of f , the number y is called the image of x under f and is
usually denoted by f(x), which is called the value of f at x. The range of f , denoted
by Ran(f), is a subset of Y consisting of all images of numbers in X. In other words,

Ran(f) ” the range of f ”
␣

f(x)
ˇ

ˇx P X
(

.

Remark 0.2. Given a way of assignment x ÞÑ f(x) without specifying where x is chosen
from, we still treat f as a function and Dom(f) is considered as the collection of all x P R

such that f(x) is well-defined. For example, f(x) = x + 1 and g(x) =
x2 ´ 1

x ´ 1
are both

considered as functions with

Dom(f) = R and Dom(g) = Rzt1u .

Since Dom(f) ‰ Dom(g), f and g are considered as different functions even though f(x) =

g(x) for all x ‰ 1.

Terminologies:

1. Explicit form of a function: y = f(x);
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2. Implicit form of a function: F (x, y) = 0.（參考影片）

Definition 0.3
A function f is a polynomial function if f takes the form

f(x) = anx
n + an´1x

n´1 + ¨ ¨ ¨ + a1x+ a0 ,

where a0, a1, a2, ¨ ¨ ¨ , an are real numbers, called coefficients of the polynomial, and
n is a non-negative integer. If an ‰ 0, then an is called the leading coefficient, and
n is called the degree of the polynomial. A rational function is the quotient of two
polynomials.

Definition 0.4
The graph of the function y = f(x) consists of all points

(
x, f(x)

)
, where x is in the

domain of f . In other words,

G(f) ” the graph of f ”

!(
x, f(x)

) ˇ
ˇ

ˇ
x P Dom(f)

)

.

Definition 0.5: Composite Functions
Let f and g be functions. The function f ˝ g, read f circle g, is the function defined
by (f ˝ g)(x) = f

(
g(x)

)
. The domain of f ˝ g is the set of all x in the domain of g

such that g(x) is in the domain of f . In other words,

Dom(f ˝ g) =
␣

x P Dom(g)
ˇ

ˇ g(x) P Dom(f)
(

.

0.2 Trigonometric Functions
Definition 0.6

An angle consists of an initial ray, a terminal ray and a vertex where two rays inter-
sects. An angle is in standard position when its initial ray coincides with the positive
x-axis and its vertex is at the origin. Positive angles are measured counterclockwise,
and negative angles are measured clockwise.
Let θ be a central angle of a circle of radius 1. The radian measure of θ is defined to
be the length of the arc of the sector.



Remark 0.7. Using radian measure of θ, the length s of a circular arc of radius r is given
by s = rθ.

Figure 1: The radian measure of the central angle A1CB1 is the number u = s/r. For a unit
circle of radius r = 1, u is the length of arc AB that central angle ACB cuts from the unit
circle.

Remark 0.8. For a point P on the plane with Cartesian coordinate (x, y), let r =
a

x2 + y2

and θ be the angle in standard position with ÝÑ
OP as the terminal ray. The ordered pair (r, θ)

is called the polar coordinate of the point P .

Figure 2: Polar coordinate

Definition 0.9
Let θ be an angle in standard position, and the terminal ray intersects the circle
centered at the origin of radius r at point (x, y). The trigonometric functions sine,
cosine, tangent, cotangent, secant and cosecant, abbreviated as sin, cos, tan, cot, sec
and csc, respectively, of angle θ are defined by

sin θ =
y

r
, cos θ =

x

r
, tan θ =

y

x
, cot θ =

x

y
, sec θ =

r

x
and csc θ =

r

y
,

provided that the quotients make sense.

Remark 0.10. Suppose that a point P has polar coordinate (r, θ). Then the Cartesian
coordinate of P is (r cos θ, r sin θ).



Proposition 0.11: Properties of Trigonometric Functions
1. For all real numbers θ,

sin2 θ + cos2 θ = 1 , 1 + tan2 θ = sec2 θ , 1 + cot2 θ = csc2 θ .

2. For all real numbers θ,

sin(´θ) = ´ sin θ , cos(´θ) = cos θ , tan(´θ) = ´ tan θ ,

cot(´θ) = ´ cot θ , sec(´θ) = sec θ , csc(´θ) = ´ csc θ .

3. For all real numbers θ,

sin
(
θ +

π

2

)
= cos θ , cos

(
θ +

π

2

)
= ´ sin θ , tan

(
θ +

π

2

)
= ´ cot θ ,

sin(θ + π) = ´ sin θ , cos(θ + π) = ´ cos θ , tan(θ + π) = tan θ .

4. (Law of Cosines): Let a, b, c be the length of sides of a triangle, and θ be the
angle opposite to the side with length c. Then c2 = a2 + b2 ´ 2ab cos θ.

5. (Sum and Difference Formulas): Let θ, ϕ be real numbers. Then

sin(θ ˘ ϕ) = sin θ cosϕ ˘ sinϕ cos θ , cos(θ ˘ ϕ) = cos θ cosϕ ¯ sin θ sinϕ .

6. (Double-Angle Formulas): For all real numbers θ,

sin(2θ) = 2 sin θ cos θ , cos(2θ) = 2 cos2 θ ´ 1 = 1 ´ 2 sin2 θ .

7. (Half-Angle Formulas): For all real numbers θ,

cos2 θ

2
=

1 + cos θ
2

, sin2 θ

2
=

1 ´ cos θ
2

, tan θ

2
=

sin θ

1 + cos θ .

8. (Triple-Angle Formulas): For all real numbers θ,

cos(3θ) = 4 cos3 θ ´ 3 cos θ , sin(3θ) = 3 sin θ ´ 4 sin3 θ .

9. (Sum-to-Product Formulas): For all real numbers θ and ϕ,

sin θ + sinϕ = 2 sin θ + ϕ

2
cos θ ´ ϕ

2
, sin θ ´ sinϕ = 2 sin θ ´ ϕ

2
cos θ + ϕ

2
,

cos θ + cosϕ = 2 cos θ + ϕ

2
cos θ ´ ϕ

2
, cos θ ´ cosϕ = 2 sin θ + ϕ

2
sin ϕ ´ θ

2
.



Theorem 0.12: de Moivre (棣美弗)
For each real number θ and natural number n,

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ) . (0.2.1)

Proof. Clearly (0.2.1) holds for n = 1. Suppose that (0.2.1) holds for n = k for some natural
number k. Then by the sum and difference formulas,

(cos θ + i sin θ)k+1 = (cos θ + i sin θ)k ¨ (cos θ + i sin θ)

=
[

cos(kθ) + i sin(kθ)
]

¨ (cos θ + i sin θ)

= cos(kθ) cos θ ´ sin(kθ) sin θ + i
[

sin(kθ) cos θ + cos(kθ) sin θ
]

= cos[(k + 1)θ] + i sin[(k + 1)θ]

which shows that (0.2.1) holds for n = k + 1. By induction, we find that (0.2.1) holds for
all natural number n.

Theorem 0.13

Let θ be a real number and 0 ď θ ă
π

2
. Then

sin θ ď θ ď tan θ . (0.2.2)

Proof. Inequality (0.2.2) follows from the following figure

1

1

θ

sin θ

1

1

θ

tan θ

Figure 3: The area of the sector is larger than the area of the blue triangle
but is smaller than the green triangle

which shows 1

2
sin θ ď

1

2
θ ď

1

2
tan θ.



Chapter 1

Limits and Continuity

1.1 Limits of Functions
Goal: Given a function f defined “near c”, find the value of f at x when x is “arbitrarily
close” to c.（給定一函數 f，我們想知道「當除 c 之外的點到 c 的距離愈來愈近時，其函

數值是否向某數集中」)

Notation: When there exists such a value, the value is denoted by lim
xÑc

f(x).

Example 1.1. Consider the function g(x) =
x2 ´ 1

x ´ 1
given in Remark 0.2, and

h(x) =

$

&

%

x2 ´ 1

x ´ 1
if x ‰ 1 ,

0 if x = 1 .

Then the limit of g at 1 should be the same as the limit of h at 1. Therefore, to consider
the limit of a function at a point c, the value of the function at c is not important at all.

Example 1.2. Let g(x) =
x2 ´ 1

x ´ 1
. Then Dom(g) = Rzt1u and g(x) = x + 1 if x ‰ 1.

Therefore, the graph of g is given by

x

y

˝

1

Figure 1.1: The graph of function g(x) =
x2 ´ 1

x ´ 1
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Then (by looking at the graph of g we find that) lim
xÑ1

g(x) = 2.

Example 1.3. Let f(x) =

"

1 if x ‰ 2 ,
0 if x = 2 .

The graph of f is given by

x

y

˝

2

Figure 1.2: The graph of function f(x)

Then (by looking at the graph of f we find that) lim
xÑ2

f(x) = 1.

Next we give some examples in which the limit of functions (at certain points) do not
exist.

Example 1.4. （詳見影片）Let f(x) = sin 1

x
. Then Dom(f) = Rzt0u. For the graph of f ,

we note that if x P In ”
[ 1

2nπ + 2π
,

1

2nπ

]
for some n P N, the graph of f on In must touch

x = 1 and x = ´1 once. Therefore, the graph of f looks like

x

y

Figure 1.3: The graph of function f(x) = sin 1

x

In any interval containing 0, there are infinitely many points whose image under f is
1, and there are always infinitely many points whose image under f is ´1. In fact, in any
interval containing 0 and L P [´1, 1] there are infinitely many points whose image under f

is L. Therefore, lim
xÑ0

f(x) D.N.E. (does not exist).

Example 1.5. Let f(x) =
|x|

x
. Then f(x) = 1 if x ą 0, f(x) = ´1 if x ă 0, and the graph

of f is given by



x

y

˝

˝

Figure 1.4: The graph of function f(x) =
|x|

x

By observation (that is, looking at the graph of f), lim
xÑ0

f(x) D.N.E.

Example 1.6. （詳見影片）Consider the Dirichlet function

f(x) =

"

0 if x P Q ,

1 if x R Q ,

where Q denotes the collection of rational numbers（有理數）. Then lim
xÑc

f(x) D.N.E. for
all c.

Example 1.7. （詳見影片）Let f : (0,8) Ñ R be given by

f(x) =

$

&

%

1

p
if x =

q

p
, where p, q P N and (p, q) = 1 ,

0 if x is irrational（無理數） .

Then lim
xÑc

f(x) = 0 for all c P (0,8).

Definition 1.8
Let f be a function defined on an open interval containing c (except possibly at c),
and L be a real number. The statement

lim
xÑc

f(x) = L , read “the limit of f at c is L”,

means that for every ε ą 0 there exists a δ ą 0 such that
ˇ

ˇf(x) ´ L
ˇ

ˇ ă ε whenever0 ă |x ´ c| ă δ .

Explanation:（詳見影片）因為 |f(x) ´ L| ă ε 等價於 f(x) P (L ´ ε, L+ ε)，所以定義敘

述中的 ε 可視為用來度量 f(x) 向 L 這個數集中的程度。定義所述是指對於任意給定的集

中程度 ε ą 0，一定可以找到在 c 附近的一個範圍（以到 c 的距離小於 δ 來表示），滿足



此範圍中的點之函數值落入想要其落入的集中區域 (L ´ ε, L + ε) 之內。此即「當除 c 之

外的點到 c 的距離愈來愈近時，其函數值向 L 集中」的意思。

Example 1.9. In this example we show that lim
xÑ1

(x+ 1) = 2 using Definition 1.8.
Let ε ą 0 be given. Define δ = ε. Then δ ą 0 and if 0 ă |x ´ 1| ă δ, we have

|(x+ 1) ´ 2| = |x ´ 1| ă δ = ε .

One could also pick δ =
ε

2
so that if 0 ă |x ´ 1| ă δ,

|(x+ 1) ´ 2| = |x ´ 1| ă δ =
ε

2
ă ε .

Example 1.10. Show that lim
xÑ2

x2 = 4. If ε = 1, we can choose δ = min
␣?

5 ´ 2, 2 ´
?
3
(

so that δ ą 0 and if 0 ă |x ´ 2| ă δ we must have |x2 ´ 4| ă 1.
For general ε, we can choose δ = min

␣?
4 + ε ´ 2, 2 ´

?
4 ´ ε

(

so that δ ą 0 and if
0 ă |x ´ 2| ă δ we must have |x2 ´ 4| ă ε.

Example 1.11 (Proof of Example 1.7). Let ε ą 0 be given. Then there exists a prime
number p such that 1

p
ă ε. Let q1, q2, ¨ ¨ ¨ , qn be rational numbers in

( c
2
,
3c

2

)
satisfying

qj =
s

r
, (r, s) = 1, 1 ď r ď p ,

and define δ =
1

2
min

(
␣

|c ´ q1|, |c ´ q2|, ¨ ¨ ¨ , |c ´ qn|
(

´ t0u

)
. Then δ ą 0. Suppose that x

satisfies that 0 ă |x ´ c| ă δ.

1. If x P QA, then f(x) = 0 which shows that |f(x)| ă ε.

2. If x P Q, then x =
s

r
for some natural numbers r, s satisfying (r, s) = 1. By the choice

of δ, we find that r ą p; thus
ˇ

ˇf(x)
ˇ

ˇ =
1

r
ă

1

p
ă ε .

In either case,
ˇ

ˇf(x)
ˇ

ˇ ă ε; thus we establish that
ˇ

ˇf(x) ´ 0
ˇ

ˇ ă ε whenever 0 ă |x ´ c| ă δ .

Therefore, lim
xÑc

f(x) = 0.



Proposition 1.12
Let f, g be functions defined on an open interval containing c (except possibly at c),
and f(x) = g(x) if x ‰ c. If lim

xÑc
g(x) = L, then lim

xÑc
f(x) = L.

Proof. Let ε ą 0 be given. Since lim
xÑc

g(x) = L, there exists δ ą 0 such that

|g(x) ´ L| ă ε if 0 ă |x ´ c| ă δ.

Since f(x) = g(x) if x ‰ c, we must have if 0 ă |x ´ c| ă δ,

|f(x) ´ L| = |g(x) ´ L| ă ε .

Example 1.13. Let f(x) = x + 1 and g(x) =
x2 ´ 1

x ´ 1
. Since f(x) = g(x) if x ‰ 1, the

proposition above implies that

lim
xÑ1

g(x) = lim
xÑ1

f(x) = 2 .

1.2 Properties of Limits
Theorem 1.14

Let b, c be real numbers, f, g be functions defined on an open interval containing c

(except possibly at c) with lim
xÑc

f(x) = L and lim
xÑc

g(x) = K.

1. lim
xÑc

b = b, lim
xÑc

x = c, lim
xÑc

|x| = |c|;

2. lim
xÑc

[
f(x) ˘ g(x)

]
= L+K;（和或差的極限等於極限的和或差）

3. lim
xÑc

[
f(x)g(x)

]
= LK;（乘積的極限等於極限的乘積）

4. lim
xÑc

f(x)

g(x)
=

L

K
if K ‰ 0.（若分母極限不為零，則商的極限等於極限的商）

Proof. 1. Let ε ą 0 be given.

(a) Define δ = 1. Then δ ą 0 and if 0 ă |x ´ c| ă δ, we have |b ´ b| = 0 ă ε .

(b) Define δ = ε. Then δ ą 0 and if 0 ă |x ´ c| ă δ, we have |x ´ c| ă δ = ε .



(c) Define δ = ε. Then δ ą 0 and if 0 ă |x ´ c| ă δ, by the triangle inequality we
have

ˇ

ˇ|x| ´ |c|
ˇ

ˇ ď |x ´ c| ă δ = ε .

2. Let ε ą 0 be given. Since lim
xÑc

f(x) = L and lim
xÑc

g(x) = K, there exist δ1, δ2 ą 0 such
that

ˇ

ˇf(x) ´ L
ˇ

ˇ ă
ε

2
whenever 0 ă |x ´ c| ă δ1

and
ˇ

ˇg(x) ´ K
ˇ

ˇ ă
ε

2
whenever 0 ă |x ´ c| ă δ2 .

Define δ = mintδ1, δ2u. Then δ ą 0 and if 0 ă |x ´ c| ă δ, we have
ˇ

ˇf(x) + g(x) ´ (L+K)
ˇ

ˇ ď
ˇ

ˇf(x) ´ L
ˇ

ˇ+
ˇ

ˇg(x) ´ K
ˇ

ˇ ă
ε

2
+

ε

2
= ε .

3. Let ε ą 0 be given. Since lim
xÑc

f(x) = L, there exist δ1, δ2 ą 0 such that

ˇ

ˇf(x) ´ L
ˇ

ˇ ă 1 whenever 0 ă |x ´ c| ă δ1

and
ˇ

ˇf(x) ´ L
ˇ

ˇ ă
ε

2(|K| + 1)
whenever 0 ă |x ´ c| ă δ2 .

Moreover, since lim
xÑc

g(x) = K, there exists δ3 ą 0 such that

ˇ

ˇg(x) ´ K
ˇ

ˇ ă
ε

2(|L| + 1)
whenever 0 ă |x ´ c| ă δ3 .

Define δ = mintδ1, δ2, δ3u. Then δ ą 0 and if 0 ă |x ´ c| ă δ, we have
ˇ

ˇf(x)g(x) ´ LK
ˇ

ˇ =
ˇ

ˇf(x)g(x) ´ f(x)K + f(x)K ´ LK
ˇ

ˇ

ď
ˇ

ˇf(x)
ˇ

ˇ

ˇ

ˇg(x) ´ K
ˇ

ˇ+ |K|
ˇ

ˇf(x) ´ L
ˇ

ˇ

ă (|L| + 1)
ε

2(|L| + 1)
+ |K|

ε

2(|K| + 1)
ă

ε

2
+

ε

2
= ε .

4. W.L.O.G. (Without loss of generality), we can assume that K ą 0 for otherwise we
have lim

xÑc
(´g)(x) = ´K ą 0 and

lim
xÑc

(f
g

)
(x) = lim

xÑc

(´f

´g

)
(x) =

lim
xÑc

(´f)(x)

´K
=

´L

´K
=

L

K
.



Let ε ą 0 be given. Since lim
xÑc

g(x) = K, there exist δ1, δ2 ą 0 such that

|g(x) ´ K| ă
K

2
whenever 0 ă |x ´ c| ă δ1

and

|g(x) ´ K| ă
K2ε

4(|L| + 1)
whenever 0 ă |x ´ c| ă δ2 .

Moreover, since lim
xÑc

f(x) = L, there exists δ3 ą 0 such that

|f(x) ´ L| ă
Kε

4
whenever 0 ă |x ´ c| ă δ3 .

Define δ = mintδ1, δ2, δ3u. Then δ ą 0 and if 0 ă |x ´ c| ă δ, we have

ˇ

ˇ

ˇ

f(x)

g(x)
´

L

K

ˇ

ˇ

ˇ
=

|Kf(x) ´ Lg(x)|

K|g(x)|
ď

1

|g(x)|

|Kf(x) ´ KL| + |KL ´ Lg(x)|

K

ď
2

K

(
|f(x) ´ L| +

|L|

K
|g(x) ´ K|

)
ă

2

K

(Kε

4
+

|L|

K

K2ε

4(|L| + 1)

)
ď

ε

2
+

ε

2
= ε ,

where we have used 2

K
ď

1

|g(x)|
if 0 ă |x´c| ă δ to conclude the inequality. Therefore,

we conclude that lim
xÑc

f(x)

g(x)
=

L

K
if K ą 0.

Example 1.15. Find lim
xÑ3

x2. By 1 of Theorem 1.14 lim
xÑ3

x = 3; thus 3 of Theorem 1.14
implies that

lim
xÑ3

x2 =
(

lim
xÑ3

x
)(

lim
xÑ3

x
)
= 9 .

The above equality further shows that

lim
xÑ3

x3 =
(

lim
xÑ3

x2
)(

lim
xÑ3

x
)
= 27 .

In particular, if n is a positive integer, then (by induction) lim
xÑc

xn = cn.



Corollary 1.16
Assume the assumptions in Theorem 1.14, and let n be a positive integer.

1. lim
xÑc

[
f(x)n

]
= Ln.

2. If p is a polynomial function, then lim
xÑc

p(x) = p(c).

3. If r is a rational function given by r(x) =
p(x)

q(x)
for some polynomials p and q,

and q(c) ‰ 0, then lim
xÑc

r(x) = r(c).

An illustration of why 2 in Corollary 1.16 is correct: Suppose that p(x) = 3x2 +

5x ´ 10. Then applying 1-3 in Theorem 1.14, we obtain that

lim
xÑc

p(x) = lim
xÑc

(3x2 + 5x) ´ lim
xÑc

(10) = lim
xÑc

(3x2 + 5x) ´ 10

=
(

lim
xÑc

(3)
)(

lim
xÑc

x2
)
+
(

lim
xÑc

(5)
)(

lim
xÑc

x
)

´ 10

= 3c2 + 5c ´ 10 = p(c) .

Theorem 1.17

If c ą 0 and n is a positive integer, then lim
xÑc

x
1
n = c

1
n .

Proof. Let ε ą 0 be given. Define δ = min
!

c

2
,
nc

n´1
n ε

2

)

. Then δ ą 0 and if 0 ă |x ´ c| ă δ,
we must have

x
n´1
n + x

n´2
n c

1
n + x

n´3
n c

2
n + ¨ ¨ ¨ + x

1
n c

n´2
n + c

n´1
n ě

n

2
c

n´1
n .

Therefore, if 0 ă |x ´ c| ă δ,

ˇ

ˇx
1
n ´ c

1
n

ˇ

ˇ =

ˇ

ˇ

ˇ

ˇ

x ´ c

x
n´1
n + x

n´2
n c

1
n + x

n´3
n c

2
n + ¨ ¨ ¨ + x

1
n c

n´2
n + c

n´1
n

ˇ

ˇ

ˇ

ˇ

ď
2

n
c´n´1

n |x ´ c| ă
2

n
c´n´1

n δ ď
2

n
c´n´1

n
nc

n´1
n ε

2
= ε

which implies that lim
xÑc

x
1
n = c

1
n .



Theorem 1.18
If f and g are functions (defined on open intervals) such that lim

xÑc
g(x) = K,

lim
xÑK

f(x) = L and L = f(K), then

lim
xÑc

(f ˝ g)(x) = L .

Proof. Let ε ą 0 be given. Since lim
xÑL

f(x) = L, there exists δ1 ą 0 such that

|f(x) ´ L| ă ε whenever 0 ă |x ´ K| ă δ1 .

Since L = f(K), the statement above implies that

|f(x) ´ L| ă ε whenever |x ´ K| ă δ1 .

Fix such δ1. Since lim
xÑc

g(x) = K, there exists δ ą 0 such that

|g(x) ´ K| ă δ1 whenever 0 ă |x ´ c| ă δ .

Therefore, if 0 ă |x ´ c| ă δ, |(f ˝ g)(x) ´ L| = |f(g(x)) ´ L| ă ε which concludes the
theorem.

Example 1.19. Find lim
xÑ0

?
x+ 1 ´ 1

x
.

Let f(x) =

?
x+ 1 ´ 1

x
. If x ‰ 0,

f(x) =
(
?
x+ 1 ´ 1)(

?
x+ 1 + 1)

x(
?
x+ 1 + 1)

=
1

?
x+ 1 + 1

” g(x) .

To see the limit of g, note that

lim
xÑ0

?
x+ 1 = 1 (by Theorem 1.18);

thus by Theorem 1.14 lim
xÑ0

g(x) =
1

2
.

Remark 1.20. In Theorem 1.18, the condition L = f(K) is important, even though intu-
itively if g(x) Ñ K as x Ñ c and f(x) Ñ L as x Ñ K then (f ˝ g)(x) should approach
L as x approaches c. A counter-example is given by the following two functions: f is the
function given in Example 1.3 and g is a constant function with value 2. This example/
theorem demonstrates an important fact: intuition could be wrong ! That is the reason why
mathematicians develop the ε-δ language in order to explain ideas of limits rigorously.



Theorem 1.21: Squeeze Theorem（夾擠定理）
Let f, g, h be functions defined on an open interval containing c (except possibly at
c), and h(x) ď f(x) ď g(x) if x ‰ c. If lim

xÑc
h(x) = lim

xÑc
g(x) = L, then lim

xÑc
f(x) exists

and is equal to L.

Proof. Let ε ą 0. Since lim
xÑc

h(x) = lim
xÑc

g(x) = L, there exist δ1, δ2 ą 0 such that

|h(x) ´ L| ă ε whenever 0 ă |x ´ c| ă δ1

and
|g(x) ´ L| ă ε whenever 0 ă |x ´ c| ă δ2 .

Define δ = mintδ1, δ2u. Then δ ą 0 and if 0 ă |x ´ c| ă δ,

L ´ ε ă h(x) ď f(x) ď g(x) ă L+ ε

which implies that |f(x) ´ L| ă ε whenever 0 ă |x ´ c| ă δ.

Example 1.22. Let f : R Ñ R be defined by

f(x) =

"

x if x is rational ,
´x if x is irrational .

Then lim
xÑc

f(x) D.N.E. if c ‰ 0 and lim
xÑ0

f(x) = 0.

1. If c ‰ 0, then as x ‰ c approaches c and x P Q, f(x) approaches c, while as x ‰ c

approaches c and x R Q, f(x) approaches ´c. This implies that as x approaches c,
f(x) does not approaches a fixed number; thus lim

xÑc
f(x) D.N.E.

2. Note that
ˇ

ˇf(x)
ˇ

ˇ = |x|; thus ´|x| ď f(x) ď |x| for all x P R. Since lim
xÑ0

|x| = 0, the
Squeeze theorem implies that lim

xÑ0
f(x) = 0.

Example 1.23. In this example we consider the limit of the sine function at a real number
c. Before proceeding, let us first establish a fundamental inequality

| sinx| ď |x| for all real numbers x (in radian unit). (1.2.1)

Recall (0.2.2) that
sinx ď x ď tanx @ 0 ď x ď

π

2
. (0.2.2)

To see (1.2.1), it suffices to consider the case when x R
[
0,

π

2

]
. Nevertheless,



1. it trivially holds that | sinx| ď x if x ě
π

2
;

2. if x ă 0, then | sinx| = | sin(´x)| ď | ´ x| = |x|.

Having establish (1.2.1), now note the sum-to-product formula implies that

| sinx ´ sin c| = 2
ˇ

ˇ

ˇ
sin x´c

2
cos x+c

2

ˇ

ˇ

ˇ
ď 2

ˇ

ˇ

ˇ
sin x´c

2

ˇ

ˇ

ˇ
ď |x ´ c| for all real number x.

Therefore, sin c ´ |x ´ c| ď sinx ď sin c + |x ´ c| for all real number x, and the Squeeze
Theorem then implies that lim

xÑc
sinx = sin c since lim

xÑc
|x ´ c| = 0.

Similarly, using the sum-to-product formula

cosx ´ cos c = ´2 sin x+ c

2
sin x ´ c

2
,

we can also conclude that lim
xÑc

cosx = cos c. The detail is left as an exercise.

By Theorem 1.14, Example 1.23 shows the following
Theorem 1.24

Let c be a real number in the domain of the given trigonometric functions.

1. lim
xÑc

sinx = sin c; 2. lim
xÑc

cosx = sin c; 3. lim
xÑc

tanx = tan c;

4. lim
xÑc

cotx = cot c; 5. lim
xÑc

secx = sec c; 6. lim
xÑc

cscx = csc c.

Example 1.25. In this example we compute lim
xÑ0

x sin 1

x
if it exists. Note that if the limit

exists, we cannot apply 3 of Theorem 1.14 to find the limit since lim
xÑ0

sin 1

x
does not exist.

On the other hand, since
ˇ

ˇx sin 1

x

ˇ

ˇ ď |x| if x ‰ 0, ´|x| ď x sin 1

x
ď |x| if x ‰ 0. By the fact

that lim
xÑ0

|x| = lim
xÑ0

(´|x|) = 0, the Squeeze Theorem implies that lim
xÑ0

x sin 1

x
= 0.

x

y

y = ´x

y = x

y = x sin 1

x

Figure 1.5: The graph of function y = x sin 1

x



1.2.1 One-sided limits and limits as x Ñ ˘8

Suppose that f is a function defined (only) on one side of a point c, it is also possible to
consider the one-sided limit lim

xÑc+
f(x) or lim

xÑc´
f(x), where the notation x Ñ c+ and x Ñ c´

means that x is taken from the right-hand side and left-hand side of c, respectively, and
becomes arbitrarily close to c. In other words, lim

xÑc+
f(x) means the value to which f(x)

approaches as x approaches to c from the right, while lim
xÑc´

f(x) means the value to which
f(x) approaches as x approaches to c from the left.
Definition 1.26: One-sided limits

Let f be a function defined on an interval with c as the left/right end-point (except
possibly at c), and L be a real number. The statement

lim
xÑc+

f(x) = L
/

lim
xÑc´

f(x) = L ,

read “the right/left(-hand) limit of f at c is L” or “the limit of f at c from the right/
left is L”, means that for each ε ą 0 there exists a δ ą 0 such that

ˇ

ˇf(x) ´ L
ˇ

ˇ ă ε whenever 0 ă x ´ c ă δ
/

´ δ ă x ´ c ă 0 .

Example 1.27. In this example we show that lim
xÑ0+

x
1
n = 0. Let ε ą 0 be given. Define

δ = εn. Then δ ą 0 and if 0 ă x ă δ, we have

|x
1
n ´ 0| = x

1
n ă δ

1
n = ϵ .

We note that Theorem 1.14, Theorem 1.17 and 1.21 are also valid when the limits are
replaced by one-sided limits, and the precise statements are provided below.
Theorem 1.28

Let b, c be real numbers, f, g be functions with lim
xÑc+

f(x) = L and lim
xÑc+

g(x) = K.

1. lim
xÑc+

b = b, lim
xÑc+

x = c, lim
xÑc+

|x| = |c|; 2. lim
xÑc+

[
f(x) ˘ g(x)

]
= L+K;

3. lim
xÑc+

[
f(x)g(x)

]
= LK; 4. lim

xÑc+

f(x)

g(x)
=

L

K
if K ‰ 0.

The conclusions above also hold for the case of left limits (that is, with x Ñ c+

replaced by x Ñ c´).



Theorem 1.29

If c ą 0 and n is a positive integer, then lim
xÑc+

x
1
n = c

1
n and lim

xÑc´
x

1
n = c

1
n

Theorem 1.30
If f and g are functions such that lim

xÑc+
g(x) = K, lim

xÑK
f(x) = L and L = f(K), then

lim
xÑc+

(f ˝ g)(x) = L .

The conclusions above also hold for the case of left limits (that is, with x Ñ c+

replaced by x Ñ c´).

Remark 1.31. Theorem 1.30 is not true if one only has the one-sided limit lim
xÑK+

f(x) = L

instead of the full limit lim
xÑK

f(x) = L. For example, consider g(x) = ´x and f(x) be the
function

f(x) =

"

1 if x ě 0 ,

0 if x ă 0 .

Then lim
xÑ0+

g(x) = 0 and lim
xÑ0+

f(x) = f(0); however,

(f ˝ g)(x) =

"

0 if x ą 0 ,

1 if x ď 0 ,

which implies that lim
xÑ0+

(f ˝ g)(x) = 0 ‰ f(0).

Theorem 1.32: Squeeze Theorem（夾擠定理）

1. Let f, g, h be functions defined on an interval with c as the left end-point (except
possible at c), and h(x) ď f(x) ď g(x) if x ą c. If lim

xÑc+
h(x) = lim

xÑc+
g(x) = L,

then lim
xÑc+

f(x) exists and is equal to L.

2. Let f, g, h be functions defined on an interval with c as the right end-point (ex-
cept possible at c), and h(x) ď f(x) ď g(x) if x ă c. If lim

xÑc´
h(x) = lim

xÑc´
g(x) =

L, then lim
xÑc´

f(x) exists and is equal to L.

The following theorem shows the relation between the limit and one-sided limits of
functions.



Theorem 1.33
Let f be a function defined on an open interval containing c (except possibly at c).
The limit lim

xÑc
f(x) exists if and only if lim

xÑc+
f(x) and lim

xÑc´
f(x) both exist and are

identical. In either case,

lim
xÑc

f(x) = lim
xÑc+

f(x) = lim
xÑc´

f(x) .

Explanation on “A if and only if B” in Theorem 1.33: It should be clear that “A if B”
means “A happens when B happens” (which is the same as “B implies A”). The statement
“A only if B” means that “A happens only when B happens”; thus “A only if B” means that
“A implies B”.

Proof of Theorem 1.33. (ñ) - the “only if” part: Suppose that lim
xÑc

f(x) = L, and let ε ą 0

be given. Then there exists δ ą 0 such that

|f(x) ´ L| ă ε whenever 0 ă |x ´ c| ă δ .

Therefore, there exists δ ą 0 such that

|f(x) ´ L| ă ε whenever 0 ă x ´ c ă δ ;

thus lim
xÑc+

f(x) = L. Similarly, lim
xÑc´

f(x) = L.

(ð) - the “if” part: Suppose that lim
xÑc+

f(x) = lim
xÑc´

f(x) = L. Let ε ą 0. Then there exist
δ1, δ2 ą 0 such that

|f(x) ´ L| ă ε whenever 0 ă x ´ c ă δ1

and
|f(x) ´ L| ă ε whenever ´ δ2 ă x ´ c ă 0 .

Define δ = mintδ1, δ2u. Then δ ą 0 and if 0 ă |x´c| ă δ, we must have 0 ă x´c ă δ1

and ´δ2 ă x ´ c ă 0; thus if 0 ă |x ´ c| ă δ, we must have |f(x) ´ L| ă ε.

Example 1.34. In this example we compute a very important limit

lim
xÑ0

sinx

x
= 1 . (1.2.2)

To see this, we recall (0.2.2) that

sinx ď x ď tanx for all 0 ď x ď
π

2
. (0.2.2)



Now using (0.2.2), we find that

cosx ď
sinx

x
ď 1 for all 0 ă x ă

π

2
.

The Squeeze Theorem (Theorem 1.32) then implies that lim
xÑ0+

sinx

x
= 1. On the other hand,

lim
xÑ0´

sinx

x
= lim

xÑ0´

sin(´x)

´x
= lim

xÑ0+

sinx

x
= 1 ;

thus Theorem 1.33 implies that lim
xÑ0

sinx

x
= 1.

Remark 1.35. The function sinx

x
is the famous (unnormalized) sinc function; that is,

sinc(x) = sinx

x
and sinc(0) = 1. The example above shows that lim

xÑ0
sinc(x) = sinc(0).

Example 1.36. In this example we compute the limit lim
xÑ0

1 ´ cosx
x2

. By the half-angle

formula, 1 ´ cosx = 2 sin2 x

2
; thus

1 ´ cosx
x2

=
2 sin2 x

2

x2
=

1

2

sin2 x
2(

x
2

)2 =
1

2
sinc2

(x
2

)
.

Therefore, Theorem 1.18 implies that lim
xÑ0

1 ´ cosx
x2

=
1

2
.

An open interval in the real number system can be unbounded. When the open interval
on which f is defined is not bounded from above (which means there is no real number
which is larger than all the numbers in this interval), we can also consider the behavior of
f(x) as x becomes increasingly large and eventually outgrow all finite bounds.

Definition 1.37: Limits as x Ñ ˘8

Let f be a function defined on an infinite interval bounded from below/above, and L

be a real number. The statement

lim
xÑ8

f(x) = L
/

lim
xÑ´8

f(x) = L ,

read “the right/left(-hand) limit of f at c is L” or “the limit of f at c from the right/
left is L”, means that for each ε ą 0 there exists a real number M ą 0 such that

ˇ

ˇf(x) ´ L
ˇ

ˇ ă ε whenever x ą M
/
x ă ´M .

Similar to the case of one-sided limit, Theorem 1.28, Theorem 1.30 and 1.32 are also
valid when the notation x Ñ c˘ are replaced by x Ñ ˘8.



Example 1.38. In this example we show that lim
xÑ8

1

|x|
= 0 and lim

xÑ´8

1

|x|
= 0.

Let ε ą 0 be given. Define M =
1

ε
. Then if x ą M or x ă ´M , we must have |x| ą M ;

thus if x ą M or x ă ´M ,
ˇ

ˇ

ˇ

1

x
´ 0

ˇ

ˇ

ˇ
=

1

|x|
ă

1

M
ă ε .

Example 1.39. Recall that the sinc function is defined by

sinc(x) =
# sinx

x
if x ‰ 0 ,

1 if x = 0 .

Then
ˇ

ˇ

ˇ

sinx

x

ˇ

ˇ

ˇ
ď

1

|x|
for all x ‰ 0 and this provides the inequality ´

1

|x|
ď

sinx

x
ď

1

|x|
for all

x ‰ 0. By the Squeeze Theorem and the previous example, we find that

lim
xÑ8

sinc(x) = lim
xÑ´8

sinc(x) = 0 .

Theorem 1.40

Let f be a function defined on an open interval, and g(x) = f
(1
x

)
if x ‰ 0.

1. Suppose that the open interval is not bounded from above. Then lim
xÑ8

f(x) exists
if and only if lim

xÑ0+
g(x) exists. In either case,

lim
xÑ8

f(x) = lim
xÑ0+

g(x) .

2. Suppose that the open interval is not bounded from below. Then lim
xÑ´8

f(x)

exists if and only if lim
yÑ0´

g(x) exists. In either case,

lim
xÑ´8

f(x) = lim
xÑ0´

g(x) .

The theorem above should be very intuitive, and the proof is left as an exercise.

Example 1.41. Find the limit lim
xÑ8

x+ sinx

x+ 1
.

By Theorem 1.40, we have

lim
xÑ8

x+ sinx

x+ 1
= lim

xÑ0+

1

x
+ sin 1

x
1

x
+ 1

= lim
xÑ0+

1 + x sin 1

x

1 + x

= lim
xÑ0+

1

1 + x
+
(

lim
xÑ0+

1

x+ 1

)(
lim
xÑ0+

x sin 1

x

)
= 1 + 1 ¨ 0 = 1 .



Here we note that in the process of computing the limit we have used results analogous to
Theorem 1.28. We can also apply the Squeeze theorem to the inequality x ´ 1

x+ 1
ď

x+ sinx

x+ 1
ď 1

for all x ą 0 and obtain the same limit.
Corollary 1.42

Let p and q be polynomial functions.

1. If the degree of p is smaller than the degree of q, then

lim
xÑ8

p(x)

q(x)
= lim

xÑ´8

p(x)

q(x)
= 0 .

2. If the degree of p is the same as the degree of q, then

lim
xÑ8

p(x)

q(x)
= lim

xÑ´8

p(x)

q(x)
=

the leading coefficient of p
the leading coefficient of q .

1.3 Continuity of Functions
Definition 1.43

Let f be a function defined on an interval I, and c P I.

1. f is said to be right-continuous at c (or continuous from the right at c) if
lim
xÑc+

f(x) = f(c) .

2. f is said to be left-continuous at c (or continuous from the left at c) if
lim
xÑc´

f(x) = f(c) .

3. If c is the left end-point of I, f is said to be continuous at c if f is right-continuous
at c.

4. If c is the right end-point of I, f is said to be continuous at c if f is left-continuous
at c.

5. If c is an interior point of I; that is, c is neither the left end-point nor the right
end-point of I, then f is said to be continuous at c if lim

xÑc
f(x) = f(c).

f is said to be discontinuous at c if f is not continuous at c, and in this case c is called
a point of discontinuity (or simply a discontinuity) of f . f is said to be continuous
(or a continuous function) on I if f is continuous at each point of I.



Example 1.44. Consider the the greatest integer function (also known as the Gauss func-
tion or the floor function) [[¨]] : R Ñ R defined by

[[x]] = the greatest integer which is not greater than x.

Figure 1.6: The greatest integer function y = [[x]]

For example, [[2.5]] = 2 and [[´2.5]] = ´3. If c is not an integer, lim
xÑc

[[x]] = c, while if c is
an integer, we have

lim
xÑc+

[[x]] = c and lim
xÑc´

[[x]] = c ´ 1 .

Let f : [0, 2] Ñ R be given by f(x) = [[x]]. Then the conclusion above shows that f is
continuous at every non-integer number, while f is not continuous at 1 (since lim

xÑ1
f(x) does

not exist) and 2 (since lim
xÑ2´

f(x) ‰ f(2)). On the other hand, lim
xÑ0+

f(x) = f(0), so f is
continuous at 0.

Therefore, f is continuous at c if c is not an integer, and f is right-continuous at c if c
is an integer.

Example 1.45. Let f(x) = xn, where n is a positive integer. We have shown that

lim
xÑc

xn = cn

for all real numbers c; thus f is continuous on R. In general, polynomial functions are
continuous on R (because of Corollary 1.16).

Example 1.46. Let n be a positive integer, and f : [0,8) Ñ R be defined by f(x) = x
1
n .

By Theorem 1.17 and Example 1.27,

lim
xÑc

x
1
n = c

1
n if c ą 0 and lim

xÑ0+
x

1
n = 0 ;

thus f is continuous on [0,8).



Example 1.47. Recall the Dirichlet function f : R Ñ R in Example 1.6 given by

f(x) =

"

0 if x P Q ,

1 if x R Q ,

We have explained (but not proven) that the limit lim
xÑc

f(x) does not exist for all c P (0,8);
thus f is discontinuous at all real numbers.

Example 1.48. Recall the function f : R Ñ R given by

f(x) =

"

x if x P Q ,

´x if x R Q .

in Example 1.22. We have shown that lim
xÑ0

f(x) = 0; thus f is continuous at 0.

Example 1.49. Recall the function f : (0,8) Ñ R in Example 1.7 given by

f(x) =

$

&

%

1

p
if x =

q

p
, where p, q P N and (p, q) = 1 ,

0 if x is irrational .

We have shown that lim
xÑc

f(x) = 0 for all c P (0,8). Therefore, f is continuous at all
irrational numbers but is discontinuous at all rational numbers.

Example 1.50. Let f : R Ñ R be continuous, and f(x) = 2 if x P Q. Then intuitively
f(x) = 2 for all x P R. We now prove this using the definition of continuity.

Suppose the contrary that there exists c P R such that f(c) ‰ 2. Define ε =
ˇ

ˇf(c) ´ 2
ˇ

ˇ.
Then ε ą 0. Since f is continuous at c, there exists δ ą 0 such that

ˇ

ˇf(x) ´ f(c)
ˇ

ˇ ă ε whenever |x ´ c| ă δ .

Choose x P Q such that |x ´ c| ă δ. Then the triangle inequality implies that

ε =
ˇ

ˇf(c) ´ 2
ˇ

ˇ ď
ˇ

ˇf(c) ´ f(x)
ˇ

ˇ+
ˇ

ˇf(x) ´ 2
ˇ

ˇ ă ε

which is a contradiction.

Remark 1.51. Let I be an interval, c P I, and f : I Ñ R be a function. The continuity of
f at c is equivalent to that for every ε ą 0, there exists δ ą 0 such that

|f(x) ´ f(c)| ă ε whenever |x ´ c| ă δ and x P I .



To see this, we first consider the case that c is an interior point of I. Then by the definition,
f is continuous at c if for every ε ą 0 there exists δ ą 0 such that

|f(x) ´ f(c)| ă ε whenever 0 ă |x ´ c| ă δ .

Since |f(x) ´ f(c)| ă ε automatically holds if |x ´ c| = 0, the statement above is equivalent
to that

|f(x) ´ f(c)| ă ε whenever |x ´ c| ă δ .

Now let us look at the case when c is the left end-point of I (so in this case c P I). Then by
definition, f is continuous at c if for every ε ą 0 there exists δ ą 0 such that

|f(x) ´ f(c)| ă ε whenever 0 ă x ´ c ă δ .

Again |f(x) ´ f(c)| ă ε automatically holds if x ´ c = 0, the statement above is equivalent
to that

|f(x) ´ f(c)| ă ε whenever c ď x ă c+ δ .

Note that since c is the left end-point, the set
␣

x
ˇ

ˇ c ď x ă c+δ
(

is the same as
␣

x
ˇ

ˇ |x´ c| ă

δ, x P I
(

; thus the statement above is equivalent to that

|f(x) ´ f(c)| ă ε whenever |x ´ c| ă δ and x P I .

Similar argument can be applied to the case when c is the right end-point of I.

Remark 1.52. Discontinuities of functions can be classified into different categories: re-
movable discontinuities and non-removable discontinuities. Let c be a discontinuity of a
function f . Then either (1) lim

xÑc
f(x) exists but lim

xÑc
f(x) ‰ f(c) or (2) lim

xÑc
f(x) does not

exist. If it is the first case, then c is called a removable discontinuity and that means
we can adjust/re-define the value of f at c to make it continuous at c. For the second case,
no matter what f(c) is, f cannot be continuous at c.

If lim
xÑc+

f(x) and lim
xÑc´

f(x) both exist but are not identical, c is also called a jump
discontinuity.

Proposition 1.53
Let f, g be defined on an interval I, c P I, and f, g be continuous at c. Then

1. f ˘ g is continuous at c.

2. fg is continuous at c.

3. f

g
is continuous at c if g(c) ‰ 0.



Corollary 1.54
Let f, g be continuous functions on an interval I. Then

1. f ˘ g is continuous on I.

2. fg is continuous on I

3. f

g
is continuous (on its domain).

Theorem 1.55
Let I, J be ���open intervals,, g : I Ñ R, f : J Ñ R be functions, and J contains the
range of g. If g is continuous at c, then f ˝ g is continuous at c.

Proof. Let ε ą 0 be given. Since f is continuous at g(c), there exists δ1 ą 0 such that
ˇ

ˇf(y) ´ f
(
g(c)

)ˇ
ˇ ă ε whenever

ˇ

ˇy ´ g(c)
ˇ

ˇ ă δ1 and y P J .

For such a δ1, by the continuity of g at c there exists δ ą 0 such that
ˇ

ˇg(x) ´ g(c)
ˇ

ˇ ă δ1 whenever |x ´ c| ă δ and x P I .

Suppose that |x ´ c| ă δ and x P I. Let y = g(x). By the condition that J contains the
range of g,

ˇ

ˇy ´ g(c)
ˇ

ˇ ă δ1 and y P J .

Therefore, if |x ´ c| ă δ and x P I,
ˇ

ˇf(g(x)) ´ f(g(c))
ˇ

ˇ ă ε

which shows the continuity of f ˝ g at c.

Corollary 1.56
Let I, J be ���open intervals, and g : I Ñ R, f : J Ñ R be continuous functions. If J
contains the range of g, then f ˝ g is continuous on I.

Example 1.57. Let g be continuous on an interval I, and n be a positive integer. We
show that gn and |g|

1
n are also continuous on I. Note that gn is the function given by

gn(x) = g(x)n and |g|
1
n is the function given by |g|

1
n = |g(x)|

1
n .



1. Let f(x) = xn. Then Theorem 1.14 (or Corollary 1.16) implies that f is continuous
on R. Since R contains the range of g, by the corollary above we find tat f ˝ g (” gn)

is continuous on I.

2. Let h(x) = |x|. Then Theorem 1.14 implies that h is continuous on R. Since R
contains the range of g, by the corollary above we find that h ˝ g (” |g|) is continuous
on I.

Let f(x) = x
1
n . Then Theorem 1.17 and Example 1.27 imply that f is continuous on

the non-negative real axis [0,8). Since [0,8) contains the range of |g|, the corollary
above shows that f ˝ |g|(” |g|

1
n ) is continuous on I.

Theorem 1.58: Intermediate Value Theorem - 中間值定理
If f is continuous on the closed interval [a, b], f(a) ‰ f(b), and k is any number
between f(a) and f(b), then there is at least one number c in [a, b] such that f(c) = k.

Example 1.59 (Bisection method of finding zeros of continuous functions). Let f be a
function and f(a)f(b) ă 0. Then the intermediate value theorem implies that there exists
a zero c of f between a and b. How do we “find” (one of) this c? Consider the middle point
a+ b

2
of a and b. If f

(a+ b

2

)
= 0, then we find this zero, or otherwise we either have

f(a)f
(a+ b

2

)
ă 0 or f(b)f

(a+ b

2

)
ă 0

and only one of them can happen. In either case we can consider the middle point of the two
points at which the value of f have different sign. Continuing this process, we can locate
one zero as accurate as possible.

Example 1.60. Let f : [0, 1] Ñ [0, 1] be a continuous function. In the following we prove
that there exists c P [0, 1] such that f(c) = c. To see this, W.L.O.G. we assume that f(0) ‰ 0

and f(1) ‰ 1 for otherwise we find c (which is 0 or 1) such that f(c) = c.
Define g(x) = f(x) ´ x. Then g is continuous (by Proposition 1.53). Since f : [0, 1] Ñ

[0, 1], f(0) ‰ 0 and f(1) ‰ 1, we must have g(0) ą 0 and g(1) ă 0. By the intermediate
value theorem, there exists c P (0, 1) such that g(c) = 0, and this implies that there exists
c P (0, 1) such that f(c) = c. So either (1) f(0) = 0, (2) f(1) = 1, or (3) there ia c P (0, 1)

such that f(c) = c.



1.4 Infinite Limits and Asymptotes
Definition 1.61

Let f be defined on an open interval containing c (except possible at c). The statement

lim
xÑc

f(x) = 8 ,

read “f(x) approaches infinity as x approaches c”, means that for every N ą 0 there
exists δ ą 0 such that

f(x) ą N whenever 0 ă |x ´ c| ă δ .

The statement
lim
xÑc

f(x) = 8 ,

read “f(x) approaches minus infinity as x approaches c”, means that for every N ą 0

there exists δ ą 0 such that

f(x) ă ´N whenever 0 ă |x ´ c| ă δ .

To define the infinite limit from the left/right, replace 0 ă |x ´ c| ă δ by c ă x ă

c + δ/c ´ δ ă x ă c. To define the infinite limit as x Ñ 8/x Ñ ´8, replace
0 ă |x ´ c| ă δ by x ą δ/x ă ´δ.

Note that the statement lim
xÑc

f(x) = 8 does not mean that the limit exists. It is a simple
notation for saying that the value of f becomes unbounded as x approaches c and the limit
fail to exist.

Example 1.62. lim
xÑ1

1

(x ´ 1)2
= 8, lim

xÑ1+

1

x ´ 1
= 8, and lim

xÑ1´

1

x ´ 1
= ´8.

Example 1.63. Later we will talk about the exponential function in detail. In the mean
time, assume that you know the graph of y = 2x. Then lim

xÑ8
2x = 8 and lim

xÑ´8
2x = 0.

‚ Asymptotes（漸近線）: If the distance between the graph of a function and some fixed
straight line approaches zero as a point on the graph moves increasingly far from the origin,
we say that the graph approaches the line asymptotically and that the line is an asymptote
of the graph.
Definition 1.64: Vertical Asymptotes - 垂直漸近線

If f approaches infinity (or minus infinity) as x approaches c from the left or from the

right, then the line x = c is called a vertical asymptote of the graph of f .



Definition 1.65: Horizontal and Slant (Oblique) Asymptotes - 水平與斜漸近線

The straight line y = mx+ k is an asymptote of the graph of the function y = f(x) if

lim
xÑ8

[
f(x) ´ mx ´ k

]
= 0 or lim

xÑ´8

[
f(x) ´ mx ´ k

]
= 0 .

The straight line y = mx + k is called a horizontal asymptote of the graph of f if
m = 0, and is called a slant (oblique) asymptote of the graph of f if m ‰ 0.

By the definition of horizontal asymptotes, it is clear that if lim
xÑ8

f(x) = k or lim
xÑ´8

f(x) =

k, then y = k is a horizontal asymptote of the graph of f .

Example 1.66. Let f(x) =
x2 + 3

3x2 ´ 4x+ 5
. Then lim

xÑ8
f(x) = lim

xÑ´8
f(x) =

1

3
; thus y =

1

3
is

a horizontal asymptote of the graph of f .

Example 1.67. Let f(x) =
x3 + 3

3x2 ´ 4x+ 5
. Then lim

xÑ8
f(x) = 8 and lim

xÑ´8
f(x) = ´8; thus

the graph of f has no horizontal asymptote. However,

lim
xÑ8

[
f(x) ´

x

3

]
= lim

xÑ8

[
3x3 + 9

3(3x2 ´ 4x+ 5)
´

x(3x2 ´ 4x+ 5)

3(3x2 ´ 4x+ 5)

]
= lim

xÑ8

4x2 ´ 5x+ 9

3(3x2 ´ 4x+ 5)
=

4

9
;

thus lim
xÑ8

[
f(x) ´

x

3
´

4

9

]
= 0. Therefore, y =

x

3
+

4

9
is a slant asymptote of the graph of f .

Theorem 1.68
Let f and g be continuous on an open interval containing c. If f(c) ‰ 0, g(c) = 0,
and there exists an open interval containing c such that g(x) ‰ 0 for all x ‰ c in
the interval, then the graph of the function h(x) =

f(x)

g(x)
has a vertical asymptote at

x = c.

Example 1.69. Let f(x) = tanx. Note that tan x =
sinx

cosx . For n P Z, sin
(
nπ+

π

2

)
‰ 0 and

cos
(
nπ +

π

2

)
= 0. Moreover, cos x ‰ 0 for every x in the open interval

(
nπ +

π

4
, nπ +

3π

4

)
except nπ +

π

2
. Therefore, by the theorem above we find that x = nπ +

π

2
is a vertical

asymptote of the graph of the tangent function for all n P Z.



Theorem 1.70
If y = mx+ k is a slant asymptote of the graph of the function y = f(x), then

m = lim
xÑ8

f(x)

x
or m = lim

xÑ´8

f(x)

x

and
k = lim

xÑ8

[
f(x) ´ mx

]
of k = lim

xÑ´8

[
f(x) ´ mx

]
.

Proof. It suffices to shows that m = lim
xÑ8

f(x)

x
or m = lim

xÑ´8

f(x)

x
. W.L.O.G., we assume

that lim
xÑ8

[
f(x) ´ mx ´ k

]
= 0. Then

lim
xÑ8

f(x) ´ mx ´ k

x
= 0 .

On the other hand, lim
xÑ8

mx+ k

x
= m. By the fact that f(x)

x
=

f(x) ´ mx ´ k

x
+

mx+ k

x
, we

find that lim
xÑ8

f(x)

x
exists and

lim
xÑ8

f(x)

x
= lim

xÑ8

[
f(x) ´ mx ´ k

x

]
+ lim

xÑ8

mx+ k

x
= m.

Example 1.71. In this example, we find all asymptotes of the graph of the function

f(x) =
3x3(x ´

3
?
x3 ´ x2 + x)

x2 ´ 1
.

Since the denominator vanishes at x = ˘1, there are two possible vertical asymptotes
x = 1 or x = ´1. Since the denominator also vanishes at x = 1, we need to check further
the behavior of f(x) as x approaches 1. Note that for x ‰ ˘1,

x ´
3
?
x3 ´ x2 + x

x2 ´ 1
=

x

(x+ 1)
[
x2 + x 3

?
x3 ´ x2 + x+ (x3 ´ x2 + x)

2
3

] ;
thus for x ‰ ˘1,

f(x) =
3x4

(x+ 1)
[
x2 + x 3

?
x3 ´ x2 + x+ (x3 ´ x2 + x)

2
3

] .
Therefore, lim

xÑ1
f(x) = 0 exists which shows that x = 1 is not a vertical asymptote of the

graph of f . On the other hand,

lim
xÑ´1+

f(x) = 8 and lim
xÑ´1´

f(x) = ´8 ,



we find that x = ´1 is the only vertical asymptote of the graph of f .
For slant or horizontal asymptotes, we note that for x ‰ ˘1, 0,

f(x)

x
=

3

(1 + 1
x
)
[
1 +

(
1 ´ 1

x
+ 1

x2

) 1
3 +

(
1 ´ 1

x
+ 1

x2

) 2
3
] . (1.4.1)

Since lim
xÑ˘8

1

x
= 0, we find that lim

xÑ8

f(x)

x
= 1 and lim

xÑ´8

f(x)

x
= 1. It remains to find the

limit lim
xÑ8

[
f(x) ´ x

]
and lim

xÑ´8

[
f(x) ´ x

]
. Using (1.4.1),

f(x) ´ x =
3x ´ (x+ 1)

[
1 +

(
1 ´ 1

x + 1
x2

) 1
3 +

(
1 ´ 1

x + 1
x2

) 2
3
](

1 + 1
x

)[
1 +

(
1 ´ 1

x + 1
x2

) 1
3 +

(
1 ´ 1

x + 1
x2

) 2
3
] .

Noting that the denominator approaches 3 as x approaches ˘8, we only focus on the limit
of the numerator. Since

3x ´ (x+ 1)
[
1 +

(
1´

1

x
+

1

x2

) 1
3 +

(
1´

1

x
+

1

x2

) 2
3

]
= 3x ´ (x+ 1)

[
3 +

((
1´

1

x
+

1

x2

) 1
3 ´ 1

)
+
((

1´
1

x
+

1

x2

) 2
3 ´ 1

)]
= ´3 ´

[(
1´

1

x
+

1

x2

) 1
3 ´ 1

][(
1´

1

x
+

1

x2

) 1
3 + 2

]
´ x

[(
1´

1

x
+

1

x2

) 1
3 ´ 1

][(
1´

1

x
+

1

x2

) 1
3 + 2

]
,

to find the limit of the numerator as x Ñ ˘8 it suffices to find the limit

lim
xÑ8

x
[(
1´

1

x
+

1

x2

) 1
3 ´ 1

]
and lim

xÑ´8
x
[(
1´

1

x
+

1

x2

) 1
3 ´ 1

]
.

Now, by Theorem 1.40,

lim
xÑ8

x
[(
1´

1

x
+

1

x2

) 1
3 ´ 1

]
= lim

xÑ0+

(
1´x+x2

) 1
3 ´ 1

x

= lim
xÑ0+

x ´ 1(
1´x+x2

) 2
3 +

(
1´x+x2

) 1
3 + 1

= ´
1

3

and similarly, lim
xÑ´8

x
[(
1´ 1

x
+ 1

x2

) 1
3 ´ 1

]
= ´

1

3
. Therefore,

lim
xÑ˘8

[
3x ´ (x+ 1)

[
1´

1

x
+

1

x2

) 1
3 +

(
1´

1

x
+

1

x2

) 2
3
]]

= ´3 +
1

3
¨ 3 = ´2 ;

thus lim
xÑ˘8

[
f(x)´ x

]
= ´

2

3
which implies that y = x´

2

3
is the only slant asymptote of the

graph of f .



Chapter 2

Differentiation

2.1 The Derivatives of Functions

Definition 2.1
Let f be a function defined on an open interval containing c. If the limit

lim
∆xÑ0

f(c+∆x) ´ f(c)

∆x
= m exists, then the line passing through

(
c, f(c)

)
with slope

m is the tangent line to the graph of f at point
(
(c, f(c)

)
.

Definition 2.2
Let f be a function defined on an open interval I containing c. f is said to be
differentiable at c if the limit

lim
∆xÑ0

f(c+∆x) ´ f(c)

∆x

exists. If the limit above exists, the limit is denoted by f 1(c) and called the derivative
of f at c. When the derivative of f at each point of I exists, f is said to be differentiable
on I and the derivative of f is a function denoted by f 1.

‚ Notation: The prime notation 1 is associated with a function (of one variable) and is
used to denote the derivative of that function. For a given function f defined on an open
interval I and x being the name of the variable, the limit operation

lim
∆xÑ0

f(x+∆x) ´ f(x)

∆x

32



is denoted by d

dx
f(x)

(
or df(x)

dx
or even dy

dx
if y = f(x)

)
, and the limit

lim
∆xÑ0

f(c+∆) ´ f(c)

∆x

is denoted by d

dx

ˇ

ˇ

ˇ

x=c
f(x) but not d

dx
f(c)

( d

dx
f(c) is in fact 0

)
. The operator d

dx
is a

differential operator called the differentiation and is applied to functions of variable x.
However, for historical (and convenient) reason, d

dx
f(x) is sometimes denoted by (f(x)) 1

(so that 1 is treated as the differential operator d

dx
) and f 1 is sometimes denoted by df

dx
(so

that f is always treated as a function of variable x).

Remark 2.3. Letting x = c+∆x in the definition of the derivatives, then

f 1(c) = lim
xÑc

f(x) ´ f(c)

x ´ c

if the limit exists.

Example 2.4. Let f be a constant function. Then f 1 is the zero function.

Example 2.5. Let f(x) = xn, where n is a positive integer. Then

f(x+∆x) = xn + Cn
1 x

n´1∆x+ Cn
2 x

n´2(∆x)2 + ¨ ¨ ¨ + Cn
n´1x(∆x)n´1 + (∆x)n ;

thus if ∆x ‰ 0,
f(x+∆x) ´ f(x)

∆x
= nxn´1 + Cn

2 x
n´2∆x+ ¨ ¨ ¨ + Cn

n´1x(∆x)n´2 + (∆x)n´1 .

The limit on the right-hand side is clearly nxn´1, so we establish that
d

dx
xn = nxn´1 .

Example 2.6. Now suppose that f(x) = x´n, where n is a positive integer. Then if
x+∆x ‰ 0,

f(x+∆x) =
1

xn + Cn
1 x

n´1∆x+ Cn
2 x

n´2(∆x)2 + ¨ ¨ ¨ + Cn
n´1x(∆x)n´1 + (∆x)n

;

thus if x ‰ 0, ∆x ‰ 0, and x+∆x ‰ 0 (which can be achieved if |∆x| ! 1),

f(x+∆x) ´ f(x)

∆x
=

´
[
Cn

1 x
n´1 + Cn

2 x
n´2∆x+ ¨ ¨ ¨ + Cn

n´1x(∆x)n´2 + (∆x)n´1
]

xn
[
xn + Cn

1 x
n´1∆x+ Cn

2 x
n´2(∆x)2 + ¨ ¨ ¨ + Cn

n´1x(∆x)n´1 + (∆x)n
] .



Therefore, if x ‰ 0,

lim
∆xÑ0

f(x+∆x) ´ f(x)

∆x
=

´nxn´1

x2n
= ´nx´n´1

which shows d

dx
x´n = ´nx´n´1.

Combining the previous three examples, we conclude that

d

dx
xn =

"

nxn´1 @x P R if n P N Y t0u ,

nxn´1 @x ‰ 0 if n P Z and n ă 0 .
(2.1.1)

Combining Example 2.4-2.6, we conclude that

d

dx
xn =

"

nxn´1 @x P R if n P N Y t0u ,

nxn´1 @x ‰ 0 if n P Z and n ă 0 .
(2.1.2)

我們注意到當 n 是負整數時，在計算
d

dx

ˇ

ˇ

ˇ

x=c
xn 時，已經必須先假設 c ‰ 0 才能計算導

數，並非最後算出來
d

dx

ˇ

ˇ

ˇ

x=c
xn = ncn´1 時發現 c 不可為零所以不能代入。這是一個非常

重要的觀念！不能搞錯順序！

Example 2.7. Let f(x) = sinx. By the sum and difference formula,

f(x+∆x) ´ f(x) = sin(x+∆x) ´ sinx = sinx cos∆x+ sin∆x cosx ´ sinx

= sinx(cos∆x ´ 1) + sin∆x cosx ;

thus by the fact that lim
xÑ0

sinx

x
= 1 and lim

xÑ0

cosx ´ 1

x
= 0, we find that

lim
∆xÑ0

f(x+∆x) ´ f(x)

∆x
= lim

∆xÑ0

[
sinx

cos∆x ´ 1

∆x
+

sin∆x

∆x
cosx

]
= cosx . (2.1.3)

In other words, the derivative of the sine function is cosine.
On the other hand, let g(x) = cosx. Then g(x) = ´f

(
x ´

π

2

)
. Then if ∆x ‰ 0,

g(x+∆x) ´ g(x)

∆x
= ´

f
(
x ´

π

2
+∆x

)
´ f

(
x ´

π

2

)
∆x

;

thus
lim

∆xÑ0

g(x+∆x) ´ g(x)

∆x
= ´ cos

(
x ´

π

2

)
= ´ sinx .

In other words, the derivative of the cosine function is minus sine. To summarize,
d

dx
sinx = cosx and d

dx
cosx = ´ sinx . (2.1.4)



Example 2.8. Consider the function g : R Ñ R defined by

g(x) =

"

x2 if x is rational ,
´x2 if x is irrational .

Then g(x) = xf(x), where f is given in Example 1.22. By the fact that lim
xÑ0

f(x) = 0,

lim
∆xÑ0

g(∆x) ´ g(0)

∆x
= lim

∆xÑ0
f(∆x) = 0 .

In other words, g is differentiable at 0. Moreover, similar argument used to explain that the
function f in Example 1.22 is only continuous at 0 can be used to show that the function g

is only continuous at 0. Therefore, we obtain a function which is differentiable at one point
but discontinuous elsewhere.

Remark 2.9. If f is a function defined on a interval I, and c is one of the end-point. Then
it is possible to define the one-sided derivative. For example, if c is the left end-point of I,
then we can consider the limit

lim
∆xÑ0+

f(c+∆x) ´ f(c)

∆x
= lim

xÑc+

f(x) ´ f(c)

x ´ c

if it exists. The limit above, if exists, is called the derivatives of f at c from the right.

Theorem 2.10: 可微必連續
Let f be a function defined on an open interval I, and c P I. If f is differentiable at
c, then f is continuous at c.

Proof. If x ‰ c, f(x) ´ f(c) =
f(x) ´ f(c)

x ´ c
(x ´ c). Since the limit lim

xÑc

f(x) ´ f(c)

x ´ c
exists and

lim
xÑc

(x ´ c) = 0, by Theorem 1.14 we conclude that

lim
xÑc

[
f(x) ´ f(c)

]
=

(
lim
xÑc

f(x) ´ f(c)

x ´ c

)(
lim
xÑc

(x ´ c)
)
= 0 .

Therefore, lim
xÑc

f(x) = f(c) which shows that f is continuous at c.

Remark 2.11. When f is continuous on an open interval I, f is not necessary differentiable
on I. For example, consider f(x) = |x|. Then Theorem 1.14 implies that f is continuous

on I, but lim
∆xÑ0

f(∆x) ´ f(0)

∆x
= lim

∆xÑ0

|∆x|

∆x
D.N.E.



2.2 Rules of Differentiation
Theorem 2.12

We have the following differentiation rules:

1. If k is a constant, then d

dx
k = 0.

2. If n is a non-zero integer, then d

dx
xn = nxn´1 (whenever xn´1 makes sense).

3. d

dx
sinx = cosx, d

dx
cosx = ´ sinx.

4. If k is a constant and f : (a, b) Ñ R is differentiable at c P (a, b), then kf is
differentiable at c and

d

dx

ˇ

ˇ

ˇ

x=c

[
kf(x)

]
= kf 1(c) .

5. If f, g : (a, b) Ñ R are differentiable at c P (a, b), then f ˘ g is differentiable at
c and

d

dx

ˇ

ˇ

ˇ

x=c

[
f(x) ˘ g(x)

]
= f 1(c) ˘ g 1(c) .

Proof of 5. Let h(x) = f(x) + g(x). Then if ∆x ‰ 0,

h(c+∆x) ´ h(c)

∆x
=

f(c+∆x) ´ f(c)

∆x
+

g(c+∆x) ´ g(c)

∆x
.

Since f, g are differentiable at c,

lim
∆xÑ0

f(c+∆x) ´ f(c)

∆x
= f 1(c) and lim

∆xÑ0

g(c+∆x) ´ g(c)

∆x

exist. Therefore, by Theorem 1.14,

h 1(c) = f 1(c) + g 1(c) .

The conclusion for the difference can be proved in the same way.

Example 2.13. Let f(x) = 3x2 ´ 5x+ 7. Then

d

dx
f(x) =

d

dx
(3x2 ´ 5x) +

d

dx
7 =

d

dx
(3x2) ´

d

dx
(5x)

= 3
d

dx
x2 ´ 5

d

dx
x = 3 ¨ (2x) ´ 5 = 6x ´ 5 .



In general, for a polynomial function

p(x) = anx
n + an´1x

n´1 + ¨ ¨ ¨ + a1x+ a0 ”

n
ÿ

k=0

akx
k ,

where a0, a1, ¨ ¨ ¨ , an P R, by induction we can show that

d

dx
p(x) = nanx

n´1 + (n ´ 1)an´1x
n´2 + ¨ ¨ ¨ + a1 =

n
ÿ

k=1

kakx
k´1 .

Theorem 2.14: Product Rule
Let f, g : (a, b) Ñ R be real-valued functions, and c P (a, b). If f and g are differen-
tiable at c, then fg is differentiable at c and

d

dx

ˇ

ˇ

ˇ

x=c
(fg)(x) = f 1(c)g(c) + f(c)g 1(c) .

Proof. Let h(x) = f(x)g(x). Then

h(c+∆x) ´ h(c) = f(c+∆x)g(c+∆x) ´ f(c)g(c)

= f(c+∆x)g(c+∆x) ´ f(c)g(c+∆x) + f(c)g(c+∆x) ´ f(c)g(c)

=
[
f(c+∆x) ´ f(c)

]
g(c+∆x) + f(c)

[
g(c+∆x) ´ g(c)

]
.

Therefore, if ∆x ‰ 0,

h(c+∆x) ´ h(c)

∆x
=

f(c+∆x) ´ f(c)

∆x
g(c+∆x) + f(c)

g(c+∆x) ´ g(c)

∆x
.

Since f, g are differentiable at c,

lim
∆xÑ0

f(c+∆x) ´ f(c)

∆x
= f 1(c) , lim

∆xÑ0

g(c+∆x) ´ g(c)

∆x
, and lim

∆xÑ0
g(c+∆x) = g(c)

exist. By Theorem 1.14,
h 1(c) = f 1(c)g(c) + f(c)g 1(c)

which concludes the product rule.

Example 2.15. Let f(x) = x3 sinx. Then the product rule implies that

f 1(x) = 3x2 sinx+ x3 cosx .



Theorem 2.16: Quotient Rule
Let f, g : (a, b) Ñ R be real-valued functions, and c P (a, b). If f and g are differen-

tiable at c and g(c) ‰ 0, then f

g
is differentiable at c and

d

dx

ˇ

ˇ

ˇ

x=c

f

g
(x) =

f 1(c)g(c) ´ f(c)g 1(c)

g(c)2
.

Proof. Let h(x) =
f(x)

g(x)
. Then

h(c+∆x) ´ h(c) =
f(c+∆x)

g(c+∆x)
´

f(c)

g(c)
=

f(c+∆x)g(c) ´ f(c)g(c+∆x)

g(c)g(c+∆x)

=
f(c+∆x)g(c) ´ f(c)g(c) + f(c)g(c) ´ f(c)g(c+∆x)

g(c)g(c+∆x)

=

[
f(c+∆x) ´ f(c)

]
g(c) ´ f(c)

[
g(c+∆x) ´ g(c)

]
g(c)g(c+∆x)

.

Therefore, if ∆x ‰ 0,

h(c+∆x) ´ h(c)

∆x
=

1

g(c)g(c+∆x)

[f(c+∆x) ´ f(c)

∆x
g(c) ´ f(c)

g(c+∆x) ´ g(c)

∆x

]
.

Since f, g are differentiable at c,

lim
∆xÑ0

f(c+∆x) ´ f(c)

∆x
= f 1(c) , lim

∆xÑ0

g(c+∆x) ´ g(c)

∆x
, and lim

∆xÑ0
g(c+∆x) = g(c)

exist. By Theorem 1.14,

h 1(c) =
1

g(c)2

[
f 1(c)g(c) ´ f(c)g 1(c)

]
which concludes the quotient rule.

Remark 2.17. Suppose that in addition to the assumption in Theorem 2.16 one has already
known that h = f/g is differentiable at c, then applying the product rule to f = gh one
finds that

f 1(c) = g 1(c)h(c) + g(c)h 1(c) = g 1(c)
f(c)

g(c)
+ g(c)h 1(c)

which, after rearranging terms, shows the quotient rule. The proof of Theorem 2.16 indeed
is based on the fact that we do not know the differentiability of h at c yet.



Example 2.18. Let n be a positive integer and f(x) = x´n. We have shown by definition
that f 1(x) = ´nx´n´1 if x ‰ 0. Now we use Theorem 2.16 to compute the derivative of f :
if x ‰ 0,

d

dx
x´n =

d

dx

1

xn
= ´

d

dx
xn

x2n
= ´

nxn´1

x2n
= ´nx´n´1 .

Example 2.19. Since tanx =
sinx

cosx , by Theorem 2.16 we have

d

dx
tanx =

cos2 x+ sin2 x

cos2 x =
1

cos2 x = sec2 x .

Similarly, we also have
d

dx
cotx =

´ sin2 x ´ cos2 x
sin2 x

= ´ csc2 x ,
d

dx
secx = ´

´ sinx

cos2 x = secx tanx ,

d

dx
cscx = ´

cosx
sin2 x

= ´ cscx cotx .

We note that without using the quotient rule, the derivative of the tangent function can be
found using the sum-and-difference formula

tan(x ´ y) =
tanx ´ tan y

1 + tanx tan y
. (2.2.1)

Using (2.2.1), we find that

tan(x+∆x) ´ tanx = tan∆x
[
1 + tan(x+∆x) tanx

]
;

thus if ∆x ‰ 0,

tan(x+∆x) ´ tanx

∆x
=

sin∆x

∆x
¨
1 + tan(x+∆x) tanx

cos∆x

which, using (1.2.2), shows that

lim
∆xÑ0

tan(x+∆x) ´ tanx

∆x
=

(
lim

∆xÑ0

sin∆x

∆x

)(
lim

∆xÑ0

1 + tan(x+∆x) tanx

cos∆x

)
= sec2 x .

‚ Higher-order derivatives:
Let f be defined on an open interval I = (a, b). If f 1 exists on I and possesses derivatives

at every point in I, by definition we use f 11 to denote the derivative of f 1.In other words,

f 11(x) =
d

dx
f 1(x) =

d

dx

d

dx
f(x) ”

d2

dx2
f(x) =

d2f(x)

dx2

(
=

d2y

dx2
if y = f(x)

)
.



The function f 11 is called the second derivative of f . Similar as the “first” derivative case,

f 11(c) =
d2

dx2

ˇ

ˇ

ˇ

x=c
f(x).

The third derivatives and even higher-order derivatives are denoted by the following: if
y = f(x),

Third derivative: y 12 f 12(x)
d3

dx3
f(x)

d3f(x)

dx3

Fourth derivative: y(4) f (4)(x)
d4

dx4
f(x)

d4f(x)

dx4

...

n-th derivative: y(n) f (n)(x)
dn

dxn
f(x)

dnf(x)

dxn
.

2.3 The Chain Rule
The chain rule is used to study the derivative of composite functions.
Theorem 2.20: Chain Rule - 連鎖律

Let I, J be open intervals, f : J Ñ R, g : I Ñ R be real-valued functions, and the
range of g is contained in J . If g is differentiable at c P I and f is differentiable at
g(c), then f ˝ g is differentiable at c and

d

dx

ˇ

ˇ

ˇ

x=c
(f ˝ g)(x) = f 1(g(c))g 1(c) .

Proof. To simplify the notation, we set d = g(c).
Let ε ą 0 be given. Since f is differentiable at d and g is differentiable at c, there exist

δ1, δ2 ą 0 such that
ˇ

ˇ

ˇ

f(d+ k) ´ f(d)

k
´ f 1(d)

ˇ

ˇ

ˇ
ă

ε

2(1 + |g 1(c)|)
whenever 0 ă |k| ă δ1 ,

ˇ

ˇ

ˇ

g(c+ h) ´ g(c)

h
´ g 1(c)

ˇ

ˇ

ˇ
ă min

!

1,
ε

2(1 + |f 1(d)|)

)

whenever 0 ă |h| ă δ2 .

Therefore,
ˇ

ˇf(d+ k) ´ f(d) ´ f 1(d)k
ˇ

ˇ ď
ε

2(1 + |g 1(c)|)
|k| whenever |k| ă δ1 ,

ˇ

ˇg(c+ h) ´ g(c) ´ g 1(c)h
ˇ

ˇ ď min
!

1,
ε

2(1 + |f 1(d)|)

)

|h| whenever |h| ă δ2 .



By Theorem 2.10, g is continuous at c; thus lim
hÑ0

g(c + h) = g(c). This fact provides δ3 ą 0

such that
ˇ

ˇg(c+ h) ´ g(c)
ˇ

ˇ ă δ1 whenever |h| ă δ3 .

Define δ = mintδ2, δ3u. Then δ ą 0. Moreover, if |h| ă δ, the number k ” g(c+h)´ g(c)

satisfies |k| ă δ1. As a consequence, if |h| ă δ,
ˇ

ˇ(f ˝ g)(c+ h) ´ (f ˝ g)(c) ´ f 1(d)g 1(c)h
ˇ

ˇ =
ˇ

ˇf(g(c+ h)) ´ f(d) ´ f 1(d)g 1(c)h
ˇ

ˇ

=
ˇ

ˇf(d+ k) ´ f(d) ´ f 1(d)g 1(c)h
ˇ

ˇ

=
ˇ

ˇf(d+ k) ´ f(d) ´ f 1(d)k + f 1(d)k ´ f 1(d)g 1(c)h
ˇ

ˇ

ď
ˇ

ˇf(d+ k) ´ f(d) ´ f 1(d)k
ˇ

ˇ+
ˇ

ˇf 1(d)
ˇ

ˇ

ˇ

ˇk ´ g 1(c)h
ˇ

ˇ

ď
ε

2(1 + |g 1(c)|)
|k| +

ˇ

ˇf 1(d)
ˇ

ˇ

ˇ

ˇg(c+ h) ´ g(c) ´ g 1(c)h
ˇ

ˇ

ď
ε

2(1 + |g 1(c)|)

(
|k ´ g 1(c)h| + |g 1(c)||h|

)
+
ˇ

ˇf 1(d)
ˇ

ˇ

ε

2(1 + |f 1(d)|)

ď
ε

2(1 + |g 1(c)|)

(
|h| + |g 1(c)||h|

)
+
ˇ

ˇf 1(d)
ˇ

ˇ

ε|h|

2(1 + |f 1(d)|)

=
ε

2
|h| +

ˇ

ˇf 1(d)
ˇ

ˇ

2(1 + |f 1(d)|)
ε|h| .

The inequality above implies that if 0 ă |h| ă δ,

ˇ

ˇ

ˇ

(f ˝ g)(c+ h) ´ (f ˝ g)(c)

h
´ f 1(d)g 1(c)

ˇ

ˇ

ˇ
ď

ε

2
+

ˇ

ˇf 1(d)
ˇ

ˇ

2(1 + |f 1(d)|)
ε ă ε

which concludes the chain rule.

How to memorize the chain rule? Let y = g(x) and u = f(y). Then the derivative

u = (f ˝ g)(x) is du

dx
=

du

dy

dy

dx
.

Example 2.21. Let f(x) = (3x ´ 2x2)3. Then f 1(x) = 3(3x ´ 2x2)2(3 ´ 4x).

Example 2.22. Let f(x) =
(
3x ´ 1

x2 + 3

)2

. Then

f 1(x) = 2
(3x ´ 1

x2 + 3

)2´1 d

dx

3x ´ 1

x2 + 3
=

2(3x ´ 1)

x2 + 3
¨
3(x2 + 3) ´ 2x(3x ´ 1)

(x2 + 3)2

=
2(3x ´ 1)(´3x2 + 2x+ 9)

(x2 + 3)3
.



Example 2.23. Let f(x) = tan3
[
(x2 ´ 1)2

]
. Then

f 1(x) =
!

3 tan2
[
(x2 ´ 1)2

]
sec2

[
(x2 ´ 1)2

])
ˆ
[
2(x2 ´ 1) ¨ (2x)

]
= 12x(x2 ´ 1) tan2

[
(x2 ´ 1)2

]
sec2

[
(x2 ´ 1)2

]
.

Example 2.24. Let f : R Ñ R be defined by

f(x) =

#

x2 sin 1

x
if x ‰ 0

0 if x = 0 .

Then if x ‰ 0, by the chain rule we have

f 1(x) =
(

d

dx
x2
)

sin 1

x
+ x2

(
d

dx
sin 1

x

)
= 2x sin 1

x
+ x2 cos 1

x

(
d

dx

1

x

)
= 2x sin 1

x
+ x2 cos 1

x

(
´

1

x2

)
= 2x sin 1

x
´ cos 1

x
.

Next we compute f 1(0). If ∆x ‰ 0, we have

ˇ

ˇ

ˇ

f(∆x) ´ f(0)

∆x

ˇ

ˇ

ˇ
=
ˇ

ˇ

ˇ
∆x sin 1

∆x

ˇ

ˇ

ˇ
ď |∆x| ;

thus ´|∆x| ď
f(∆x) ´ f(0)

∆x
ď |∆x| for all ∆x ‰ 0 and the Squeeze Theorem implies that

f 1(0) = lim
∆xÑ0

f(∆x) ´ f(0)

∆x
= 0 .

Therefore, we conclude that

f 1(x) =

$

&

%

2x sin 1

x
´ cos 1

x
if x ‰ 0 ,

0 if x = 0 .

Definition 2.25
Let f be a function defined on an open interval I. f is said to be continuously
differentiable on I if f is differentiable on I and f 1 is continuous on I.

The function f given in Example 2.24 is differentiable on R but not continuously differ-
entiable since lim

xÑ0
f 1(x) D.N.E.



2.4 Implicit Differentiation
An implicit function is a function that is defined implicitly by an equation that x and y

satisfy, by associating one of the variables (the value y) with the others (the arguments x).
For example, x2 + y2 = 1 and x = cos y are implicit functions. Sometimes we know how
to express y in terms of x from the equation (such as the first case above y =

?
1 ´ x2

or y = ´
?
1 ´ x2), while in most cases there is no way to know what the function y of x

exactly is.
Given an implicit function (without solving for y in terms of x from the equation),

can we find the derivative of y? This is the main topic of this section. We first focus on
implicit functions of the form f(x) = g(y). If f(a) = g(b), we are interested in how the set
␣

(x, y)
ˇ

ˇ f(x) = g(y)
(

looks like “mathematically” near (a, b).
Theorem 2.26: Implicit Function Theorem - 隱函數定理簡單版

Let f, g be continuously differentiable functions defined on some open intervals, and
f(a) = g(b). If g 1(b) ‰ 0, then there exists a unique continuously differentiable
function y = h(x), defined in an open interval containing a, satisfying that b = h(a)

and f(x) = g(h(x)).

Example 2.27. Let us compute the derivative of h(x) = xr, where r =
p

q
for some p, q P N

and (p, q) = 1. Write y = h(x). Then yq = xp. Since d

dy
yq = qyq´1 ‰ 0 if y ‰ 0, by the

Implicit Function Theorem we find that h is differentiable at every x satisfying x ‰ 0. Since
h(x)q = xp, by the chain rule we find that

qh(x)q´1h 1(x) = pxp´1 @x ‰ 0 ;

thus
h 1(x) =

p

q
h(x)1´qxp´1 =

p

q
x

p
q
(1´q)+p´1 = rxr´1 @x ‰ 0 .

If r is a negative rational number, we can apply the quotient and find that

d

dx
xr =

d

dx

1

x´r
=

rx´r´1

x´2r
= rxr´1 @x ‰ 0 .

Therefore, we conclude that

d

dx
xr = rxr´1 @x ‰ 0 . (2.4.1)



Remark 2.28. The derivative of xr can also be computed by first finding the derivative of

x
1
p
(
that is, find the limit lim

∆xÑ0

(x+∆x)
1
p ´ x

1
p

∆x

)
and then apply the chain rule.

Example 2.29. Suppose that y is an implicit function of x given that y3+y2´5y´x2 = ´4.

1. Find dy

dx
.

2. Find the tangent line passing through the point (3,´1).

Let f(x) = x2 ´ 4 and g(y) = y3 + y2 ´ 5y. Then g 1(y) = 3y2 + 2y ´ 5; thus if y ‰ 1 or

y ‰ ´
5

3

(
or equivalently, x ‰ ˘1 or x ‰ ˘

c

283

27

)
,

dy

dx
=

2x

3y2 + 2y ´ 5
.

Since (1,´3) satisfies the relation y3 + y2 ´ 5y ´ x2 = ´4, the slope of the tangent line
passing through (3,´1) is 2 ¨ 3

3(´1)2 + 2(´1) ´ 5
= ´

3

2
; thus the desired tangent line is

y = ´
3

2
(x ´ 3) ´ 1 .

Example 2.30. Find dy

dx
implicitly for the equation sin y = x.

Let f(x) = x and g(y) = sin y. Then g 1(y) = cos y; thus if y ‰ nπ +
π

2
(or equivalently,

x ‰ ˘1),
dy

dx
=

1

cos y . (2.4.2)

Similarly, for function y defined implicitly by cos y = x, we find that if y ‰ nπ (or equiva-
lently, x ‰ ˘1),

dy

dx
= ´

1

sin y
. (2.4.3)

Remark 2.31. The curve consisting of points (x, y) satisfying the relation sin y = x cannot
be the graph of a function since one x may corresponds to several y; however, the curve
consisting of points (x, y) satisfying the relation sin y = x as well as ´

π

2
ă y ă

π

2
is the

graph of a function called arcsin. In other words, for each x P (´1, 1), there exists a unique
y P

(
´

π

2
,
π

2

)
satisfying sin y = x, and such y is denoted by arcsin x. Since for y P

(
´

π

2
,
π

2

)
we must have cos y ą 0, by the fact that sin2 y + cos2 y = 1, using (2.4.2) we find that

d

dx
arcsinx =

1
?
1 ´ x2

@x P (´1, 1) . (2.4.4)



Similarly, the curve consisting of points (x, y) satisfying the relation cos y = x as well as
0 ă y ă π is the graph of a function called arccos, and (2.4.3) implies that

d

dx
arccosx = ´

1
?
1 ´ x2

@x P (´1, 1) . (2.4.5)

x

y

y = arcsinx

sin y = x

sin y = x

sin y = x

x

y

y = arccosx

cos y = x

cos y = x

cos y = x

cos y = x

Figure 2.1: The graph of functions y = arcsinx and y = arccosx

There are, unfortunately, many implicit functions that are not given by the equation
of the form f(x) = g(y). Nevertheless, there is a more powerful version of the Implicit
Function Theorem that guarantees the continuous differentiability of the implicit functions
defined through complicated relations between x and y (written in the form f(x, y) = 0).
In the following, we always assume that the implicit function given by the equation that x

and y satisfy is differentiable.

Example 2.32. Find the second derivative of the implicit function given by the equation
y = cos(5x ´ 3y).

Differentiate in x once, we find that dy

dx
= ´ sin(5x ´ 3y) ¨

(
5 ´ 3

dy

dx

)
; thus

dy

dx
=

´5 sin(5x ´ 3y)

1 ´ 3 sin(5x ´ 3y)
=

5

3

[
1 ´

1

1 ´ 3 sin(5x ´ 3y)

]
. (2.4.6)

Differentiate the equation above in x, we obtain that
d2y

dx2
= ´

5

3
¨
3 cos(5x ´ 3y)(5 ´ 3y 1)[
1 ´ 3 sin(5x ´ 3y)

]2 = ´
5 cos(5x ´ 3y)(5 ´ 3y 1)[
1 ´ 3 sin(5x ´ 3y)

]2
and (2.4.6) further implies that d2y

dx2
= ´

25 cos(5x ´ 3y)[
1 ´ 3 sin(5x ´ 3y)

]3 .



Example 2.33. Show that if it is possible to draw three normals from the point (a, 0) to
the parabola x = y2, then a ą

1

2
.

Suppose that the line L connecting (a, 0) and (b2, b), where b ‰ 0, is normal to the
parabola x = y2. The derivative of the function defined implicitly by x = y2 satisfies that

1 = 2y
dy

dx
;

thus the slope of the tangent line passing through (b2, b) is 1

2b
. Since line L is perpendicular

to the tangent line passing through (b2, b), we must have

1

2b
¨
b ´ 0

b2 ´ a
= ´1 .

Therefore, a =
1

2
+ b2. Since b ‰ 0, a ą

1

2
.



Chapter 3

Applications of Differentiation

3.1 Extrema on an Interval

Definition 3.1
Let f be defined on an interval I containing c.

1. f(c) is the minimum of f on I when f(c) ď f(x) for all x in I.

2. f(c) is the maximum of f on I when f(c) ě f(x) for all x in I.

The minimum and maximum of a function on an interval are the extreme values, or
extrema (the singular form of extrema is extremum), of the function on the interval.
The minimum and maximum of a function on an interval are also called the absolute
minimum and absolute maximum, or the global minimum and global maximum, on the
interval. Extrema can occur at interior points or end-points of an interval. Extrema
that occur at the end-points are called end-point extrema.

Theorem 3.2: Extreme Value Theorem - 極值定理
If f is continuous on a closed interval [a, b], then f has both a minimum and a
maximum on the interval.（連續函數在閉區間上必有最大最小值）

When f is continuous on an open interval (a, b) (or a half-open half-closed interval), it is
still possibly that f attains its maximum or minimum but there is no guarantee. Moreover,
it is also possible that f does not attain its extrema when f is continuous on an interval
which is not closed.
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Definition 3.3
Let f be defined on an interval I containing c.

1. If there is an open interval containing c on which f(c) is a maximum, then f(c)

is called a relative maximum of f , or you can say that f has a relative maximum
at

(
c, f(c)

)
.

2. If there is an open interval containing c on which f(c) is a minimum, then f(c)

is called a relative minimum of f , or you can say that f has a relative minimum
at

(
c, f(c)

)
.

The plural of relative maximum is relative maxima, and the plural of relative minimum
is relative minima. Relative maximum and relative minimum are sometimes called
local maximum and local minimum, respectively.

Definition 3.4
Let f be defined on an open interval containing c. The number/point c is called a
critical number or critical point of f if f 1(c) = 0 or if f is not differentiable at c.

Theorem 3.5
If f has a relative minimum or relative maximum at x = c, then c is a critical point
of f .

Proof. W.L.O.G., we assume that f is differentiable at c. If f 1(c) ą 0, then there exists
δ1 ą 0 such that

ˇ

ˇ

ˇ

f(x) ´ f(c)

x ´ c
´ f 1(c)

ˇ

ˇ

ˇ
ă

f 1(c)

2
if 0 ă |x ´ c| ă δ1 ;

thus
f 1(c)

2
ă

f(x) ´ f(c)

x ´ c
ă

3f 1(c)

2
if 0 ă |x ´ c| ă δ1 .

1. If 0 ă x ´ c ă δ1,

f(c) +
f 1(c)

2
(x ´ c) ă f(x) ă f(c) +

3f 1(c)

2
(x ´ c)

which implies that f cannot attain a relative maximum at x = c since f(x) ą f(c) on
the right-hand side of c.



2. if ´δ ă x ´ c ă 0,

f(c) +
f 1(c)

2
(x ´ c) ą f(x) ą f(c) +

3f 1(c)

2
(x ´ c)

which implies that f cannot attain a relative minimum at x = c since f(c) ą f(x) on
the left-hand side of c.

Therefore, we conclude that if f 1(c) ą 0, then f cannot attain either a relative maximum
or minimum at x = c. Similar conclusion can be drawn for the case f 1(c) ă 0; thus if f
attains a relative extremum at x = c, then f 1(c) = 0.

Remark 3.6. A more strict version of Theorem 3.5 is called Fermat’s Theorem which
is stated as follows:

If f has a local maximum or minimum at c, and if f 1(c) exists, then f 1(c) = 0.

The way to find extrema of a continuous function f on a closed interval [a, b]:

1. Find the critical points of f in (a, b).

2. Evaluate f at each critical points in (a, b).

3. Evaluate f at the end-points of [a, b].

4. The least of these values is the minimum, and the greatest is the maximum.

Example 3.7. Find the extrema of f(x) = 2 sinx ´ cos 2x on the interval [0, 2π].
Since f is differentiable on (0, 2π), a critical point c satisfies

0 = f 1(c) = 2 cos c+ 2 sin 2c = 2 cos c(1 + 2 sin c) .

Therefore, c =
π

2
, c =

3π

2
, c =

7π

6
or c =

11π

6
, and the values of f at these critical points

are

f
(π
2

)
= 2 ¨ 1 ´ (´1) = 3 , f

(3π
2

)
= 2 ¨ (´1) ´ (´1) = ´1 ,

f
(7π
6

)
= 2 ¨

(
´

1

2

)
´

1

2
= ´

3

2
, f

(11π
6

)
= 2 ¨

(
´

1

2

)
´

1

2
= ´

3

2
.

On the other hand, the values of f at the end-points are

f(0) = 2 ¨ 0 ´ 1 = ´1 and f(2π) = 2 ¨ 0 ´ 1 = ´1 .

Therefore, f
(π
2
) = 3 is the maximum of f on [0, 2π], while the minimum of f on [0, 2π]

occurs at c =
7π

6
and c =

11π

6
and the minimum is ´

3

2
.



3.2 Rolle’s Theorem and the Mean Value Theorem
Theorem 3.8: Rolle’s Theorem

Let f : [a, b] Ñ R be a continuous function and f is differentiable on (a, b). If
f(a) = f(b), then there is at least one point c P (a, b) such that f 1(c) = 0.

Proof. If f is a constant function, then f 1(x) = 0 for all x P (a, b). Now suppose that f

is not a constant function on [a, b], by the Extreme Value Theorem implies that f has a
maximum and a minimum on [a, b], and the maximum and the minimum of f on [a, b] are
different. Therefore, there must be a point c P (a, b) at which f attains its extreme value.
By Theorem 3.5, f 1(c) = 0.

Theorem 3.9: Mean Value Theorem
If f : [a, b] Ñ R is continuous and f is differentiable on (a, b), then there exists a point
c P (a, b) such that

f 1(c) =
f(b) ´ f(a)

b ´ a
.

Proof. Define g : [a, b] Ñ R by g(x) =
[
f(x) ´ f(a)

]
(b ´ a) ´

[
f(b) ´ f(a)

]
(x ´ a). Then

g : [a, b] Ñ R is continuous and g is differentiable on (a, b). Moreover, g(a) = g(b) = 0; thus
the Rolle Theorem implies that there exists c P (a, b) such that g 1(c) = 0. On the other
hand,

0 = g 1(c) = (b ´ a)f 1(c) ´
[
f(b) ´ f(a)

]
;

thus there exists c P (a, b) satisfying f 1(c) =
f(b) ´ f(a)

b ´ a
.

Remark 3.10. In fact, by modifying the proof of the mean value theorem a little bit, we
can show the following: Let f, g : [a, b] Ñ R be continuous on [a, b] and differentiable on
(a, b). If g 1(x) ‰ 0 for all x P (a, b), then there exists c P (a, b) such that

f 1(c)

g 1(c)
=

f(b) ´ f(a)

g(b) ´ g(a)
.

The statement above is a generalization of the mean value theorem and is called the Cauchy
mean value theorem (see Theorem ??).



Example 3.11. Note that the sine function is continuous on any closed interval [a, b] and is
differentiable on (a, b). Therefore, the mean value theorem implies that there exists c P (a, b)

such that
cos c = d

dx

ˇ

ˇ

ˇ

x=c
sinx =

sin b ´ sin a

b ´ a

which implies that | sin a ´ sin b| = | cos c||a ´ b| ď |a ´ b|. Therefore,

| sinx ´ sin y| ď |x ´ y| @ x, y P R .

Similarly,
| cosx ´ cos y| ď |x ´ y| @ x, y P R .

3.3 Monotone Functions and the First Derivative Test
Definition 3.12

Let f be defined on an interval I.
1. f is said to be increasing on I if

f(x1) ď f(x2) @x1, x2 P I and x1 ă x2 .

2. f is said to be decreasing on I if

f(x1) ě f(x2) @x1, x2 P I and x1 ă x2 .

3. f is said to be strictly increasing on I if

f(x1) ă f(x2) @x1, x2 P I and x1 ă x2 .

4. f is said to be strictly decreasing on I if

f(x1) ą f(x2) @x1, x2 P I and x1 ă x2 .

When f is either increasing on I or decreasing on I, then f is said to be monotone.
When f is either strictly increasing on I or strictly decreasing on I, then f is said to
be strictly monotone on I.

Remark 3.13. Note that f is increasing on I if

f(x1) ´ f(x2)

x1 ´ x2

ě 0 @x1, x2 P I and x1 ‰ x2 .

Therefore, f is increasing on I if the slope of each secant line of the graph of f is non-
negative. Similar conclusions hold for the other cases.



Example 3.14. The function f(x) = x3 is strictly increasing on R, and f(x) = ´x3 is
strictly decreasing on R.

Example 3.15. The sine function is strictly increasing on
[
2nπ ´

π

2
, 2nπ +

π

2

]
for all

n P Z, but decreasing on
[
2nπ ´

π

2
, 2nπ +

3π

2

]
for all n P Z. However, the sine function

is not strictly increasing on
8
Ť

n=´8

[
2nπ ´

π

2
, 2nπ +

π

2

]
and is not strictly decreasing on

8
Ť

n=´8

[
2nπ ´

π

2
, 2nπ +

3π

2

]
.

Theorem 3.16
Let f : [a, b] Ñ R be continuous and f is differentiable on (a, b).

1. If f 1(x) ě 0 for all x P (a, b), then f is increasing on [a, b].

2. If f 1(x) ď 0 for all x P (a, b), then f is decreasing on [a, b].

3. If f 1(x) ą 0 for all x P (a, b), then f is strictly increasing on [a, b].

4. If f 1(x) ă 0 for all x P (a, b), then f is strictly decreasing on [a, b].

Proof. We only prove 1 since all the other conclusion can be proved in a similar fashion.
Suppose that f 1(x) ě 0, and x1 ă x2. By the Mean Value Theorem, there exists

c P (x1, x2) such that
f(x1) ´ f(x2)

x1 ´ x2

= f 1(c) ě 0 ;

thus f(x1) ď f(x2) if x1 ă x2.

Remark 3.17. The condition f 1(x) ą 0 is just a sufficient condition for that f is strictly
increasing, but not a necessary condition. For example, f(x) = x3 is strictly increasing on
R, but f 1(0) = 0.

Example 3.18. Show that

cosx ě 1 ´
x2

2
@x ě 0 . (3.3.1)

Let f(x) = cosx ´ 1 +
x2

2
. In order to show (3.3.1), we need to show that f(x) ě 0 for

all x ě 0. Since f 1(x) = ´ sinx + x, by Theorem 0.13 we find that f 1 is non-negative on
[0,8). Therefore, Theorem 3.16 implies that f is increasing on [0,8) which further shows
that f(x) ě f(0) = 0 for all x ě 0.



Example 3.19. Using (3.3.1), we can show that

sinx ě x ´
x3

6
@x ě 0 .

In fact, by defining g(x) = sinx ´ x+
x3

6
, using (3.3.1) we find that

g 1(x) = cosx ´ 1 +
x2

2
ě 0 @x ě 0 ;

thus g is increasing on [0,8) which shows that g(x) ě g(0) = 0 for all x ě 0. Similar
argument then shows that

cosx ď 1 ´
x2

2
+

x4

24
@x ě 0

and the inequality above in turn implies that

sinx ď x ´
x3

6
+

x5

120
@x ě 0 .

By induction, we can show that for all k P N Y t0u,

x ´
x3

3!
+ ¨ ¨ ¨ +

x4k+1

(4k + 1)!
´

x4k+3

(4k + 3)!
ď sinx ď x ´

x3

3!
+ ¨ ¨ ¨ +

x4k+1

(4k + 1)!
@x ě 0 ,

1 ´
x2

2!
+ ¨ ¨ ¨ +

x4k

(4k)!
´

x4k+2

(4k + 2)!
ď cosx ď 1 ´

x2

2
+ ¨ ¨ ¨ +

x4k

(4k)!
@x ě 0 .

Theorem 3.20: The First Derivative Test
Let f be a continuous function defined on an open interval I containing c. If f is
differentiable on I, except possibly at c, then

1. If f 1 changes from negative to positive at c, then f(c) is a local minimum of f .

2. If f 1 changes from positive to negative at c, then f(c) is a local maximum of f .

3. If f 1 is sign definite on Iztcu, then f(c) is neither a relative minimum or relative
maximum of f .

Proof. We only prove 1. Assume that f 1 changes from negative to positive at c. Then there
exists a and b in I such that

f 1(x) ă 0 for all x P (a, c) and f 1(x) ą 0 for all x P (c, b) .

By Theorem 3.16, f is decreasing on (a, c) and is increasing on (c, b). Therefore, f(c) is a
minimum on an open interval (a, b); thus is a relative minimum on I.



Example 3.21. Find the relative extrema of f(x) = 1

2
x ´ sinx in the interval (0, 2π).

By Theorem 3.5 the relative extrema occurs at critical points. Since f is differentiable
on (0, 2π), a critical point x satisfies

0 = f 1(x) =
1

2
´ cosx

which implies that c =
π

3
and c =

5π

3
are the only critical points. To determine if f

(π
3

)
or

f
(5π
3

)
is a relative minimum, we apply Theorem 3.20 and found that, since f 1 changes from

negative to positive at π

3
and changes from positive to negative at 5π

3
, f

(π
3

)
is a relative

minimum of f on (0, 2π).

Remark 3.22. When a differentiable function f attains a local minimum at an interior
point c, it is not necessary that f 1 changes from positive to negative. For example, consider
the function f : R Ñ R defined by

f(x) =

#

x2
(
1 + sin 1

x

)
if x ‰ 0 ,

0 if x = 0 .

Then

f 1(x) =

$

&

%

2x
(
1 + sin 1

x

)
´ cos 1

x
if x ‰ 0 ,

0 if x = 0 .

Therefore,

1. 0 is a critical point of f .

2. f attains a (global) minimum at 0 since obviously f(x) ě 0 = f(0) for all x P R.

3. It is impossible to determine if f 1 changes “from negative to positive” or “from positive
to negative” at 0.

3.4 Concavity（凹性）and the Second Derivative Test
Definition 3.23

Let f be differentiable on an open interval I. The graph of f is concave upward（凹
向上）on I if f 1 is strictly increasing on the interval and concave downward（凹向
下）on I if f 1 is strictly decreasing on the interval.



Remark 3.24. It does not really matter if f 1 has to be strictly monotone, instead of just
monotone, in order to define the concavity of the graph of f . Here we define the concavity
by the strict monotonicity.

‚ Graphical interpretation of concavity: Let f be differentiable on an open interval I.

1. If the graph of f is concave upward on I, then the graph of f lies above all of its
tangent lines on I.

2. If the graph of f is concave downward on I, then the graph of f lies below all of its
tangent lines on I.

The following theorem is a direct consequence of Theorem 3.16.

Theorem 3.25: Test for Concavity
Let f be a twice differentiable function on an open interval I.

1. If f 11(x) ą 0 for all x in I, then the graph of f is concave upward on I.

2. If f 11(x) ă 0 for all x in I, then the graph of f is concave downward on I.

Example 3.26. Determine the open intervals on which the graph of f(x) =
6

x2 + 3
is

concave upward or concave downward.
First we compute the second derivative of f :

f 1(x) =
´12x

(x2 + 3)2
ñ f 11(x) = ´12

(x2 + 3)2 ´ 2(x2 + 3)(2x)x

(x2 + 3)4
=

36(x2 ´ 1)

(x2 + 3)3
.

Therefore, the graph of f is concave upward if x ą 1 and is concave downward if x ă 1.

Definition 3.27: Point of inflection（反曲點）

Let f be a differentiable function on an open interval containing c. The point
(
c, f(c)

)
is called a point of inflection (or simply an inflection point) of the graph of f if the
concavity of f changes from upward to downward or downward to upward at this
point.

Example 3.28. Recall Example 3.26
(
f(x) =

6

x2 + 3
with f 11(x) =

36(x2 ´ 1)

(x2 + 3)3

)
. Since f 11

changes sign at x = ˘1,
(

˘1,
3

2

)
are both points of inflection of the graph of f .



Theorem 3.29
Let f be a differentiable function on an open interval containing c. If

(
c, f(c)

)
is a

point of inflection of the graph of f , then either f 11(c) = 0 or f 11(c) does not exist.

Remark 3.30. A point
(
c, f(c)

)
may not be an inflection point of the graph of f even

if f 11(c) = 0. For example, the point (0, 0) is not an inflection point of f(x) = x4 since
f 11(x) ą 0 for all x ‰ 0 which implies that the concavity of f does not change at c = 0.

Example 3.31. Determine the points of inflection and discuss the concavity of the graph
of f(x) = x4 ´ 4x3. Note that the zero of f 11 is x = 0 or x = 2 (since f 11(x) = 12x2 ´ 24x).
Since f 11(x) ą 0 if x ă 0 or x ą 2, and f 11(x) ą 0 if 0 ă x ă 2, we find that (0, 0) and
(2,´16) are points of inflection of the graph of f .

Theorem 3.32
Let f be a twice differentiable function on an open interval I containing c, and c is a
critical point of f .

1. If f 11(c) ą 0, then f(c) is a relative minimum of f on I.

2. If f 11(c) ă 0, then f(c) is a relative maximum of f on I.

Remark 3.33. If f 11(c) = 0 for some critical point c of f , then f may have a relative
maximum, a relative minimum, or neither at c. In such cases, you should use the First
Derivative Test.

Proof of Theorem 3.32. Since f 11(c) ą 0, there exist δ ą 0 such that
ˇ

ˇ

ˇ

f 1(x) ´ f 1(c)

x ´ c
´ f 11(c)

ˇ

ˇ

ˇ
ă

f 11(c)

2
if 0 ă |x ´ c| ă δ.

Since c is a critical point of f , f 1(c) = 0; thus the inequality above implies that

f 11(c)

2
ă

f 1(x)

x ´ c
ă

3f 11(c)

2
if 0 ă |x ´ c| ă δ.

In particular,

0 ă
f 1(c)

2
(x ´ c) ă f 1(x) if 0 ă x ´ c ă δ ,

f 1(x) ă
f 1(c)

2
(x ´ c) ă 0 if ´δ ă x ´ c ă 0 .



Therefore, f 1 changes from negative to positive at c; thus f(c) is a relative minimum of f
on I.

Example 3.34. Recall Example 3.21
(
f(x) =

1

2
x´sinx

)
. We have established that f

(π
3

)
is

a relative minimum of f on (0, 2π) using the First Derivative Test. Note that f 11(x) = sinx;

thus f 11
(π
3

)
= sin π

3
=

?
3

2
ą 0. Therefore, without using the First Derivative Test, we can

still conclude that f
(π
3

)
is a relative minimum of f on (0, 2π) by the second derivative test.

Example 3.35. Show that for all 1 ă p, q ă 8 satisfying 1

p
+

1

q
= 1, we have

ab ď
ap

p
+

bq

q
@ a, b ą 0 . (3.4.1)

The inequality above is called Young’s inequality. We remark that if 1

p
+

1

q
= 1, then

q =
p

p ´ 1
.

For the moment we only show (3.4.1) for the case that p, q P Q (because we have not
talked about what it means by the p-th power if p is irrational). To show (3.4.1), we prove
that for each given b ą 0, the function f : (0,8) Ñ R

f(x) ”
xp

p
´ bx+

bq

q

is non-negative. In other words, we have to show that the “minimum” of f is non-negative.
To find the minimum of f , we differentiate and find that f 1(x) = xp´1 ´ b which implies

that c = b
1

p´1 is the only critical point. Since

f 11(c) = (p ´ 1)cp´2 = (p ´ 1)b
p´2
p´1 ą 0 ,

the second derivative test implies that f attains a local minimum at c. Since there is no
other critical points, f must attain its global minimum at c; thus

f(x) ě f(c) @x P (0,8)

and (3.4.1) is established since f(c) =
b

p
p´1

p
´ b1+

1
p´1 +

bq

q
=

bq

p
´ bq +

bq

q
= 0.

Remark 3.36. Suppose that c is a critical point of a differentiable function f with f 11(c) =

0. For f to attain a local extremum at c, f 12(c) must be zero if the third derivative of f is
continuous. If in addition f (4) is continuous, then



1. f attains a local maximum at c provided that f (4)(c) ă 0.

2. f attains a local minimum at c provided that f (4)(c) ą 0.

In general, if f is 2k-times continuously differentiable (which means f (2k) exists every-
where and is continuous) and f 1(c) = f 11(c) = ¨ ¨ ¨ = f (2k´1)(c) = 0, then

1. f attains a local maximum at c provided that f (2k)(c) ă 0.

2. f attains a local minimum at c provided that f (2k)(c) ą 0.

On the other hand, if f is (2k + 1)-times continuously differentiable and f 1(c) = f 11(c) =

¨ ¨ ¨ = f (2k)(c) = 0 but f (2k+1)(c) ‰ 0, then f cannot attain its local extremum at c.

3.5 A Summary of Curve Sketching
When sketching the graph of functions, you need to have the following on the plot.

1. x-intercepts and y-intercepts;

2. asymptotes;

3. absolution extrema and relative extrema;

4. points of inflection.

Example 3.37. Sketch the graph of the function f(x) =
3x ´ 2

?
2x2 + 1

.

First, we note that the x-intercepts and y-intercepts are
(3
2
, 0
)

and (0, f(0)) = (0,´2).
To determine the asymptotes, since

?
2x2 + 1 are never zero, there is no vertical asymptote.

As for the horizontal and slant asymptotes, by the fact that

lim
xÑ8

f(x) = lim
xÑ8

3x ´ 2

x?
2x2 + 1

x

= lim
xÑ8

3 ´
2

x
b

2 +
1

x2

= lim
yÑ0+

3 ´ 2y
a

2 + y2
=

3
?
2

and

lim
xÑ´8

f(x) = lim
xÑ8

f(´x) = lim
xÑ8

´3x ´ 2
?
2x2 + 1

= lim
xÑ8

´3 ´
2

x
b

2 +
1

x2

= lim
yÑ0+

3 ´ 2y

´
a

2 + y2
= ´

3
?
2
,



we find that there are two horizontal asymptotes y = ˘
3

?
2
.

By the quotient rule,

f 1(x) =
3
?
2x2 + 1 ´ (3x ´ 2)

d

dx
(2x2 + 1)

1
2

2x2 + 1
=

3
?
2x2 + 1 ´ (3x ´ 2)

1

2
(2x2 + 1)´ 1

2 ¨ (4x)

2x2 + 1

=
3(2x2 + 1) ´ 2x(3x ´ 2)

(2x2 + 1)
3
2

=
4x+ 3

(2x2 + 1)
3
2

and

f 11(x) =
4(2x2 + 1)

3
2 ´ (4x+ 3)

3

2
(2x2 + 1)

1
2 ¨ (4x)

(2x2 + 1)3
=

4(2x2 + 1) ´ 6x(4x+ 3)

(2x2 + 1)
5
2

=
´16x2 ´ 18x+ 4

(2x2 + 1)
5
2

=
´2(8x2 + 9x ´ 2)

(2x2 + 1)
5
2

.

Therefore, x = ´
3

4
is the only critical point and since f 1 changes from negative to positive

at ´
3

4
, f

(
´

3

4

)
is a relative minimum of f .

f 11(x) = 0 occurs at x1 =
´9 ´

?
145

16
and x2 =

´9 +
?
145

16
. Since f 11 changes sign at x1

and x2, (x1, f(x1)) and (x2, f(x2)) are inflection points of the graph of f .

3.6 Optimization Problems

Explanation of examples in Section 3.7 in the textbook:

1. 一製造商想設計一個底部為正方形、表面積 108 平方公分且上方有開口的箱子。要
怎麼設計才能讓箱子容積最大？

2. Which points on the graph of y = 4 ´ x2 are closest to the point (0, 2)? 拋物線
y = 4 ´ x2 上哪個點到 (0, 2) 最近？

3. 試找出最小面積的方形頁面使之能上下留白三公分、左右留白兩公分且要包含 216
平方公分的長方形區域可用於印刷。

4. 兩根分別為 12 公尺及 28 公尺高的桿子相距 30 公尺。找出地面上一點使之到兩桿
之頂端之距離和最小。



5. Four meters of wire is to be used to form a square and a circle. How much of the wire
should be used for the square and how much should be used for the circle to enclose
the maximum total area? 一總長 4 公尺的線要被分為兩段用來圍出一個正方形和一
個圓形。要怎麼分段才能圍出最大的面積。

6. Application in Physics: Let v1 be the velocity of light in air and v2 the velocity of
light in water. According to Fermat’s Principle, a ray of light will travel from a point
A in the air to a point B in the water by a path ACB that minimizes the time taken.
Show that sin θ1

sin θ2
=

v1
v2

,

where θ1 (the angle of incidence) and θ2 (the angle of refraction) are as shown. This
equation is known as Snell’s Law.

Figure 3.1: Snell’s law

Proof. Assume that A = (0, a) and B = (b,´c). The goal is to find C = (x, 0) so that

f(x) =

?
x2 + a2

v1
+

a

(x ´ b)2 + c2

v2

is minimized. Differentiating f , we find that a critical point x of f satisfies
1

v1

x
?
x2 + a2

=
1

v2

b ´ x
a

(x ´ b)2 + c2
.

Snell’s law then is concluded from the fact that sin θ1 =
x

?
x2 + a2

and sin θ2 =

b ´ x
a

(b ´ x)2 + c2
.

7. Application in Economics: Suppose that

r(x) = the revenue from selling x items,
c(x) = the cost of producing the x items,
p(x) = r(x) ´ c(x) = the profit from producing and selling x items.



Although x is usually an integer in many applications, we can learn about the behavior
of these functions by defining them for all nonzero real numbers and by assuming they
are differentiable functions. Economists use the terms marginal revenue (邊際收益),
marginal cost (邊際成本), and marginal profit (邊際利潤) to name the derivatives
r 1(x), c 1(x), and p 1(x) of the revenue, cost, and profit functions. Let us consider the
relationship of the profit p to these derivatives. If r(x) and c(x) are differentiable for x
in some interval of production possibilities, and if p(x) = r(x) ´ c(x) has a maximum
value there, it occurs at a critical point of p(x) or at an end-point of the interval. If it
occurs at a critical point, then p 1(x) = r 1(x)´c 1(x) = 0 and we see that r 1(x) = c 1(x).
In economic terms, this last equation means that

At a production level yielding maximum profit, marginal revenue equals
marginal cost.

Figure 3.2: The graph of a typical cost function starts concave down and later turns concave
up. It crosses the revenue curve at the break-even point B. To the left of B, the company
operates at a loss. To the right, the company operates at a profit, with the maximum profit
occurring where c 1(x) = r 1(x). Farther to the right, cost exceeds revenue (perhaps because
of a combination of rising labor and material costs and market saturation) and production
levels become unprofitable again.



3.7 Newton’s Method
The Newton method is a numerical method for finding zeros of differentiable functions.
Let f : (a, b) Ñ R be a differentiable function, and c P (a, b) is a zero of f . To find an
approximated value of c, the Newton method is the following iterative scheme:

1. Make an initial estimate x1 P (a, b) that is close to c.

2. Determine a new approximation using the iterative relation:

xn+1 = xn ´
f(xn)

f 1(xn)
.

Figure 3.3: Sequence of approximated zeros by Newton’s method

3. When |xn ´ xn+1| is within the desired accuracy, let xn+1 serve as the final approxi-
mation.

Example 3.38. To find the square root of a positive number A is equivalent to finding
zeros of the function f(x) = x2 ´ A in (0,8). The Newton method provides the iterative
scheme

xn+1 = xn ´
f(xn)

f 1(xn)
= xn ´

x2
n ´ A

2xn

=
xn

2
+

A

2xn

to find approximated value of
?
A.

It can be shown that when
ˇ

ˇ

ˇ

f(x)f 11(x)

f 1(x)2

ˇ

ˇ

ˇ
ă 1 for all x P (a, b), then the Newton method

produces a convergent sequence which approaches a zero in (a, b).
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