Calculus #cfg #

Ching-hsiao Arthur Cheng #% 5%



Chapter 0O

Preliminary

0.1 Functions and Their Graphs
Definition 0.1: Real-Valued Functions of a Real Variable

Let X,Y < R be subsets of real numbers. A real-valued function f of a real variable

x from X to Y is a correspondence that assigns to each element x in X exactly one
number y in Y. Here X is called the domain of f and is usually denoted by Dom(f),
Y is called “the” co-domain of f, the number y is called the image of x under f and is
usually denoted by f(x), which is called the value of f at x. The range of f, denoted

by Ran(f), is a subset of Y consisting of all images of numbers in X. In other words,

Ran(f) = the range of f = {f(a:)‘a:eX}.

Remark 0.2. Given a way of assignment x — f(z) without specifying where x is chosen

from, we still treat f as a function and Dom(f) is considered as the collection of all x € R
2

such that f(z) is well-defined. For example, f(z) = = + 1 and g(z) = Z__

considered as functions with

1
. are both

Dom(f) =R  and Dom(g) = R\{1}.

Since Dom(f) # Dom(g), f and g are considered as different functions even though f(x) =
g(x) for all = # 1.

Terminologies:

1. Explicit form of a function: y = f(x);



2. Implicit form of a function: F(z,y) =0. (%3 # 5 )

Definition 0.3

A function f is a polynomial function if f takes the form
f(z) = apz™ 4+ ap_12" 7t + -+ ayz + ag,

where ag, a1, a9, -+ ,a, are real numbers, called coefficients of the polynomial, and
n is a non-negative integer. If a, # 0, then a, is called the leading coefficient, and
n is called the degree of the polynomial. A rational function is the quotient of two

polynomials.

Definition 0.4

The graph of the function y = f(x) consists of all points (z, f(x)), where z is in the
domain of f. In other words,

G(f) = the graph of f = {(a:,f(:c)) ’:1: € Dom(f)}.

Definition 0.5: Composite Functions

Let f and g be functions. The function f o g, read f circle g, is the function defined
by (fog)(z) = f(g(x)) The domain of f o g is the set of all z in the domain of ¢
such that g(z) is in the domain of f. In other words,

Dom(f o ) = {« € Dom(g) | g(x) € Dom(f)} .

0.2 Trigonometric Functions

Detfinition 0.6

An angle consists of an initial ray, a terminal ray and a vertex where two rays inter-
sects. An angle is in standard position when its initial ray coincides with the positive
x-axis and its vertex is at the origin. Positive angles are measured counterclockwise,
and negative angles are measured clockwise.

Let 6 be a central angle of a circle of radius 1. The radian measure of 8 is defined to
be the length of the arc of the sector.




Remark 0.7. Using radian measure of 8, the length s of a circular arc of radius r is given

by s = 6.

: o)
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Figure 1: The radian measure of the central angle A’C'B’ is the number u = s/r. For a unit
circle of radius r = 1, u is the length of arc AB that central angle AC'B cuts from the unit
circle.

Remark 0.8. For a point P on the plane with Cartesian coordinate (z,y), let r = /22 + y?
and 6 be the angle in standard position with ODP as the terminal ray. The ordered pair (r, )

is called the polar coordinate of the point P.
Pir,8)
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Figure 2: Polar coordinate

Definition 0.9

Let 6 be an angle in standard position, and the terminal ray intersects the circle
centered at the origin of radius r at point (x,y). The trigonometric functions sine,
cosine, tangent, cotangent, secant and cosecant, abbreviated as sin, cos, tan, cot, sec
and csc, respectively, of angle 6 are defined by
sinf = Q’ cosf = f, tanf = g, cotf = f’ secl=_ and csch = z,
r r x Y x Yy

provided that the quotients make sense.

Remark 0.10. Suppose that a point P has polar coordinate (r,0). Then the Cartesian

coordinate of P is (rcosf,rsin®).



Proposition 0.11: Properties of Trigonometric Functions

1. For all real numbers 6,

sinf 4+ cos?f =1, 1+tan’f =sec’d, 1+ cot?f = csc?f.

2. For all real numbers 6,

sin(—f#) = —sinf, cos(—0) = cosf, tan(—6f)= —tanb,
cot(—0) = —cot @, sec(—0)=sect, csc(—0)= —csch.

3. For all real numbers 6,
sin (¢9+ g) =cosf, cos (9+ g) = —sinf, tan («9+ g) = —cotf,

sin(f +7) = —sinf, cos(0+m)=—cosf, tan(fd+m)=tanb.

4. (Law of Cosines): Let a, b, ¢ be the length of sides of a triangle, and 6 be the
angle opposite to the side with length c¢. Then ¢ = a? + b* — 2abcos 6.

5. (Sum and Difference Formulas): Let 0, ¢ be real numbers. Then

sin(f + ¢) =sinfcos¢ £ singcosd, cos(f £ ¢) = cosfhcosd F sinfsing.

6. (Double-Angle Formulas): For all real numbers 6,

sin(20) = 2sinfcosd, cos(20) =2cos’f —1=1—2sin’6.

7. (Half-Angle Formulas): For all real numbers 6,

COSQQ_I—H:OSH Sigg_l—COSQ tang— sin #
2 2 7 2 2 7 2 l+cosf’

8. (Triple-Angle Formulas): For all real numbers 6,

cos(30) = 4cos® 0 — 3cosf, sin(30) = 3sinf — 4sin®0.

9. (Sum-to-Product Formulas): For all real numbers 6 and ¢,

sin«9+sinq5:2sin0+¢c030;¢, sin@—sinqS:Qsing;qbcose;(ﬁ,
cos@+cosgb:2cose—i2_¢cosgg¢, cos@—cos¢:2sin9;¢sin¢;9.




Theorem 0.12: de Moivre (§ % %)

For each real number # and natural number n,

(cosf + isinB)" = cos(nf) + isin(nb). (0.2.1)

Proof. Clearly (0.2.1) holds for n = 1. Suppose that (0.2.1) holds for n = k for some natural

number k. Then by the sum and difference formulas,

(cos @ +isinO)* = (cos@ + isinH)* - (cos O + isin )
= [cos(kf) + isin(k0)] - (cosd + isin )
= cos(kf) cos 0 — sin(k6) sin § + | sin(kf) cos § + cos(k6) sin 6]
= cos[(k + 1)8] + isin[(k + 1)6]

which shows that (0.2.1) holds for n = k + 1. By induction, we find that (0.2.1) holds for

all natural number n. O

Theorem 0.13

Let € be a real number and 0 < 6 < g Then

sinf < 0 < tan6. (0.2.2)

Proof. Inequality (0.2.2) follows from the following figure

sin|0

1

Figure 3: The area of the sector is larger than the area of the blue triangle
but is smaller than the green triangle

9<%tan9. O

1 1
which shows 3 sinf < B



Chapter 1

Limits and Continuity

1.1 Limits of Functions

Goal: Given a function f defined “near ¢”, find the value of f at x when z is “arbitrarily
close” to c. (%~ Sl fo AP v T 0F c 2 ehBLT] ¢ SPRERLE K T A S
BT R ET )

Notation: When there exists such a value, the value is denoted by lim f(x).

2
Example 1.1. Consider the function g(x) = a;

-1 given in Remark 0.2, and

—1

z2—1 .
hz) = o ife#1,
0 ife=1.

Then the limit of g at 1 should be the same as the limit of h at 1. Therefore, to consider
the limit of a function at a point ¢, the value of the function at ¢ is not important at all.

2 _
Example 1.2. Let g(x) = ’ 11. Then Dom(g) = R\{1} and g(z) = o + 1 if x # 1.
R

Therefore, the graph of ¢ is given by

1
2 =1

r—1

Figure 1.1: The graph of function g(x) =

6



Then (by looking at the graph of g we find that) lirri g(z) = 2.

1 ifx#2,

0 ifre2 The graph of f is given by

Example 1.3. Let f(x) = {

Y

2

Figure 1.2: The graph of function f(x)
Then (by looking at the graph of f we find that) lin% f(z) =1.

Next we give some examples in which the limit of functions (at certain points) do not

exist.

Example 1.4. (L% ) Let f(z) = sin é Then Dom( f) = R\{0}. For the graph of f,

we note that if x € [, = [ﬁ, QL} for some n € N, the graph of f on [,, must touch
nmw ™ nm

x =1 and x = —1 once. Therefore, the graph of f looks like
Y

L

1
Figure 1.3: The graph of function f(x) = sin —
X
In any interval containing 0, there are infinitely many points whose image under f is
1, and there are always infinitely many points whose image under f is —1. In fact, in any
interval containing 0 and L € [—1, 1] there are infinitely many points whose image under f
is L. Therefore, lir% f(x) D.N.E. (does not exist).
Example 1.5. Let f(x) = i
of f is given by

. Then f(z)=1if 2 > 0, f(x) = =1 if x < 0, and the graph

X



Figure 1.4: The graph of function f(x) = Jzl

X

By observation (that is, looking at the graph of f), hII(l) f(z) D.N.E.

Example 1.6. (2 82% ) Consider the Dirichlet function

(0 itzreQ,
f@)_{l ifo¢Q,

where Q denotes the collection of rational numbers (§ & # ) . Then lim f(z) D.N.E. for

all c.
Example 1.7. (2% % ) Let f:(0,00) — R be given by

fa) 21) ifx:%,wherep,quand(p,q)zl,
) =

0 if z is irrational (&£ 2 &) .

Then lim f(z) = 0 for all ¢ € (0, o).

r—C

Definition 1.8

Let f be a function defined on an open interval containing ¢ (except possibly at c),

and L be a real number. The statement

lim f(z) = L, read “the limit of f at cis L”,

r—C

means that for every € > 0 there exists a 6 > 0 such that

|f(z) —L| <& whenever0 < |z —¢| < 4.

Explanation: (328 %) F15 |f(z)—L| <ec 2§ f(x)e (L—e,L+e) #T11 T &4
e e VARG KRR f(o) » LieBEkE? PR - TERMTEApFHEL L TR
PR e>00 - T U F B e T B (0F] ¢ PREYN AT 0 R AT ) B &



prge Y gk S fiEE r BREFE AR BB (L Lte) 2 p ot r%ﬂf c 2
‘b enBLT] ¢ ﬁvﬁ&%@p,ﬁ iﬁﬁrfﬁ  Handeige L EP | g Lo

Example 1.9. In this example we show that lirri (x + 1) = 2 using Definition 1.8.
Let € > 0 be given. Define § =¢. Then § > 0 and if 0 < |z — 1| < §, we have

(z+1)—=2|=|z—-1<d=¢.
One could also pickézgso that if 0 < |z — 1| < 4,
|(:1c—|—1)—2|:|x—1|<5:§<6.

Example 1.10. Show that 1ir% 22 =4. If e = 1, we can choose § = min {\/5 —-2,2 — \/3}

so that § > 0 and if 0 < |z — 2| < § we must have |z* — 4| < 1.
For general e, we can choose § = min{\/4+5 — 2,2 — /4 - 5} so that 6 > 0 and if

0 < |z — 2| < d we must have |z? — 4| < e.

Example 1.11 (Proof of Example 1.7). Let ¢ > 0 be given. Then there exists a prime

1
number p such that — < e. Let ¢q1,¢s,- - , g, be rational numbers in (g, %) satisfying
p
s
q]':;,(r,S):l,l <T'<p,
1
and define 0 = imin ({\c— @l le—al - le—aal} — {O}) Then 6 > 0. Suppose that z

satisfies that 0 < |z — ¢| < 0.
1. If z € Q°, then f(x) = 0 which shows that |f(z)| < e.

2. If x € Q, then x = ® for some natural numbers r, s satisfying (r, s) = 1. By the choice
T

of 9, we find that r» > p; thus

In cither case, |f(z)| < e; thus we establish that
|f(x) = 0] <& whenever 0<|z—c|<34.

Therefore, lim f(z) = 0.

r—cC



Proposition 1.12

Let f, g be functions defined on an open interval containing ¢ (except possibly at ¢),
and f(x) = g(z) if © # c. If lim g(x) = L, then lim f(x) = L.

Proof. Let € > 0 be given. Since lim g(z) = L, there exists 6 > 0 such that

r—cC

lg(x) — L] <e if 0<|z—¢| <.

Since f(x) = g(z) if © # ¢, we must have if 0 < |z — ¢| < 6,

[f(x) = Ll = [g(x) = L| <. O

$2—

Example 1.13. Let f(z) = 2+ 1 and g(x) = T
l’ —_—

proposition above implies that

Since f(z) = g(x) if © # 1, the

li_r)r%g(x) = lim f(x) =2.

r—1

1.2 Properties of Limits

Let b, c be real numbers, f, g be functions defined on an open interval containing c

(except possibly at ¢) with lim f(z) = L and lim g(z) = K.

1. limb =0, limx = ¢, lim |z| = |c[;
r—C Tr—C

r—C

2. lim [f(z) £ g(2)] = L+ K; (frs £ &' TE 2048 Tenfo st £ )

r—cC

3. lim [f(x)g(x)] = LE; (AR UE 4R e ff)

r—cC

f(z)

im I L g 20 (428 5 1 0 BIB RIS RIS )
a—e g(z) K

Proof. 1. Let € > 0 be given.

(a) Define § = 1. Then § > 0 and if 0 < |z — ¢| < J, we have |[b—b| =0 < ¢.
(b) Define 6 =e. Then § > 0 and if 0 < |z — ¢| < J, we have |z —¢| < d =¢.



(c) Define 6 = e. Then 0 > 0 and if 0 < |z — ¢| < ¢, by the triangle inequality we
have

x| = |c|| < Jz—¢] <d=e.

. Let € > 0 be given. Since lim f(x) = L and lim g(z) = K, there exist 1,y > 0 such
that

|f(x)—L| < g whenever 0 < |z —¢| <d;

and

l9(z) — K| < % whenever 0 < |z —¢| < ds.
Define § = min{d;, d2}. Then 6 > 0 and if 0 < |z — ¢| < §, we have

3

f(z) + g(z) — (L + K)| < |f() = L| + |g(z) — K| < §+2

=e£.

. Let £ > 0 be given. Since lim f(x) = L, there exist d;, o > 0 such that

Tr—C

|f(x) —L| <1 whenever 0<|z—c|<d

and

IR

Moreover, since lim g(x) = K, there exists 63 > 0 such that

r—cC

whenever 0 < |z —c| < dy.

‘g(x)—K‘ < 5

m whenever 0 < |z —c| < 3.

Define § = min{dy, d2,03}. Then 6 > 0 and if 0 < |z — ¢| < 0, we have

|f(2)g(z) — LE| = |f(x)g(z) — f(x)K + f(z)K — LK|
<|f@)lg(w) = K| + K| f(2) - L|

£ € IS £

(|K|+1) 2 2

. W.L.O.G. (Without loss of generality), we can assume that K > 0 for otherwise we
have lim(—g)(z) = —K > 0 and

i (5) ) =t (L) == =L 2



Let € > 0 be given. Since lim g(z) = K, there exist d1,d2 > 0 such that

K
lg(z) — K| < 5 whenever 0 < |z —c| < §

and

K2
lg(z) — K| < 2 °  Wwhenever 0< |z —c| < dy.

4(|L1 + 1)

Moreover, since lim f(x) = L, there exists d3 > 0 such that

K
|f(z)—L| < Tg whenever 0 < |z —c¢| < 3.

Define § = min{dy, d2,03}. Then 6 > 0 and if 0 < |z — ¢| < 0, we have

f(z) L‘ [Kf(2) — Lo(w)| 1 |Kf(z) = KL|+|KL — Lg(z)|

(r) K Klg(x)] l9(x)] K
< 2(1f@) ~ LI+ Digla) - K1)
<2(K5 |Z] K2 > cELE .
K\4 "TK4L[+n) S27 27
where we have used % < 7 (196)| if 0 < |x—c| < 0 to conclude the inequality. Therefore,
we conclude that lim J) L it K > 0. [
r—C g(ﬂ?) K

Example 1.15. Find lin% 22. By 1 of Theorem 1.14 lir%x = 3; thus 3 of Theorem 1.14
implies that

lim o* = (lim ) (lim o) = 9.
z—3 z—3 r—3

The above equality further shows that

lim 2® = <lim x2> <lim x) =27.

r—3 r—3 r—3

In particular, if n is a positive integer, then (by induction) lim 2" = ¢".

Tr—C



Corollary 1.16

Assume the assumptions in Theorem 1.14, and let n be a positive integer.

1. lim [f(z)"] = L™

r—cC

2. If p is a polynomial function, then lim p(z) = p(c).

3. If r is a rational function given by r(z) = p(z) for some polynomials p and ¢,

q(z)
and ¢(c) # 0, then limr(z) = r(c).

An illustration of why 2 in Corollary 1.16 is correct: Suppose that p(z) = 322 +

5z — 10. Then applying 1-3 in Theorem 1.14, we obtain that

lim p(z) = lim(32% + 5z) — lim(10) = lim(3z* + 5z) — 10

= (1m(3)) (1ma?) + (1m(5)) (Hma) - 10

=3¢+ 5¢— 10 = p(c) .

If ¢ > 0 and n is a positive integer, then lim Tw = cn.

r—C

n—1

¢ new e
27 2

Proof. Let ¢ > 0 be given. Define § = min{ } Then 6 > 0 and if 0 < |z — ¢| < 6,

we must have

n—1 n—2 1 n—3 2 1 n-2 n—1 n n-1
rn» +xncr+xncr+---F+xnCcn FCn >§Cn
Therefore, if 0 < |z — | < 4,
1 1 r —cC
‘m" _C”‘: n—1 2 1 n—3 2 1 n2 n—1
€Tr n —'—l‘nCn—’—xnCn—f—~--—|—xn0n +Cn
n—1
2 n—1 n—1MNC n &

2 n—1 _n-1 2_7
K—c nl|lr—cd<—c i< —c
n n n

which implies that lim Tw = cn.

r—C



Theorem 1.18

If f and g are functions (defined on open intervals) such that limg(z) = K,
hHIl(f(ZL‘) =L and L = f(K), then

lim(fog)(z)=L.

r—cC

Proof. Let ¢ > 0 be given. Since il_)ﬂi f(z) = L, there exists §; > 0 such that
|f(z) — L] <e whenever 0< |z — K| <.
Since L = f(K), the statement above implies that
|f(z) — L| <e whenever |x— K| <d;.

Fix such d;. Since lim g(x) = K, there exists 6 > 0 such that

Tr—cC

lg(x) — K| <, whenever 0<|z—c|<9d.

Therefore, if 0 < |z —¢| < 6, [(fog)(x) — L| = |f(g9(x)) — L| < € which concludes the

theorem. OJ

Example 1.19. Find lim ;1:71—1

z—0 T

vr+1-—1
T

Let f(x) = e #0,

f(2) = Wz+1-1)(Wor+1+1) 1
B z(vz+1+1) Ve 141

To see the limit of g, note that

g(z).

limvz+1=1 (by Theorem 1.18);

x—0

thus by Theorem 1.14 liII(l) g(x) = % :

Remark 1.20. In Theorem 1.18, the condition L = f(K) is important, even though intu-
itively if g(x) - K as ¢ — c and f(z) — L as v — K then (f o g)(x) should approach
L as x approaches c. A counter-example is given by the following two functions: f is the
function given in Example 1.3 and ¢ is a constant function with value 2. This example/
theorem demonstrates an important fact: intuition could be wrong! That is the reason why

mathematicians develop the -0 language in order to explain ideas of limits rigorously.



Theorem 1.21: Squeeze Theorem ( % #3732 )

Let f, g, h be functions defined on an open interval containing ¢ (except possibly at
c), and h(z) < f(z) < g(x) if © # c. If lim h(z) = lim g(z) = L, then lim f(x) exists

and is equal to L.

Proof. Let € > 0. Since lim h(z) = lim g(x) = L, there exist 01,5 > 0 such that

Tr—C Tr—C

\h(z) — L] <& whenever 0<|z—c| <&

and

lg(x) — L| <e whenever 0 < |z —c| < dy.
Define § = min{d;,d2}. Then 6 > 0 and if 0 < |z — ¢| < 0,
L—ec<h(z) < f(r)<glx)<L+e¢
which implies that |f(x) — L| < & whenever 0 < |z — ¢| < . O

Example 1.22. Let f : R — R be defined by

x if x is rational ,

o) =1

Then lim f(z) D.N.E. if ¢ # 0 and lir% f(z)=0.

r—C

—x if x is irrational .

1. If ¢ # 0, then as x # ¢ approaches ¢ and = € Q, f(z) approaches ¢, while as = # ¢
approaches ¢ and = ¢ Q, f(z) approaches —c. This implies that as = approaches c,

f(z) does not approaches a fixed number; thus lim f(z) D.N.E.

2. Note that |f(z)| = |z]; thus —|z| < f(z) < |z for all z € R. Since lirr(l)]x] =0, the

Squeeze theorem implies that 1iII(1J f(x)=0.

Example 1.23. In this example we consider the limit of the sine function at a real number

c. Before proceeding, let us first establish a fundamental inequality
|sinz| < |z for all real numbers z (in radian unit). (1.2.1)

Recall (0.2.2) that

siny <z <tanzx Vo< <

N N

(0.2.2)

To see (1.2.1), it suffices to consider the case when x ¢ [O, g} Nevertheless,



1. it trivially holds that |sinz| < z if z > g;
2. if x <0, then |sinz| = |sin(—z)| < | — x| = |z].

Having establish (1.2.1), now note the sum-to-product formula implies that

. . . T—cC T+ . T—cC
|sinz — sine| = 2 Sin ——cos ——| < 2‘ sin ?‘ < |z — ¢ for all real number z.

Therefore, sinc — | — ¢| < sinz < sinc + |x — ¢| for all real number x, and the Squeeze

Theorem then implies that lim sin z = sin ¢ since lim |z — ¢| = 0.

r—C r—C

Similarly, using the sum-to-product formula
r+c . xr—c

cosT — cosc = —2sin sin ,
2 2
we can also conclude that lim cosz = cosc. The detail is left as an exercise.
r—cC

By Theorem 1.14, Example 1.23 shows the following

Theorem 1.24

Let ¢ be a real number in the domain of the given trigonometric functions.

1. limsinx =sin¢; 2. limcosx =sine; 3. limtanx = tanc;

r—cC Tr—C Tr—C

4. limcotx =cotc; 5. limsecx =secc; 6. limcscx = csce.
r—C r—C r—C

1
Example 1.25. In this example we compute lir% x sin - if it exists. Note that if the limit

exists, we cannot apply 3 of Theorem 1.14 to find the limit since lim sin — does not exist.
T

z—0
On the other hand, since |z sin%‘ < x| if z # 0, —|z| < xsin% < |z| if © # 0. By the fact

. . . . . .1
that hng) |z| = hr%(—|x]) = 0, the Squeeze Theorem implies that hrr[l)xsm - =0.
r— r— T—> T

y=—x

1
Figure 1.5: The graph of function y = xsin -



1.2.1 Omne-sided limits and limits as © — +o

Suppose that f is a function defined (only) on one side of a point ¢, it is also possible to

consider the one-sided limit lim f(z) or lim f(x), where the notation x — ¢t and x — ¢~
r—C r—Cc

means that z is taken from the right-hand side and left-hand side of ¢, respectively, and

becomes arbitrarily close to c. In other words, lim f (x) means the value to which f(x)

r—C

approaches as = approaches to ¢ from the right, while lim f(x) means the value to which

Tr—Cc

f(x) approaches as = approaches to ¢ from the left.

Definition 1.26: One-sided limits

Let f be a function defined on an interval with ¢ as the left /right end-point (except

possibly at ¢), and L be a real number. The statement

lim f(z)=L / lim f(z)=1L,

z—ct T—c

read “the right/left(-hand) limit of f at ¢ is L” or “the limit of f at ¢ from the right/
left is L”, means that for each € > 0 there exists a 6 > 0 such that

|f(z) = Ll <e whenever 0<z—c<d/—-d<az—c<0.

Example 1.27. In this example we show that lim+ zw = 0. Let ¢ > 0 be given. Define
z—0

0 =¢". Then 6 > 0 and if 0 < x < 9, we have
pw — 0] = z7 < 67 = €.

We note that Theorem 1.14, Theorem 1.17 and 1.21 are also valid when the limits are
replaced by one-sided limits, and the precise statements are provided below.

Theorem 1.28

Let b, ¢ be real numbers, f, g be functions with lim f(z) = L and lim_ g(x) =K.

r—ct T—C

L lim b=b, lim z =¢, lim lz| = |c]; 2. lim [f(z) £ g(z)] =L+ K;

r—ct T—C
i _ LK m @) _ L
3. lim [f(2)g(z)] = LK; 4. lim o)~ K if K # 0.

The conclusions above also hold for the case of left limits (that is, with z — ¢*

replaced by z — ¢7).




Theorem 1.29

. e . 1 1 : 1 1
If ¢ > 0 and n is a positive integer, then lim x» = c¢» and lim x» = cn

z—ct x—c
Theorem 1.30

If f and g are functions such that lim g(x) =K, lirr}{ f(z)=Land L = f(K), then

Tr—C

lim+(f og)(x)=1L.

r—C

The conclusions above also hold for the case of left limits (that is, with z — ¢*

replaced by z — ¢7).

Remark 1.31. Theorem 1.30 is not true if one only has the one-sided limit lim flz)=1L
:L’—)K
instead of the full limit liIIIl{ f(z) = L. For example, consider g(z) = —x and f(z) be the

function
f(2) = 1 ifz>0,
. 0 ifz<O.
Then 111%1+ g(z) =0 and lirglJr f(z) = f(0); however,
0 ifz>0,
Foa@={ | oy

which implies that lim (f o g)(z) =0 % f(0).

z—07F

Theorem 1.32: Squeeze Theorem ( % #3732 )

1. Let f, g, h be functions defined on an interval with c as the left end-point (except
possible at ¢), and h(z) < f(z) < g(z) if 2 > c. If lim+ h(z) = lim g(x) = L,

then lim f(z) exists and is equal to L.

r—C

2. Let f, g, h be functions defined on an interval with ¢ as the right end-point (ex-
cept possible at ¢), and h(z) < f(z) < g(v) if z < c. If lim h(z) = lim g(z) =

L, then lim f(z) exists and is equal to L.
Tr—Cc

The following theorem shows the relation between the limit and one-sided limits of

functions.



Theorem 1.33

Let f be a function defined on an open interval containing ¢ (except possibly at c).

The limit lim f(x) exists if and only if lin@L f(z) and lim f(x) both exist and are

identical. In either case,

lim f(z) = lim f(z) = lim f(x).

T—C T—C r—Cc™

Explanation on “A if and only if B” in Theorem 1.33: It should be clear that “A if B”
means “A happens when B happens” (which is the same as “B implies A”). The statement
“A only if B” means that “A happens only when B happens”; thus “A only if B” means that
“A implies B”.

Proof of Theorem 1.33. (=) - the “only if” part: Suppose that lim f(x) = L, and let € > 0
be given. Then there exists § > 0 such that

|f(z) — L| <e whenever 0<|z—c| <.
Therefore, there exists 0 > 0 such that
|f(z) —L| <e whenever 0<z—c<d;

thus lim f(z) = L. Similarly, lim f(z) = L.

r—ct r—c”

(<) - the “if” part: Suppose that lim+ f(z) = lim f(z) = L. Let € > 0. Then there exist
01,09 > 0 such that

|f(z) — L| <e whenever 0<z—c<d

and
|f(z) — L| <e whenever —d <z—c<0.

Define 6 = min{dy,ds}. Then 6 > 0 and if 0 < |z —¢| < 9, we must have 0 < x—c¢ <
and —0 < x — ¢ < 0; thus if 0 < |z — ¢| < §, we must have |f(z) — L| < e. O

Example 1.34. In this example we compute a very important limit

lim 22% — 1, (1.2.2)
z—0 X

To see this, we recall (0.2.2) that

sine <x <tanx forall ) <z <

b

(0.2.2)



Now using (0.2.2), we find that

sinx
CoOsST <

<1 forall()<a:<z.
T 2

The Squeeze Theorem (Theorem 1.32) then implies that lim ST _ 1. On the other hand,

z—0t T

. sinzx . sin(—x . sinz
lim :thth—:l;
z—0—- X z—0~ —X z—0t X

sin x

=1.

thus Theorem 1.33 implies that lin%
xr— x

Remark 1.35. The function ——— is the famous (unnormalized) sinc function; that is,

xr
sinc(z) = 2T and sinc(0) = 1. The example above shows that lin% sinc(x) = sinc(0).
x I
. . .. 1. l—cosz
Example 1.36. In this example we compute the limit lim 5— DBy the half-angle
T T

formula, 1 — cos z = 2sin? g; thus

_ 24in? & in2 2
1 —cosz _ 2sin"35 1sin 3 lsinc2(z).
x? x? 2 (E) 2 2
2
Therefore, Theorem 1.18 implies that liH(l) w = %
r— x

An open interval in the real number system can be unbounded. When the open interval
on which f is defined is not bounded from above (which means there is no real number
which is larger than all the numbers in this interval), we can also consider the behavior of

f(z) as x becomes increasingly large and eventually outgrow all finite bounds.

Definition 1.37: Limits as z — +w

Let f be a function defined on an infinite interval bounded from below/above, and L

be a real number. The statement

lim f(r) =L / lim_f(r)=L.

r—00

read “the right/left(-hand) limit of f at ¢ is L” or “the limit of f at ¢ from the right/

left is L”, means that for each € > 0 there exists a real number M > 0 such that

‘f(m)—L‘ <e whenever z>M/x<—M.

Similar to the case of one-sided limit, Theorem 1.28, Theorem 1.30 and 1.32 are also

valid when the notation # — ¢* are replaced by x — +o.



Example 1.38. In this example we show that lim ‘1’ =0 and lim ‘1’ =0.
r—00 (T r—>—00 |T

Let € > 0 be given. Define M = é Then if 2 > M or x < —M, we must have |x| > M;
thusif 2 > M or x < —M,
1
-

Example 1.39. Recall that the sinc function is defined by

' sinz . 20,
sinc(z) = T
1 ifx=0.
i 1 1 i 1
Then Smx’ < Tl for all x # 0 and this provides the inequality T < T < Tl for all
X T X X X

x # 0. By the Squeeze Theorem and the previous example, we find that

lim sinc(z) = lim sinc(z) =0.
r—00 r——00

Theorem 1.40
1

Let f be a function defined on an open interval, and g(z) = f(;) it x # 0.

1. Suppose that the open interval is not bounded from above. Then lim f(z) exists
r—0

if and only if lim g(x) exists. In either case,

xz—07t
lim f(x) = lim g(z).

Tr—00 x—0t

2. Suppose that the open interval is not bounded from below. Then lim f(z)

Tr——00
exists if and only if lim g(z) exists. In either case,

y—0~
lim f(z)= lim g(x).

T—>—00 z—0~

The theorem above should be very intuitive, and the proof is left as an exercise.

Example 1.41. Find the limit lim £0 >0~
amo 41

By Theorem 1.40, we have

1 .1 o1

. r4sing . — 4 sin - _ 1+ xsin -

hm—:hmx1 L — lim L
s

1
= lim —i—(lim )(limxsin—)zl—l—l-():l.
z—0+ 1+ 2 z—0+ T+ 1/ \z—0+ T



Here we note that in the process of computing the limit we have used results analogous to
T +sinx
<1
z+1

~

Theorem 1.28. We can also apply the Squeeze theorem to the inequality ;; J_r 1

for all z > 0 and obtain the same limit.

Corollary 1.42

Let p and ¢ be polynomial functions.

1. If the degree of p is smaller than the degree of ¢, then
lim M = lim M =0.
2= ¢(x) =0 q()

2. If the degree of p is the same as the degree of ¢, then

. plz) . p(z)  the leading coefficient of p
lim —% = lim = i ‘ .
z—w q(x) 2—-»qg(x)  the leading coefficient of ¢

1.3 Continuity of Functions

Let f be a function defined on an interval I, and c e I.

1. f is said to be right-continuous at ¢ (or continuous from the right at c) if
Tim_ f(r) = f(c).
2. f is said to be left-continuous at ¢ (or continuous from the left at ¢) if

Tim f(2) = f(c).

3. If cis the left end-point of I, f is said to be continuous at cif f is right-continuous

at c.

4. If cis the right end-point of I, f is said to be continuous at cif f is left-continuous

at c.

5. If ¢ is an interior point of I; that is, c is neither the left end-point nor the right

end-point of I, then f is said to be continuous at ¢ if lim f(x) = f(c).

f is said to be discontinuous at c if f is not continuous at ¢, and in this case c is called
a point of discontinuity (or simply a discontinuity) of f. f is said to be continuous

(or a continuous function) on I if f is continuous at each point of I.




Example 1.44. Consider the the greatest integer function (also known as the Gauss func-
tion or the floor function) [-] : R — R defined by

[x] = the greatest integer which is not greater than .

s | o
2 - [ B
1 o O -
0 |- O -
1 o O B
2 - e O m
3 -e—0O B
! | | | | |

Figure 1.6: The greatest integer function y = [z]

For example, [2.5] = 2 and [-2.5] = —3. If ¢ is not an integer, lim [x] = ¢, while if ¢ is

an integer, we have

lim [z] =¢ and lim [z] =c¢—1.

zoct zc
Let f :]0,2] — R be given by f(z) = [z]. Then the conclusion above shows that f is
continuous at every non-integer number, while f is not continuous at 1 (since :161_>m1 f(z) does
not exist) and 2 (since JL%L f(z) # f(2)). On the other hand, zlir& f(z) = f(0), so f is
continuous at 0.
Therefore, f is continuous at c if ¢ is not an integer, and f is right-continuous at c if ¢

is an integer.

Example 1.45. Let f(x) = 2™, where n is a positive integer. We have shown that

limz" ="

r—C
for all real numbers ¢; thus f is continuous on R. In general, polynomial functions are

continuous on R (because of Corollary 1.16).

Example 1.46. Let n be a positive integer, and f : [0,00) — R be defined by f(x) = T
By Theorem 1.17 and Example 1.27,

.1 1 . 1
limxn =cn ifc>0 and lim z» =0;
r—C rz—0+t

thus f is continuous on [0, c0).



Example 1.47. Recall the Dirichlet function f: R — R in Example 1.6 given by

0 ifre@Q,
f(x):{ 1 ifz¢Q,

We have explained (but not proven) that the limit lim f(z) does not exist for all ¢ € (0, o0);

Tr—C

thus f is discontinuous at all real numbers.

Example 1.48. Recall the function f : R — R given by

r ifzxeQ,

f(”:):{ _r ifzé¢Q.

in Example 1.22. We have shown that hH(l) f(z) = 0; thus f is continuous at 0.

Example 1.49. Recall the function f: (0,00) — R in Example 1.7 given by

! ifx:g,wherep,quand (p,q) =1,
fay=4 v " Tp

0 if z is irrational .

We have shown that lim f(z) = 0 for all ¢ € (0,20). Therefore, f is continuous at all

irrational numbers but is discontinuous at all rational numbers.

Example 1.50. Let f : R — R be continuous, and f(z) = 2 if z € Q. Then intuitively
f(z) =2 for all z € R. We now prove this using the definition of continuity.
Suppose the contrary that there exists ¢ € R such that f(c) # 2. Define € = !f(c) - 2‘.

Then € > 0. Since f is continuous at ¢, there exists 6 > 0 such that
|f(x) — f(c)| <& whenever |z —c|<d.
Choose x € Q such that |z — ¢| < §. Then the triangle inequality implies that
e = |f(e) =2 < |f(0) - F@)| + |f() — 2| < ¢
which is a contradiction.

Remark 1.51. Let I be an interval, ce I, and f : I — R be a function. The continuity of

f at ¢ is equivalent to that for every € > 0, there exists 6 > 0 such that

|f(z) — f(¢)] <e whenever |r—¢|/<d and zel.



To see this, we first consider the case that ¢ is an interior point of 7. Then by the definition,

f is continuous at c if for every £ > 0 there exists 4 > 0 such that
|f(z) — f(c)| <e whenever 0<|z—c|<9.

Since |f(z) — f(c)| < € automatically holds if |x — ¢| = 0, the statement above is equivalent

to that
|f(z) — f(c¢)| <e whenever |z —c|<0.

Now let us look at the case when c is the left end-point of I (so in this case ¢ € I'). Then by

definition, f is continuous at c if for every € > 0 there exists 6 > 0 such that
|f(z) — f(c)] <e whenever 0<z—c<39.

Again |f(z) — f(c)| < € automatically holds if z — ¢ = 0, the statement above is equivalent

to that
|f(x) — f(¢)] <e whenever c<z<c+9.

Note that since ¢ is the left end-point, the set {x ’ ¢ <& < c+6} is the same as {z ‘ |z —c| <

o,xel }; thus the statement above is equivalent to that
|f(z) — f(¢)| <e whenever |r—¢|<d and z€el.
Similar argument can be applied to the case when c is the right end-point of I.

Remark 1.52. Discontinuities of functions can be classified into different categories: re-
movable discontinuities and non-removable discontinuities. Let ¢ be a discontinuity of a
function f. Then either (1) lim f(x) exists but lim f(z) # f(c) or (2) lim f(z) does not
exist. If it is the first case, tﬁgrf c is called a re'nx%_c;cvable discontinuit;_;nd that means
we can adjust/re-define the value of f at ¢ to make it continuous at ¢. For the second case,
no matter what f(c) is, f cannot be continuous at c.

If xlijg f(z) and xlir?* f(z) both exist but are not identical, ¢ is also called a jump

discontinuity.

Proposition 1.53

Let f, g be defined on an interval I, ¢ € I, and f, g be continuous at ¢. Then

1. f + g is continuous at c.

2. fg is continuous at c.

3. I is continuous at ¢ if g(e) #0.
)




Corollary 1.54

Let f, g be continuous functions on an interval I. Then
1. f £ g is continuous on /.

2. fg is continuous on [

3. ! is continuous (on its domain).
g

Theorem 1.55

Let I,J be opew intervals,, g : I — R, f : J — R be functions, and J contains the

range of g. If g is continuous at ¢, then f o g is continuous at c.

Proof. Let € > 0 be given. Since f is continuous at g(c), there exists d; > 0 such that
‘f(y) - f(g(c))‘ <e whenever !y - g(c)‘ <6, and ye J.
For such a 9y, by the continuity of g at ¢ there exists 6 > 0 such that
l9(z) — g(c)| < & whenever | —c¢| <d and z €.

Suppose that |x — ¢| < § and x € I. Let y = g(x). By the condition that J contains the
range of g,
‘y—g(c)| <4 and yeJ.

Therefore, if [t —¢| < 0 and x € I,

|flg(@) = flg(c)| < e

which shows the continuity of f o g at c. 0

Corollary 1.56

Let I,J be opetrintervals, and g : I — R, f : J — R be continuous functions. If J

contains the range of g, then f o g is continuous on [.

Example 1.57. Let g be continuous on an interval I, and n be a positive integer. We
show that ¢" and | g|% are also continuous on /. Note that ¢g" is the function given by

g"(z) = g(z)" and |g|~ is the function given by |g|» = |g(x)|=.



1. Let f(x) = a™. Then Theorem 1.14 (or Corollary 1.16) implies that f is continuous
on R. Since R contains the range of g, by the corollary above we find tat f o g (= ¢")

is continuous on .

2. Let h(x) = |z|. Then Theorem 1.14 implies that h is continuous on R. Since R
contains the range of g, by the corollary above we find that ho g (= |g|) is continuous

on /.

Let f(x) = zw. Then Theorem 1.17 and Example 1.27 imply that f is continuous on
the non-negative real axis [0, 00). Since [0,0) contains the range of |g|, the corollary

above shows that f o |g|(= |g|=) is continuous on 1.

Theorem 1.58: Intermediate Value Theorem - ¢ & iz T 32

If f is continuous on the closed interval [a,b], f(a) # f(b), and k is any number
between f(a) and f(b), then there is at least one number ¢ in [a, b] such that f(c) = k.

Example 1.59 (Bisection method of finding zeros of continuous functions). Let f be a
function and f(a)f(b) < 0. Then the intermediate value theorem implies that there exists

a zero ¢ of f between a and b. How do we “find” (one of) this ¢? Consider the middle point

ath of a and b. If f(a ;L b) = 0, then we find this zero, or otherwise we either have
a+b a+b
fla)f(==) <0 o fO)f(——) <0

and only one of them can happen. In either case we can consider the middle point of the two
points at which the value of f have different sign. Continuing this process, we can locate

one zero as accurate as possible.

Example 1.60. Let f : [0,1] — [0, 1] be a continuous function. In the following we prove
that there exists ¢ € [0, 1] such that f(c) = ¢. To see this, W.L.O.G. we assume that f(0) # 0
and f(1) # 1 for otherwise we find ¢ (which is 0 or 1) such that f(c) = c.

Define g(z) = f(z) —x. Then g is continuous (by Proposition 1.53). Since f : [0,1] —
[0,1], f(0) # 0 and f(1) # 1, we must have ¢g(0) > 0 and g(1) < 0. By the intermediate
value theorem, there exists ¢ € (0,1) such that g(c) = 0, and this implies that there exists
c € (0,1) such that f(c) = c¢. So either (1) f(0) =0, (2) f(1) =1, or (3) there ia c € (0,1)
such that f(c) = c.



1.4 Infinite Limits and Asymptotes

Let f be defined on an open interval containing ¢ (except possible at ¢). The statement,

lim f(z) = o0,

r—cC

read “f(x) approaches infinity as x approaches ¢”, means that for every N > 0 there
exists 0 > 0 such that

f(z) > N whenever 0<|z—c|<d.

The statement
lim f(z) = w©,

r—C

read “f(z) approaches minus infinity as x approaches ¢”, means that for every N > 0
there exists 0 > 0 such that

f(z) < =N whenever 0<|z—¢|<9.

To define the infinite limit from the left/right, replace 0 < |[x —¢| < d by ¢ < z <
c+9d/c—0 < x < c. To define the infinite limit as * — oo/x — —o0, replace

O<|r—c/<dbyz>d/z <-4

Note that the statement lim f(x) = o0 does not mean that the limit exists. It is a simple
notation for saying that the value of f becomes unbounded as x approaches ¢ and the limit

fail to exist.

1 1 1
Example 1.62. lim ——— = oo, lim = o0, and lim = —o0.
-1 (x —1)2 et o — 1 a—l1-x — 1

Example 1.63. Later we will talk about the exponential function in detail. In the mean

time, assume that you know the graph of y = 2*. Then lim 2* = o0 and lim 2% = 0.
Tr—00 Tr——00

e Asymptotes (iBriT4 ) : If the distance between the graph of a function and some fixed
straight line approaches zero as a point on the graph moves increasingly far from the origin,

we say that the graph approaches the line asymptotically and that the line is an asymptote

of the graph.
Definition 1.64: Vertical Asymptotes - T & j#riT 4

If f approaches infinity (or minus infinity) as x approaches ¢ from the left or from the

right, then the line x = ¢ is called a vertical asymptote of the graph of f.




Definition 1.65: Horizontal and Slant (Oblique) Asymptotes - -k - 22 &l #3174

The straight line y = max + k is an asymptote of the graph of the function y = f(z) if

lim [f(z) —ma—k] =0 or lim [f(z) —mz—k] =0.

r—00 r——00

The straight line y = ma + k is called a horizontal asymptote of the graph of f if
m = 0, and is called a slant (oblique) asymptote of the graph of f if m # 0.

By the definition of horizontal asymptotes, it is clear that if lim f(z) = kor lim f(z) =

T—00 Tr——00

k, then y = k is a horizontal asymptote of the graph of f.

2 3 | , .
m' Then lim f(z) = lim f(z) = 5; thusy = 2 is

a horizontal asymptote of the graph of f.

Example 1.66. Let f(z) =

3
Example 1.67. Let f(z) = ?lef—i-f) Then lim f(z) = and lim f(z) = —oo; thus
— T—>00 T——00

the graph of f has no horizontal asymptote. However,

32% 4+ 9 r(32? — 4z + 5)

lim [f(:v)—q—lim[ - ]— im 42® — 5o +9 1.
T—0 3] a5 3322 —4x+5) 3322 —4x+5)] 2503322 -4z +5) 9’

thus lim [f(x) - = f] = 0. Therefore, y = § + % is a slant asymptote of the graph of f.

r—00

Theorem 1.68

Let f and g be continuous on an open interval containing c. If f(c) # 0, g(c) = 0,

and there exists an open interval containing c¢ such that g(x) # 0 for all z # ¢ in

the interval, then the graph of the function h(x) = =) has a vertical asymptote at

g9(z)

Tr = C.

Example 1.69. Let f(x) = tanx. Note that tanz = %. For n € Z, sin (mr—l—g) # 0 and

. . 3
cos (mr + g) = 0. Moreover, cosx # 0 for every z in the open interval (mr + %, nm + er)

except nmw + g Therefore, by the theorem above we find that © = nm + % is a vertical

asymptote of the graph of the tangent function for all n € Z.



Theorem 1.70

If y = max + k is a slant asymptote of the graph of the function y = f(z), then

m = lim —f(x) or m = lim —f<x>
r—0 X Tr—>—00 €T
and
k= lim [f(z) — mz] of k= lim [f(z) —maz].
Candts T——00
Proof. 1t suffices to shows that m = lim fEUOC) or m = lim f(xa:) W.L.O.G., we assume
r—0 Tr——00
that lim [f(z) — ma — k] = 0. Then
Tr—0
lim {@ =M=k _
r—00 T
On the other hand, lim mr+k _ m. By the fact that f(@) = f(w) = mz =k 4+ T + k, we
z—0 T x x x
find that lim ) exists and
r—0 T
lim@:hm [f(x)—mx—k +1immx+k:m [
r—00 T T—00 X r—00 i

Example 1.71. In this example, we find all asymptotes of the graph of the function

flz) = 32 (x — ;3/2x_3 I 1?2 + ) ‘

Since the denominator vanishes at © = +1, there are two possible vertical asymptotes

x =1 or x = —1. Since the denominator also vanishes at x = 1, we need to check further
the behavior of f(x) as « approaches 1. Note that for  # +1,

r—Vad -2+ T ‘
x? =1 (ZL’+1)[CB2+$\3/1‘3—I2—|—ZL'+(ZI)3—1‘2—1—1')§]7

thus for x # +1,
3z
(x4 1)[2?2 4+ 2V23 — 22 + z + (23 — 22 —i—a:)%] .
Therefore, lin% f(z) = 0 exists which shows that x = 1 is not a vertical asymptote of the
graph of f. On the other hand,

fz) =

lim f(z) =00 and lim f(z) = -0,

z——11 T——1"



we find that = —1 is the only vertical asymptote of the graph of f.

For slant or horizontal asymptotes, we note that for x # +1,0,

fx) _ 3

T - (1.4.1)

R S I RN
Since lim 1_ 0, we find that lim fz) =1 and lim f(=) = 1. It remains to find the

r—+00 T T—0 T T—>—00 T
limit C’:ll_r}olo [f(z) — z] and m1—1>IPoo [f(z) — z]. Using (1.4.1),
fa) 3a:—(x+1)[1+(1—%+§)%+(1—%+x—2)§]
r)—x = - S :

)+ 0=3+2)"+ 0= 3+2)°]

Noting that the denominator approaches 3 as x approaches +oo, we only focus on the limit

of the numerator. Since

to find the limit of the numerator as x — 400 it suffices to find the limit
1

lim x[(l—l—i- ! )1 1} and lim x[(l—i—i—;)é — 1] :

T—0 x a2 500

Now, by Theorem 1.40,

Wl

-1

. 2

lim x[(l—l—l— 12)% — 1] = lim (1 T )
T—00 Tr x z—0t T

. r—1 1

= lim 5 < = ——

z—0F (1—x+x2)§ + (1—m+x2)§ +1 3

and similarly, lim =z [(1—%—|—$—12)§ — 1} = —%. Therefore,

T—>—00
: 1 1.¢ 1 1.2 1
i 32— e D=2 )+ () ]| = 8458 = 2

2,
— is the only slant asymptote of the
rz—+00 3

graph of f.

thus lim [f(m) — :L"] = —g which implies that y = x —



Chapter 2

Differentiation

2.1 The Derivatives of Functions

Let f be a function defined on an open interval containing c. If the limit
L et A~ f(0
Az—0 Az

m is the tangent line to the graph of f at point ((c, f(c))

= m exists, then the line passing through (c, f (c)) with slope

Definition 2.2

Let f be a function defined on an open interval I containing c. f is said to be
differentiable at ¢ if the limit

L fet A — f(0)

Az—0 Ax
exists. If the limit above exists, the limit is denoted by f’(c) and called the derivative
of f at c. When the derivative of f at each point of I exists, f is said to be differentiable

on I and the derivative of f is a function denoted by f’.

e Notation: The prime notation ’

is associated with a function (of one variable) and is
used to denote the derivative of that function. For a given function f defined on an open

interval I and x being the name of the variable, the limit operation

iy J @+ Az) — f(z)

Axz—0 Az

32



is denoted by %f{x) (or d{j(j) or even (C% if y = f(z)), and the limit

p Fe+ 8) = 1)

Az—0 Az

is denoted by 4 x) but not 4 c 4 c) is in fact 0). The operator 4 is a
d d d d
X X X X

differential operator called the differentiation and is applied to functions of variable .
if(az:) is sometimes denoted by (f(x))’

dx
d d
(so that ' is treated as the differential operator %) and f’ is sometimes denoted by % (so

However, for historical (and convenient) reason,

that f is always treated as a function of variable x).
Remark 2.3. Letting z = ¢ + Az in the definition of the derivatives, then
f/<C) — lim f(ﬂ?) — f(C)
z—c X —C
if the limit exists.
Example 2.4. Let f be a constant function. Then f’ is the zero function.
Example 2.5. Let f(x) = 2™, where n is a positive integer. Then

flx+Ax) = 2"+ Cla" ' Ax + Cpa™ ?(Ax)* + - + C"_2(Ax)" ' + (Az)";

thus if Az # 0,

flat AXZ — @) na™ '+ Cra" 2 Ar + -+ C"_w(Ax)" 2+ (Ax)" L.

The limit on the right-hand side is clearly naz"~!, so we establish that

ix" = ng" !
de” '
Example 2.6. Now suppose that f(x) = 27", where n is a positive integer. Then if
x4+ Az # 0,
1
flz+Ar) =

a4 CPan Az + Chan2(Ax)2 + - + CF_jx(Ax)"—1 + (Ax)" ;
thus if  # 0, Az # 0, and  + Az # 0 (which can be achieved if |Az| « 1),
f(z+ Azx) — f(x) —[Cpam =t + Ca" Az + - + O x(Az)" % + (Az)" ]

Az a2 + CPan 1Az + Cfam2(Az)? + - - - + Cr_jz(Az)"~ ' + (Az)"]



Therefore, if x # 0,

n —n—1

which shows dix_ = —nx

X

Combining the previous three examples, we conclude that

d nz" ! VxeR ifneNuU{0},
—a" = o . (2.1.1)
dz nx" Ver#0 ifneZandn<0.
Combining Example 2.4-2.6, we conclude that

d , o na"! VeeR ifneNu{0}, (2.1.2)
de” | na™! Ve#0 ifneZandn<0. o

AR 0 LR AR | o s mR AR c£0 AP EE
$ di AV =nc"I EB I e AT S RATIUA GL R e o 3B H - BEF

T lx=c

EL L | A REES
Example 2.7. Let f(x) = sinz. By the sum and difference formula,

f(z+ Az) — f(x) = sin(xz + Ax) — sinz = sinz cos Az + sin Az cosx — sinx
= sinx(cos Ax — 1) + sin Az cosx ;

thus by the fact that lim "MT _ 1 and lim cosw—1_ 0, we find that

z—0 X z—0 T

cos Az — 1 n sin Az
Ax Ax

lim flz+Az) - f(z) = lim |:SiIlZL‘

Az—0 Ax Az—0 COoS :L"] = COST. (2.1.3)

In other words, the derivative of the sine function is cosine.
On the other hand, let g(z) = cosz. Then g(z) = — f(z — g) Then if Az # 0,

iy v
gz +Azx) —g(x) _ f(x—§+Ax)—f(x—§) _
Ax Az ’
thus
AlimO g(z+A§; —9(2) = — oS (x - g) = —sinzx.

In other words, the derivative of the cosine function is minus sine. To summarize,

d . .
oo sinz = cosx and 4 COST = —sinz. (2.1.4)



Example 2.8. Consider the function g : R — R defined by

x?  if x is rational
g(x) =

—x? if z is irrational .

Then g(x) = zf(z), where f is given in Example 1.22. By the fact that lim f(x) = 0,

x—0

- 9(Ar) —g(0) _
Algz»lo Az B Alolgrilo f(Az)=0.

In other words, g is differentiable at 0. Moreover, similar argument used to explain that the
function f in Example 1.22 is only continuous at 0 can be used to show that the function g
is only continuous at 0. Therefore, we obtain a function which is differentiable at one point

but discontinuous elsewhere.

Remark 2.9. If f is a function defined on a interval I, and c is one of the end-point. Then
it is possible to define the one-sided derivative. For example, if ¢ is the left end-point of I,
then we can consider the limit

fle+ A= (&) f@) = f(c)

Az—0t Ax r—ct Tr —cC

if it exists. The limit above, if exists, is called the derivatives of f at ¢ from the right.

Theorem 2.10: ¥ fr ¢ 4

Let f be a function defined on an open interval I, and c € I. If f is differentiable at

¢, then f is continuous at c.

f(x) = f(c)

Proof. If © # ¢, f(z) — f(c) = W(m — ¢). Since the limit lim P exists and
lim(z — ¢) = 0, by Theorem 1.14 we conclude that

, (i L@ = SN (1 _

tim [(2) ~ f(e)] = (Jim =7 =77 ) (lm(x — ) =0.
Therefore, lim f(z) = f(c¢) which shows that f is continuous at c. O

r—cC
Remark 2.11. When f is continuous on an open interval I, f is not necessary differentiable

on I. For example, consider f(x) = |z|. Then Theorem 1.14 implies that f is continuous

on I, but lim faz) = 1(0) = lim [az] D.N.E.
Az—0 Ax Az—0 Az



2.2 Rules of Differentiation

Theorem 2.12

We have the following differentiation rules:

d
1. If k is a constant, then d—k; =0.
X
. . d
2. If n is a non-zero integer, then d—a:" = nz" ! (whenever 2"~ makes sense).
x

d . d .
3. —sinx =cosx, — cosx = —sinx.
dzx dzx

4. If k is a constant and f : (a,b) — R is differentiable at ¢ € (a,b), then kf is

differentiable at ¢ and p

dx

[kf(@)] =kf'(c).

5. If f,g: (a,b) — R are differentiable at ¢ € (a,b), then f + g is differentiable at

¢ and
d

dx

Proof of 5. Let h(x) = f(x) + g(x). Then if Az # 0,
hic+ Ax) —h(e) _ flet Az) = f(e) | glet Az) —g(c)

Azx Az Az

Since f, g are differentiable at c,

Algiclrilo flet AA? — /) = f'(c) and lim

exist. Therefore, by Theorem 1.14,

h'(c) = f'(c) +g'(c).
The conclusion for the difference can be proved in the same way.

Example 2.13. Let f(z) = 32* — 5z + 7. Then

i d. d_ d, o, d
_ad o d 6y
= 3%x 5da:x_3 (2x) —5=6x—5.



In general, for a polynomial function
p(l‘) = an$n + an—lmn_1 + -4 ax+ag= Z akxk ,

where ag,ay,--- ,a, € R, by induction we can show that

d
%p(x) = na, 2" '+ (n— Dap_12" 2+ Fa; = Z kayx"1.

Theorem 2.14: Product Rule

Let f,g : (a,b) — R be real-valued functions, and ¢ € (a,b). If f and g are differen-
tiable at ¢, then fg is differentiable at ¢ and

d

dzx

(f9)(x) = f'(c)g(c) + flc)g'(c).-

Tr=cC

Proof. Let h(x) = f(x)g(x). Then

h(c+ Ax) — h(c) = f(c+ Az)g(c + Az) — f(c)g(c)
= fle+ Az)g(c+ Az) — f(c)g(c + Az) + f(c)g(c + Az) — f(c)g(c)
= [flc+ Az) — f(0)]g(c+ Az) + f(c)[g(c + Az) — g(c)] .

Therefore, if Az # 0,

het Az) —hie) _ fletAr) = fle) |\ nyy o)

glc+ Az) —g(c)
Az Az '

Az

Since f, g are differentiable at c,

i CEAD @) alet An) (0

Az—0 Az Az—0 Az

, and Alimog(c + Az) = g(c)

exist. By Theorem 1.14,
h'(c) = f'(c)g(e) + flc)g'(c)

which concludes the product rule.

Example 2.15. Let f(z) = z3sinz. Then the product rule implies that

f'(x) = 32*sinz + 2® cos .



Theorem 2.16: Quotient Rule

Let f,g : (a,b) — R be real-valued functions, and ¢ € (a,b). If f and g are differen-

tiable at ¢ and g(c) # 0, then / is differentiable at ¢ and
g

A) £y Ll = S0
dx z=c{ 9(0)2 '
Proof. Let h(x) = gég Then

_ fle+Az) o) fle+Ar)g(c) — flc)g(c + Az)
h(e+ Az) — h(c) = g(c+ Ax) B glc) g(c)g(c+ Ax)
fle+Ax)g(c) — f(e)g(e) + fle)g(c) — f(c)g(c + Ax)
g(c)g(c+ Ax)

[f(c+ Az) = f(e)]g(c) — f(c)[g(c + Az) — g(c)] '

g(c)g(c + Ax)
Therefore, if Ax # 0,
h(c+ Az)—h(c) 1 flc+ Az) — f(e) g(c+ Ax) — g(c)
Ax ~ g(c)g(c+ Ax) [ Ax 9e) = J(¢) Az ]

Since f, g are differentiable at c,

_ fle+Az) = f(o) _ . gle+Ax) —g(c) ) B
AT e m TR and limgle+ A7) = g()

exist. By Theorem 1.14,

which concludes the quotient rule. [

Remark 2.17. Suppose that in addition to the assumption in Theorem 2.16 one has already
known that h = f/g is differentiable at ¢, then applying the product rule to f = gh one
finds that o)
c
f'(e) = g'(e)h(c) + g(c)h'(c) = g’(C)@ +g(c)h/(c)
which, after rearranging terms, shows the quotient rule. The proof of Theorem 2.16 indeed

is based on the fact that we do not know the differentiability of h at c yet.



Example 2.18. Let n be a positive integer and f(z) = z=". We have shown by definition
that f'(z) = —nz ™ ! if z # 0. Now we use Theorem 2.16 to compute the derivative of f:
if v #0,

d ., .
71‘ n—
d —n _ d 1 o dx . nx B S
T B
dx dx x" x2n x2n
. sinx
Example 2.19. Since tanx = , by Theorem 2.16 we have
Cos T
cos’ x + sin® x 1 )
—tanzx = 5 = 5 = sec” .
dx cos? x cos?x
Similarly, we also have
—sin?z — cos?x 9
—cotx = — = —cscow,
dx sin“ x
d —sinx
—secr = — 5 —secrtan,
dx cos’ x
d cosx
——CSCT = ———— = —cscxrcotx.
dx sin® x

We note that without using the quotient rule, the derivative of the tangent function can be

found using the sum-and-difference formula

tanx — tany

t —y) = . 2.2.1
an(z —y) 1+ tanxtany ( )
Using (2.2.1), we find that
tan(z + Az) — tanz = tan Az [1 + tan(z + Az) tanz] ;
thus if Ax # 0,
tan(z + Az) —tanz  sinAx 1+ tan(z 4+ Az)tanx
Az Az cos Az
which, using (1.2.2), shows that
. tan(z + Az) —tanz . sinAz . 14 tan(z + Az) tanx 9
lim = ( lim )( lim ) =sec x.
Az—0 Az Az—0 Az Az—0 cos Ax

e Higher-order derivatives:
Let f be defined on an open interval I = (a,b). If f’ exists on I and possesses derivatives
at every point in I, by definition we use f” to denote the derivative of f’.In other words,

@ = Ly = Ly = &gy = T (LT ey - ).




The function f” is called the second derivative of f. Similar as the “first” derivative case,
2

, d
f"(e) = Iz l:cf(f)-
The third derivatives and even higher-order derivatives are denoted by the following: if

y = f(x),

. . d* d*f(x)
Third derivative: y”  f"(x) Rf(x) 773
. d* d'f(x)
Fourth derivative: y®  f4(x) e (x) o

n-th derivative: y™ £ (z) d—f(as) de;Elx) .

2.3 The Chain Rule

The chain rule is used to study the derivative of composite functions.

Theorem 2.20: Chain Rule - i 4 =
Let I,J be open intervals, f : J — R, g : I — R be real-valued functions, and the

range of g is contained in J. If g is differentiable at ¢ € I and f is differentiable at

g(c), then f o g is differentiable at ¢ and
d

dz lz=c

(f o g)(x) = f'(g(c))g'(c).

Proof. To simplify the notation, we set d = g(c).
Let € > 0 be given. Since f is differentiable at d and g is differentiable at ¢, there exist
01,02 > 0 such that

f(d+k) _f(d) / €
. —f (d)‘ < ST @D whenever 0 < |k| < 01,
‘W —g'(c)‘ < min{l)M} whenever 0 < |h| < d5.
Therefore,
|f(d+ k)= f(d) — f'(d)k] < mﬂd whenever |k| < dy,

/ . €
lg(c+ h) — g(c) — g'(c)h| < min {1, m}w whenever |h| < 0.



By Theorem 2.10, g is continuous at c; thus ,llirr(l) g(c+ h) = g(c). This fact provides d3 > 0
such that

lg(c+h) —g(c)| <61 whenever |h| < 4.

Define 6 = min{ds, d3}. Then ¢ > 0. Moreover, if |h| < §, the number k = g(c+h) — g(c)

satisfies |k| < ;. As a consequence, if |h| < 9,

(fog)c+h) = (fog)(c) = f'(d)g'(c)h| = |f(glc+n)) = f(d) = f'(d)g’(c)h]
= |f(d+k) = f(d) = f'(d)g'( \

=|f(d+k) = f(d) = f'(d)k + f'(d)k — f'(d)g'(c)h|

(d) — f'(d)

f

< |f(d+ k) — f(d) — f'(@d)k| +|f/(d)||k — g"(c)h]
<m|’ﬂ+} '(d)|g(c+h) = g(c) = g'(c)h]

£

«__ & 5
2(1+1g'(c)])

(1 = 9" (1 +19' @I + |l ey

: ” N )

< aarfgran M ) Dl ra
_e 7@

— 2"

The inequality above implies that if 0 < |h| < §,

o+t = (700)(E) _ prggrie| < £ (@)

-t <
A + e<e

2 201+ (1))

which concludes the chain rule. O]

How to memorize the chain rule? Let y = g(z) and u = f(y). Then the derivative

B duidudy

Example 2.21. Let f(x) = (3z — 22?)%. Then f'(z) = 3(3z — 22%)?(3 — 4xz).

3r—1
243

2
Example 2.22. Let f(x) = ( ) . Then

(3:5 — 1)21i3x -1 _2Bz—-1) 3(z* +3) — 22(3z — 1)
x2+3 dr x* + 3 22+ 3 (2 +3)?
23z —1)(=32% + 2z +9)

(22 + 3)3 '

f(x) =




Example 2.23. Let f(z) = tan® [(z? — 1)?]. Then

f(z)= {3tan2 [(z% = 1)*] sec® [(2® — 1)2]} x [2(z* — 1) - (2z)]
= 12z(2® — 1) tan® [(2” — 1)*] sec® [(z* — 1)] .

Example 2.24. Let f : R — R be defined by

1
x2sin= ifx #0

f(x) = x
0 ifz=0.

Then if x # 0, by the chain rule we have

= ( - 1
I(x) <dd x2> sinl + x2<dd sin l) = stinl + 7 COSl(i,)
£ z T x T

xz \dx x

1 1 1 o1 1
:2xsmf+x2cosf<——2> = 2xsin — — cos — .
T T T T T

Next we compute f'(0). If Az # 0, we have

W’ = ’Aa:siné‘ < |Azl;

thus —|Az| < f(Ax)A—f(O) < |Az| for all Az # 0 and the Squeeze Theorem implies that
X

Az—0 Ax

Therefore, we conclude that

o1 1 .
2esin — —cos — ifx #0,
X X

0 ifz=0.

Definition 2.25

Let f be a function defined on an open interval I. f is said to be continuously

differentiable on I if f is differentiable on I and f’ is continuous on I.

The function f given in Example 2.24 is differentiable on R but not continuously differ-
entiable since lir% f'(z) D.N.E.



2.4 Implicit Differentiation

An implicit function is a function that is defined implicitly by an equation that x and y
satisfy, by associating one of the variables (the value y) with the others (the arguments x).
For example, 22 + 4> = 1 and & = cosy are implicit functions. Sometimes we know how
to express y in terms of z from the equation (such as the first case above y = /1 — 22

or y = —/1 —2?), while in most cases there is no way to know what the function y of x

exactly is.

Given an implicit function (without solving for y in terms of x from the equation),
can we find the derivative of y? This is the main topic of this section. We first focus on
implicit functions of the form f(z) = g(y). If f(a) = g(b), we are interested in how the set
{(z,y)| f(z) = g(y)} looks like “mathematically” near (a,b).

Theorem 2.26: Implicit Function Theorem - *£ S #ic T2 f§ ¥ 'x

Let f, g be continuously differentiable functions defined on some open intervals, and
fla) = g(b). If g’(b) # 0, then there exists a unique continuously differentiable

function y = h(z), defined in an open interval containing a, satisfying that b = h(a)

and f(z) = g(h(z)).

Example 2.27. Let us compute the derivative of h(x) = x", where r = P for some p,q €N
q
and (p,q) = 1. Write y = h(z). Then y? = 2P. Since diyq =qu?t # 0if y # 0, by the
Y

Implicit Function Theorem we find that h is differentiable at every x satisfying x # 0. Since
h(z)? = 2P, by the chain rule we find that

qh(x)"'h! (z) = paP~? Vo #0;

thus
h'(z) = ]Zh(a:)l_qxp_l = DphOatp-t _ Vo #0.
q q
If r is a negative rational number, we can apply the quotient and find that
d d 1 ra" 1

_xT:_ — I’)",I'ri V:E;éO
dx dr x=" x—2r

Therefore, we conclude that

—a" =zt Vo #0. (2.4.1)



Remark 2.28. The derivative of 2" can also be computed by first finding the derivative of

1 1
v (that is, find the limit lim (x+ Az)p —
Azxz—0 Az

) and then apply the chain rule.
Example 2.29. Suppose that y is an implicit function of x given that y3+y?—5y—2? = —4.
. dy
1. Find ==.
ind .
2. Find the tangent line passing through the point (3, —1).

Let f(z) = 2% — 4 and g(y) = v* + y*> — 5y. Then ¢'(y) = 3y*> + 2y — 5; thus if y # 1 or

; ‘ 283
y# —5 (or cquivalently,  # +1 or & # 4/ 57),
dy 2z

dr 32+2y—5
Since (1, —3) satisfies the relation y* + y* — 5y — 22 = —4, the slope of the tangent line
2-3
3(-1)2+2(-1)—5

passing through (3, —1) is —g; thus the desired tangent line is

y:—;(x—?))—l.

Example 2.30. Find % implicitly for the equation siny = .
X
Let f(x) =z and g(y) = siny. Then ¢'(y) = cosy; thus if y # nr + g (or equivalently,

z# +1),
dy 1

de  cosy

(2.4.2)

Similarly, for function y defined implicitly by cosy = x, we find that if y # nr (or equiva-

lently, x # +1),
dy 1

= . 2.4.3
dx siny ( )

Remark 2.31. The curve consisting of points (x,y) satisfying the relation siny = z cannot
be the graph of a function since one x may corresponds to several y; however, the curve
consisting of points (x,y) satisfying the relation siny = x as well as —g <y< g is the

graph of a function called arcsin. In other words, for each z € (—1, 1), there exists a unique

Y € (—g, g) satisfying siny = x, and such y is denoted by arcsinz. Since for y € (—g, g)
we must have cosy > 0, by the fact that sin?y + cos?y = 1, using (2.4.2) we find that

d ) 1

—arcsine = —— Vre(—1,1). (2.4.4)

dz 1 — x2



Similarly, the curve consisting of points (z,y) satisfying the relation cosy = = as well as

0 <y < 7 is the graph of a function called arccos, and (2.4.3) implies that

d 1

d 1 Wae(-11). 2.4.5

7a arccos T N ze(-11) ( )
Yy Yy

"/smy:l’
1 = arccos

siny = x cosy =&
- T

Yy = arcsinx

siny Hx )

Figure 2.1: The graph of functions y = arcsinx and y = arccos x

There are, unfortunately, many implicit functions that are not given by the equation
of the form f(z) = g(y). Nevertheless, there is a more powerful version of the Implicit
Function Theorem that guarantees the continuous differentiability of the implicit functions
defined through complicated relations between = and y (written in the form f(x,y) = 0).
In the following, we always assume that the implicit function given by the equation that x

and y satisfy is differentiable.

Example 2.32. Find the second derivative of the implicit function given by the equation
y = cos(bz — 3y).

Differentiate in z once, we find that dy_ _ sin(5z — 3y) - (5 — 3@); thus
dz dz
dy  —5sin(dz —3y) 5 1

dr  1—3sin(5z —3y) 3 [ 1 —3sin(5z — 3y)} '
Differentiate the equation above in x, we obtain that

Py 5 3cos(br — 3y)(5 —3y’) _5cos(5x —3y)(5—3y’)

dz2 3 [1 — 3sin(bx — 3y)}2 [1 — 3sin(bz — i’)y)]2

d? _
and (2.4.6) further implies that “ay__ cos(5z — 3y)

dx? [1— 3sin(5z — 3y)]3 .

(2.4.6)




Example 2.33. Show that if it is possible to draw three normals from the point (a,0) to
the parabola x = y?, then a > %

Suppose that the line L connecting (a,0) and (b,b), where b # 0, is normal to the
parabola x = y2. The derivative of the function defined implicitly by x = y? satisfies that

dy
1=2y—;
ydw
1
thus the slope of the tangent line passing through (b2, b) is % Since line L is perpendicular

to the tangent line passing through (b2, b), we must have

1 b—-0

. = 1.
2b b2 —a

1 1
Therefore, a = 5+ b%. Since b # 0, a > 5



Chapter 3

Applications of Differentiation

3.1 Extrema on an Interval

Definition 3.1

Let f be defined on an interval I containing c.

1. f(c) is the minimum of f on I when f(c) < f(z) for all z in I.
2. f(c) is the maximum of f on I when f(c) > f(z) for all z in 1.

The minimum and maximum of a function on an interval are the extreme values, or
extrema (the singular form of extrema is extremum), of the function on the interval.
The minimum and maximum of a function on an interval are also called the absolute
minimum and absolute maximum, or the global minimum and global maximum, on the
interval. Extrema can occur at interior points or end-points of an interval. Extrema

that occur at the end-points are called end-point extrema.

Theorem 3.2: Extreme Value Theorem - & g T 32

If f is continuous on a closed interval [a,b], then f has both a minimum and a
maximum on the interval. (i S BB B &G S x B ©)

When f is continuous on an open interval (a,b) (or a half-open half-closed interval), it is
still possibly that f attains its maximum or minimum but there is no guarantee. Moreover,
it is also possible that f does not attain its extrema when f is continuous on an interval

which is not closed.

47



Definition 3.3

Let f be defined on an interval I containing c.

1. If there is an open interval containing ¢ on which f(c) is a maximum, then f(c)

is called a relative maximum of f, or you can say that f has a relative maximum
at (c, f (c))

2. If there is an open interval containing ¢ on which f(c¢) is a minimum, then f(c)

is called a relative minimum of f, or you can say that f has a relative minimum
at (c, f(c)).
The plural of relative maximum is relative maxima, and the plural of relative minimum

is relative minima. Relative maximum and relative minimum are sometimes called

local maximum and local minimum, respectively.

Definition 3.4

Let f be defined on an open interval containing ¢. The number/point ¢ is called a

critical number or critical point of f if f’(c) = 0 or if f is not differentiable at c.

Theorem 3.5

If f has a relative minimum or relative maximum at x = ¢, then ¢ is a critical point

of f.

Proof. W.L.O.G., we assume that f is differentiable at ¢. If f’(c¢) > 0, then there exists
01 > 0 such that

f(z) = (o) F'(e)| < 1) it 0<|z—c| <dp;
r—c 2
thus
F10) S0 =FE@) 310y e <4,
2 T —c 2 '

1. f0<x—c<dy,

£+ L o) < ) < £+ L — 0

which implies that f cannot attain a relative maximum at z = ¢ since f(x) > f(c) on
the right-hand side of c.



2. if =6 <x—c<0,

1@+ 90— > 1) > 10+ L -0

which implies that f cannot attain a relative minimum at x = ¢ since f(c) > f(z) on

the left-hand side of c.

Therefore, we conclude that if f’(c) > 0, then f cannot attain either a relative maximum
or minimum at = c¢. Similar conclusion can be drawn for the case f’(c) < 0; thus if f

attains a relative extremum at = = ¢, then f’(c) = 0. O

Remark 3.6. A more strict version of Theorem 3.5 is called Fermat’s Theorem which

is stated as follows:

If f has a local maximum or minimum at ¢, and if f’(c) exists, then f’(c) = 0.

The way to find extrema of a continuous function f on a closed interval [a, b]:
1. Find the critical points of f in (a,b).
2. Evaluate f at each critical points in (a, b).

3. Evaluate f at the end-points of [a, b].

4. The least of these values is the minimum, and the greatest is the maximum.

Example 3.7. Find the extrema of f(x) = 2sinz — cos 2z on the interval [0, 27].

Since f is differentiable on (0, 27), a critical point ¢ satisfies

0= f'(c) =2cosc+ 2sin2c = 2cosc(l 4 2sinc).

Therefore, ¢ = g, c= %T, c= %T or ¢ = 11%7 and the values of f at these critical points
are
T 3
f(3)=21-(1=3, J(G)=2-(=) = (1) =-1,
7 1 1 3 117 1 1 3
G =230 —3=—% JEF)=2(=5) 5=

On the other hand, the values of f at the end-points are
F(0)=2-0-1=-1 and f(21)=2-0—1=—1.
Therefore, f (g) = 3 is the maximum of f on [0, 27], while the minimum of f on [0, 27]

7 11 .. . 3
occurs at ¢ = g and ¢ = TW and the minimum is —5



3.2 Rolle’s Theorem and the Mean Value Theorem

Theorem 3.8: Rolle’s Theorem
Let f : [a,b] — R be a continuous function and f is differentiable on (a,b). If
f(a) = f(b), then there is at least one point ¢ € (a, b) such that f’(c) = 0.

Proof. If f is a constant function, then f’(x) = 0 for all = € (a,b). Now suppose that f
is not a constant function on [a,b], by the Extreme Value Theorem implies that f has a
maximum and a minimum on [a, b], and the maximum and the minimum of f on [a, b] are
different. Therefore, there must be a point ¢ € (a,b) at which f attains its extreme value.
By Theorem 3.5, f'(c) = 0. O

Theorem 3.9: Mean Value Theorem

If f:[a,b] — Ris continuous and f is differentiable on (a, b), then there exists a point
c € (a,b) such that

Proof. Define g : [a,b] — R by g(z) = [f(z) — f(a)] (b —a) — [f(b) — f(a)](z — a). Then
g : la,b] — R is continuous and g is differentiable on (a, ). Moreover, g(a) = g(b) = 0; thus
the Rolle Theorem implies that there exists ¢ € (a,b) such that g’(c) = 0. On the other
hand,

0=2g'(c) = (b—a)f'(c) = [f(b) — f(a)] ;
f

(4) - f(a) .

thus there exists ¢ € (a, b) satisfying f'(c) = r—

Remark 3.10. In fact, by modifying the proof of the mean value theorem a little bit, we
can show the following: Let f, g : [a,b] — R be continuous on [a,b] and differentiable on
(a,b). If g'(x) # 0 for all x € (a,b), then there exists ¢ € (a, b) such that

The statement above is a generalization of the mean value theorem and is called the Cauchy

mean value theorem (see Theorem 77).



Example 3.11. Note that the sine function is continuous on any closed interval [a, b] and is
differentiable on (a, b). Therefore, the mean value theorem implies that there exists ¢ € (a, b)
such that

) sinb —sina
cosc = — sing = ———

X lz=c b—a
which implies that |sina — sinb| = |cosc||a — b| < |a — b|. Therefore,
|sinz — siny| < |z — y| Ve, yeR.
Similarly,
|cosz — cosy| < |x — y Va,yeR.

3.3 Monotone Functions and the First Derivative Test

Definition 3.12

Let f be defined on an interval I.

1. f is said to be increasing on [ if

flz1) < f(xo) Vay,wo €l and 1y < 5.
2. f is said to be decreasing on [ if

flx1) = f(x9) Vo, 2z0€l and 1 < 2.
3. f is said to be strictly increasing on [ if

f(zy) < f(x9) Vay,x0€l and x1 < 2.
4. f is said to be strictly decreasing on I if

f(z) > f(x2) Va,x0€l and x1 < 2.

When f is either increasing on I or decreasing on I, then f is said to be monotone.
When f is either strictly increasing on I or strictly decreasing on I, then f is said to

be strictly monotone on I.

Remark 3.13. Note that f is increasing on [ if
f(z1) — f(x2)

X1 — X2

>0 Vai,29 €I and 21 # x5.

Therefore, f is increasing on I if the slope of each secant line of the graph of f is non-

negative. Similar conclusions hold for the other cases.



Example 3.14. The function f(z) = z? is strictly increasing on R, and f(z) = —a? is

strictly decreasing on R.
Example 3.15. The sine function is strictly increasing on [Qnﬂ — g,2n7r + g} for all

n € Z, but decreasing on [2n7r — g, 2nm + 3%] for all n € Z. However, the sine function

e}
is not strictly increasing on | J [2n7r — g,er + g] and is not strictly decreasing on
n=—a
®© T 37
2nm — =, 2nm + —|.
L, g ]

Theorem 3.16

Let f :[a,b] — R be continuous and f is differentiable on (a,b).

1. If f'(x) =0 for all z € (a,b), then f is increasing on [a, b].
2. If f/(z) <0 for all z € (a,b), then f is decreasing on [a, b].
3. If f'(z) > 0 for all € (a,b), then f is strictly increasing on [a, b].
() (a,b)

4. If f'(x) < 0 for all = € (a,b), then f is strictly decreasing on [a, b].

Proof. We only prove 1 since all the other conclusion can be proved in a similar fashion.
Suppose that f’(z) > 0, and z; < x9. By the Mean Value Theorem, there exists

c € (1, x2) such that

f(x1) — f(x9)

= () = 0;
1 — T2
thus f(x1) < f(x2) if 21 < . O

Remark 3.17. The condition f’(x) > 0 is just a sufficient condition for that f is strictly
increasing, but not a necessary condition. For example, f(z) = x? is strictly increasing on
R, but f'(0) = 0.

Example 3.18. Show that

.%‘2

cosa:>1—7 Ve =>0. (3.3.1)
2
Let f(x) =cosxz —1+ % In order to show (3.3.1), we need to show that f(x) > 0 for
all z > 0. Since f’(x) = —sinz + z, by Theorem 0.13 we find that f’ is non-negative on
[0,00). Therefore, Theorem 3.16 implies that f is increasing on [0, c0) which further shows

that f(x) = f(0) =0 for all z > 0.



Example 3.19. Using (3.3.1), we can show that
: a®
Smx}x—g Ve =>0.

3
In fact, by defining g(z) = sinz — x + %, using (3.3.1) we find that

2
g’(a:)zcosa:—l—i—%?() Va>=0;
thus ¢ is increasing on [0,00) which shows that g(z) > ¢(0) = 0 for all x > 0. Similar

argument then shows that

2 7t
<l——+— >
cos T 5 + o V=0
and the inequality above in turn implies that
DA
ne <r——+ — V=0
sinxy < 6 + 120 T
By induction, we can show that for all k € N U {0},
23 Ak L Ak+3 23 LAk
- — 4 ... — < si <r——+- - V=0,
SR Ty s TR e T T T DT
22 24k L Ak+2 22 ak
1— ... - < <l——+--- Vo >0.
o T T e T @k ray SO SRR AT .

Theorem 3.20: The First Derivative Test

Let f be a continuous function defined on an open interval I containing c. If f is

differentiable on I, except possibly at ¢, then
1. If f’ changes from negative to positive at ¢, then f(c) is a local minimum of f.
2. If f’ changes from positive to negative at ¢, then f(c) is a local maximum of f.

3. If f’is sign definite on I'\{c}, then f(c) is neither a relative minimum or relative

maximum of f.

Proof. We only prove 1. Assume that f’ changes from negative to positive at ¢. Then there

exists a and b in I such that
f'(x) <0forall x € (a,c) and f'(x)>0forall xz € (c,b).

By Theorem 3.16, f is decreasing on (a,c) and is increasing on (¢, b). Therefore, f(c) is a

minimum on an open interval (a, b); thus is a relative minimum on I. 0]



1
Example 3.21. Find the relative extrema of f(z) = 5%~ sinz in the interval (0, 27).
By Theorem 3.5 the relative extrema occurs at critical points. Since f is differentiable
on (0,27), a critical point x satisfies

1
O:f'(x)zﬁ—cosx

which implies that ¢ = % and ¢ = ?ﬂ are the only critical points. To determine if f (g) or
Y . .. .

f (g) is a relative minimum, we apply Theorem 3.20 and found that, since f’ changes from
negative to positive at g and changes from positive to negative at g, f(g) is a relative
minimum of f on (0, 27).

Remark 3.22. When a differentiable function f attains a local minimum at an interior
point ¢, it is not necessary that f’ changes from positive to negative. For example, consider
the function f : R — R defined by

f(x):{ x2(1+sin%) ifx#0,

0 ifx=0.
Then . .
() = 2x(1+sin5)—cosg ifx#0,
0 ifxr=0.
Therefore,

1. 0 is a critical point of f.
2. f attains a (global) minimum at 0 since obviously f(z) = 0 = f(0) for all z € R.

3. It is impossible to determine if f’ changes “from negative to positive” or “from positive

to negative” at 0.

3.4 Concavity (") and the Second Derivative Test

Definition 3.23

Let f be differentiable on an open interval I. The graph of f is concave upward (™
w + ) on I if f’ is strictly increasing on the interval and concave downward (™ =

T ) on [ if f’is strictly decreasing on the interval.




Remark 3.24. It does not really matter if f’ has to be strictly monotone, instead of just
monotone, in order to define the concavity of the graph of f. Here we define the concavity

by the strict monotonicity.
e Graphical interpretation of concavity: Let f be differentiable on an open interval I.

1. If the graph of f is concave upward on I, then the graph of f lies above all of its
tangent lines on I.

2. If the graph of f is concave downward on I, then the graph of f lies below all of its
tangent lines on /.

The following theorem is a direct consequence of Theorem 3.16.

Theorem 3.25: Test for Concavity

Let f be a twice differentiable function on an open interval I.

1. If f”(x) > 0 for all  in I, then the graph of f is concave upward on I.

2. If f"(x) <0 for all z in I, then the graph of f is concave downward on I.

Example 3.26. Determine the open intervals on which the graph of f(x) = 0 is

2?2 +3
concave upward or concave downward.

First we compute the second derivative of f:

—12z _ (2% +3)* = 2(z* + 3)(2x)x  36(z* — 1)
(@1 3 @ia @y

f(a) =

Therefore, the graph of f is concave upward if > 1 and is concave downward if x < 1.

Definition 3.27: Point of inflection ( ¥ & 2t)

Let f be a differentiable function on an open interval containing c. The point (c, f(c))
is called a point of inflection (or simply an inflection point) of the graph of f if the
concavity of f changes from upward to downward or downward to upward at this

point.

36(x? — 1)
243 (2 +3)3
changes sign at x = +1, (il, g) are both points of inflection of the graph of f.

Example 3.28. Recall Example 3.26 (f(x) = with f"(z) = ) Since f”



Theorem 3.29

Let f be a differentiable function on an open interval containing c. If (c, f (c)) is a

point of inflection of the graph of f, then either f”(c) =0 or f”(c) does not exist.

Remark 3.30. A point (c, f (c)) may not be an inflection point of the graph of f even
if f”(c) = 0. For example, the point (0,0) is not an inflection point of f(z) = z* since

f"(x) > 0 for all z # 0 which implies that the concavity of f does not change at ¢ = 0.

Example 3.31. Determine the points of inflection and discuss the concavity of the graph
of f(z) = z* — 4z®. Note that the zero of f” is x = 0 or x = 2 (since f”(z) = 122> — 24x).
Since f"(z) > 0if x <0 orx > 2, and f"(z) > 0if 0 < 2 < 2, we find that (0,0) and
(2, —16) are points of inflection of the graph of f.

Theorem 3.32

Let f be a twice differentiable function on an open interval I containing ¢, and c is a

critical point of f.
1. If f"(c) > 0, then f(c) is a relative minimum of f on I.

2. If f"(c) <0, then f(c) is a relative maximum of f on I.

Remark 3.33. If f”(c) = 0 for some critical point ¢ of f, then f may have a relative
maximum, a relative minimum, or neither at c¢. In such cases, you should use the First

Derivative Test.
Proof of Theorem 3.32. Since f”(c) > 0, there exist 6 > 0 such that
f'(z) = f'(e) f"(e)

2

Tr —cC

— fe)] <
Since ¢ is a critical point of f, f’(c) = 0; thus the inequality above implies that

F1(0) _ £ _ 3
2 Tr—c 2

if0<|x—cl <o.

if 0 <|z—c|l <.

In particular,

(x —c) < f'(x) if0<z—c<d,

—~(r—0¢)<0 if -0 <z—c<0.



Therefore, f’ changes from negative to positive at ¢; thus f(c) is a relative minimum of f

on I. O]

Example 3.34. Recall Example 3.21 (f(x) = %x—sin :1:) We have established that f(g) is
a relative minimum of f on (0, 27) using the First Derivative Test. Note that f”(x) = sin ;

thus f” (g) = sing = \f > (. Therefore, without using the First Derivative Test, we can

still conclude that f (g) is a relative minimum of f on (0, 27) by the second derivative test.
Example 3.35. Show that for all 1 < p, ¢ < oo satisfying 1 + 1o 1, we have
p g

ab< —+—  VYa,b>0. (3.4.1)

1 1
The inequality above is called Young’s inequality. We remark that if — + — = 1, then
P P q

p—1
For the moment we only show (3.4.1) for the case that p,q € Q (because we have not

q:

talked about what it means by the p-th power if p is irrational). To show (3.4.1), we prove
that for each given b > 0, the function f : (0,00) —» R

P b
f@) =2 o+ =
p q

is non-negative. In other words, we have to show that the “minimum” of f is non-negative.
To find the minimum of f, we differentiate and find that f’(z) = 2P~ — b which implies

that ¢ = b1 is the only critical point. Since
f'(€) = (p= 1) = (p = b= =0,

the second derivative test implies that f attains a local minimum at c¢. Since there is no

other critical points, f must attain its global minimum at ¢; thus

f(@) = fle)  Vae(0,x)

P
1 ¢ B a
and (3.4.1) is established since f(c) = bt BT L b? + " 0.
p q p q
Remark 3.36. Suppose that ¢ is a critical point of a differentiable function f with f”(c) =
0. For f to attain a local extremum at ¢, f"”(¢) must be zero if the third derivative of f is

continuous. If in addition f® is continuous, then



1. f attains a local maximum at ¢ provided that f®(c) < 0.
2. f attains a local minimum at ¢ provided that f*(c) > 0.

In general, if f is 2k-times continuously differentiable (which means f(*) exists every-
where and is continuous) and f'(c) = f”(c) = --- = f@*I(c) = 0, then

1. f attains a local maximum at ¢ provided that f®*(c) < 0.
2. f attains a local minimum at ¢ provided that f*(c) > 0.

On the other hand, if f is (2k + 1)-times continuously differentiable and f'(c) = f"(c) =

o= f@R(c) = 0 but fC*(c) # 0, then f cannot attain its local extremum at c.

3.5 A Summary of Curve Sketching

When sketching the graph of functions, you need to have the following on the plot.
1. z-intercepts and y-intercepts;
2. asymptotes;
3. absolution extrema and relative extrema;

4. points of inflection.
3z — 2
V22 +1°
First, we note that the z-intercepts and y-intercepts are (g, 0) and (0, f(0)) = (0,-2).

Example 3.37. Sketch the graph of the function f(z) =

To determine the asymptotes, since 4/2x2 + 1 are never zero, there is no vertical asymptote.

As for the horizontal and slant asymptotes, by the fact that

3z —2 3_ 2 3_9 5
. . . = . — &y
lim f(z) = lim —— = lim —%—= = lim —— = —
T—>00 f( ) r—00 \/m T—00 \/E y—>0+ \/W \/5
X X
and

3z — 2 -3-2 3-2 3
lim f(z)= lim f(—2z) = L m L = lim Y 2



we find that there are two horizontal asymptotes y = \f
By the quotient rule,

) 3207 +1— (30 -2 (202 + 1)} 3v227 +1— (30— 2)5(202 + 1)1 - (4a)

212 + 1 222+ 1
3224+ 1) — 223z —2) 4x+3
(222 + 1)2 (222 + 1)2
and
3 3 1
() 4222 +1)2 = (4o +3)5(222 + 1)2 - (42)  4(22% + 1) — 6a(dx + 3)
€Xr) = g
(21’2 ) (23;2 + 1)%
—162? — 18z + 4 _ —2(82% + 9z — 2)
(222 +1)3 (222 4+1)2
Therefore, x = —Z is the only critical point and since f’ changes from negative to positive
at —g, f(—%) is a relative minimum of f.
—9 — /145 -9 4145

f"(x) =0 occurs at x; = 6 and xy = T . Since f” changes sign at x;

and xq, (x1, f(x1)) and (x2, f(x2)) are inflection points of the graph of f.

3.6 Optimization Problems

Explanation of examples in Section 3.7 in the textbook:

1 - P REF - BARNMLE A 2 af 1083202 134 Brdifsd o B
EREF AR B

2. Which points on the graph of y = 4 — 2% are closest to the point (0,2)? #4 &
y=4—2> rvRpEEn] (0,2) &if ?

3P NENRFO AT R RN T TFIZ AL LG ALY R e F 216
I = \/,,\:q’ﬁg—;qj‘gpﬁs?%%&}ﬁ;ljo

4 BB 5 12 28 2 28 2% Feofk 3 ApEE 30 % o HdiG b - B2 A {E
2 B iRz fedfod | o



5. Four meters of wire is to be used to form a square and a circle. How much of the wire
should be used for the square and how much should be used for the circle to enclose
the maximum total area? — & 4 22 R BAHL 53 E* KED - B > A5fo-
BRI, - & EAA KA BB e e

6. Application in Physics: Let v; be the velocity of light in air and v, the velocity of
light in water. According to Fermat’s Principle, a ray of light will travel from a point
A in the air to a point B in the water by a path AC'B that minimizes the time taken.

Show that .
sinfh u1

sin 02 - V2 ’
where 6, (the angle of incidence) and 6y (the angle of refraction) are as shown. This

equation is known as Snell’s Law.

A
6,

6,
NG ]
Figure 3.1: Snell’s law

Proof. Assume that A = (0,a) and B = (b, —c). The goal is to find C' = (z,0) so that
VETE e obi e
floy = YO VD

is minimized. Differentiating f, we find that a critical point x of f satisfies
1 x 1 b—=z

v1 V22 + a2 - g«/(m—b)2+02 ‘
Snell’s law then is concluded from the fact that sinf; =
b—x

7. Application in Economics: Suppose that

and sinfy =

x
V2 +a?
L]

r(z) = the revenue from selling = items,
¢(x) = the cost of producing the x items,

p(z) = r(x) — ¢(x) = the profit from producing and selling z items.



Although x is usually an integer in many applications, we can learn about the behavior
of these functions by defining them for all nonzero real numbers and by assuming they
are differentiable functions. Economists use the terms marginal revenue (:#*% < %),
marginal cost (i§ % = %), and marginal profit (:# % 41/#) to name the derivatives
r'(x), ¢'(x), and p’(z) of the revenue, cost, and profit functions. Let us consider the
relationship of the profit p to these derivatives. If r(x) and ¢(z) are differentiable for
in some interval of production possibilities, and if p(x) = r(x) — ¢(z) has a maximum
value there, it occurs at a critical point of p(x) or at an end-point of the interval. If it
occurs at a critical point, then p’(x) = r'(x) —c¢’(x) = 0 and we see that r'(z) = ¢'(x).

In economic terms, this last equation means that

At a production level yielding maximum profit, marginal revenue equals

marginal cost.

A
Cost ¢(x)
“ Revenue r(x)
A | Break-even point
) | Maximum profit, ¢'(x) = r'(x)
B |
|
|
\ - ~ | . . ~
| Local maximum for loss (minimum profit), ¢'(x) = r'(x)
| ' > X
0 [tems produced

Figure 3.2: The graph of a typical cost function starts concave down and later turns concave
up. It crosses the revenue curve at the break-even point B. To the left of B, the company
operates at a loss. To the right, the company operates at a profit, with the maximum profit
occurring where ¢’(z) = r’(x). Farther to the right, cost exceeds revenue (perhaps because
of a combination of rising labor and material costs and market saturation) and production
levels become unprofitable again.



3.7 Newton’s Method

The Newton method is a numerical method for finding zeros of differentiable functions.
Let f : (a,b) — R be a differentiable function, and ¢ € (a,b) is a zero of f. To find an

approximated value of ¢, the Newton method is the following iterative scheme:
1. Make an initial estimate x; € (a,b) that is close to c.

2. Determine a new approximation using the iterative relation:

Tpt1 = Tp — f<xn)
Y A
3 Q ______.---""'---/.T X3 /J\:Q ,\.f] ;
Xy

Figure 3.3: Sequence of approximated zeros by Newton’s method

3. When |z,, — 41| is within the desired accuracy, let x,.; serve as the final approxi-

mation.

Example 3.38. To find the square root of a positive number A is equivalent to finding
zeros of the function f(z) = 2 — A in (0,00). The Newton method provides the iterative

scheme
fx,) 2 —-A oz, A
'rn - ‘TTL - - n - T 4~ - P
o /(@) 2 2 21,

to find approximated value of \/Z

It can be shown that when ‘f ‘ < 1 for all x € (a,b), then the Newton method

produces a convergent sequence Wthh approaches a zero in (a,b).
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