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Chapter 4

Integration

n
e The X notation: The sum of n-terms ay, as, - - - ,a, is written as > a;. In other words,
i=1
n

Zai:a1+a2+~-—|—an.

i=1
Here 7 is called the index of summation, a; is the i-th terms of the sum. We note that 7 in

the sum ). a@; is a dummy index which can be replaced by other indices such as j, k, and

=1
n

n n
etc. Therefore, >  a; = >, a; = Y, ay, and so on.
i=1 j=1 k=1

e Basic properties of sums: Z(cai +b)=c

i=1 %

Theorem 4.1: Summation Formula

n n
1. Y c=cn if cisa constant; 2. > i=

n

i=1

1

n(n+1)2n+1)
1 6 i=1

4.1 The Area under the Graph of a Non-negative Con-
tinuous Function

Let f : [a,b] — R be a non-negative continuous function, and R be the region enclosed by
the graph of the function f, the z-axis and straight lines x = a and x = b. We consider

computing A(R), the area of R. Generally speaking, since the graph of y = f(x) is in

64



general not a straight line, the computation of A(R) is not straight-forward. How do we
compute the area A(R)?
b—a

n
By the Extreme Value Theorem, for each 1 < ¢ < n f attains its maximum and minimum

Partition [a, b] into n sub-intervals with equal length, and let Az = , T = a+iAx.

on [z;_1,x;]; thus for 1 < i < n, there exist M;, m; € [x;_1, z;| such that
f(M;) = the maximum of f on [z;_1, x;]
and
f(m;) = the minimum of f on [x;_q, z;].
The sum S(n) = Zn] f(M;)Az is called the upper sum of f for the partition {a = z¢ < z; <
Ty < o0 < Iy = Zb_}l, and s(n) = ilf(mi)Ax is called the lower sum of f for the partition

{a =2y <z <29 <+ <z, =b}. By the definition of the upper sum and lower sum, we
find that for each n € N,

n

D fm)Ar < A(R) < ) f(M;) Az

If the limits of the both sides exist and are identical as Az approaches 0 (which is the same
as n approaches infinity), by the Squeeze Theorem we can conclude that A(R) is the same

as the limit.

Example 4.2. Let f(z) = 22, and R be the region enclosed by the graph of y = f(z), the
X-axis, and the straight lines x = a and x = b, where we assume that 0 < a < b. Then the

lower sum is obtained by the “left end-point rule” approximation of A(R)

n

Z (a—i— (i—l)(b—a))Qb—a

i=1
and the upper sum is obtained by the “right end-point rule” approximation

i(a_i_i(b—a))?b—a.

By Theorem 4.1,
Z <a+ é(b;a))Qb—a _ Zn: [a2 N 2a(b — a)i N a®(b— a)QiQ} b—a

n n? n

a(b—a)*n(n+1) N a*(b—a)®n(n+1)(2n +1)
n? n3 6

=@ a)+ap-ap (14 )+ T (1 Dy (50 1),




Letting n — oo, we find that

. - l(b—a) 2b—a_ 2 2 o
7}1_1&2(@—1— - ) - =a*(b—a)+alb—a)*+ 3 =—3

Similarly,

n n

= 71— —a —a 2(b — < i(b—a —a 2(b—
;(aJr( 1)5) )>2bn :a(bn a)+i:1<a+ (bn )>2b b*(b — a)

a(b—a)*n(n+1) N a*(b—a)*n(n+1)2n+1) N (a*> — b*)(b— a)

— 42 .
=a(b—a)+ n?2 n3 6 n ’
thus . s
R (z’—l)(b—a)>2b—a_b —a
nh_I)lgO;(a—l— n n 3
3_ 3
Therefore, A(R) = b 3 .

Remark 4.3. Let R; be the region enclosed by f(x) = z?, the z-axis and z = a, the

R, be the region enclosed by f(x) = 22, the z-axis and x = b, then intuitively A(R) =

3 3
A(Ry) — A(R;) and this is true since A(R;) = % and A(Rq) = %

If f is not continuous, then f might not attain its extrema on the interval [z; 1, ;].

In this case, it might be impossible to form the upper sum or the lower sum for a given

partition. On the other hand, the left end-point rule > f(z;—1)Az and the right end-point
i=1
rule Y] f(x;)Ax of approximating the area are always possible. We can even consider the
i=1
“mid-point rule” approximation given by

D () A
i=1

and consider the limit of the expression above as n approaches infinity.

4.2 Riemann Sums and Definite Integrals

In general, in order to find an approximation of A(R), the interval [a,b] does not have to
be divided into sub-intervals with equal length. Assume that [a,b] are divided into n sub-

intervals and the end-points of those sub-intervals are ordered as a = xg < 11 < T9 < --- <



x, = b, here the collection of end-points P = {xg, x1, - ,z,} is called a partition of [a,b].

Then the “left end-point rule” approximation for the partition P is given by

and the limit process as n — o0 in the discussion above is replaced by the limit process as
the norm of partition P, denoted by |P| and defined by |P| = max {z; — ;-1 |1 < i < n},
approaches 0. Before discussing what the limits above mean, let us look at the following
examples.

Example 4.4. Consider the region bounded by the graph of f(z) = 4/ and the x-axis for

2
0<z<l. Letxi:%andP:{x0:O<x1<-~<xn:1}. We note that
n

2 2 . 2 . 1
HPH:maX{iZ (12 D ’1<i<n}:max{2221’1<ign}: n2
n n n
thus |P| — 0 is equivalent to that n — oo.
Using the right end-point rule (which is the same as the upper sum),
- L i2i—1 1 ¢
S(P) = )NTi —Tim1) = ) — = — ) (2" —i
(P)= X e —rn) = Y0 50 = 5 e =)
1 [n(n +1)(2n+1) nn+ 1)]
~nd 3 2
—1<1+1><2+1> 1<1+1)-
3 n n 2n n/’
thus 1 1 1 1 1 2
57~ (54 )2 - 0] -2
HPIH%O (P) noh 3 +n +n 2n +n 3
Using the left end-point rule (which is the same as the lower sum),
$ Ni—12i—1 1 a0 ..
; Ti— 1 Il',l) = ZZ; 0 2 = E;(Q’l — 31+ 1)
1

_ [ n(n + 1)3(2n +1) 3:n(n2+ 1) n n}

3
1 1 3 1 1
(+2)+2) -5 (14 )+
n n m n?

n
1
3



thus
1 1 1 3 1 1 2
i, 7= () o+ 1) - 50+ 1) 2] -3
IIPIHIEOS() o 13 +n +n 2n +n +n2 3
Therefore, the area of the region of interest is ;

Example 4.5. In this example we use a different approach to compute A(R) in Example 4.2.

Assume that 0 < a < b. Let r = (2)%, ri=ar',and P={a=1z9 <1y < - <z, =b}.

Claim: If ¢ > 1, then cn=1asn approaches infinity.

Proof of the claim: If ¢ > 1, then en > 1. Let Yn = ¢n — 1. Then ¢ = (1+y,)" =14 ny,

which implies that 0 < gy, < el for all n € N. By the Squeeze Theorem, e — 1 as

n — oo. ! [
Note that the claim above implies that » — 1 as n — o. Moreover, z; — x;_1 =

a(r' —r =Y = ar*~'(r — 1); thus
O<a(r—1) =2 —20 <||P| =20 —2n1=ar" ' (r—1) <b(r —1).

Therefore, |P| — 0 is equivalent to that n — co.

Using the “left end-point rule” approximation of the area,

o 2 N1 2, 2(i-1), i-1(,. _ 1) — 3 1 _ 3(i—1)
AR) 7}1_1)210;951_1(@ Ti_1) T}l_r}olOZar ar'” (r—1)=a’ lim (r 1);7*

n—0o0
=1
b? 1
3n —_ 3 3
3 ot —1 3 1. a3 b> —a
=¢q’ lim(r—1 =a’ li =
n—»oo( )7‘3—]. n—>oo’l“2+’l”+1 3

Similarly, when applying the “right end-point rule” approximation, we obtain that

n no I I T X B
lim fo(m, — ;1) = a® lim (r — 1) Z r3 = a® lim (r — 1) =
n—00 4 1 n—o0 — n—0o0 T’3 — 1 3

1= 1=

This also gives the area of the region R.

To compute an approximated value of A(R), there is no reason for evaluating the function
at the left end-points or the right end-points like what we have discussed above. For example,

we can also consider the “mid-point rule”

m(P) = 2 f(%)(% —Ti_1)



to approximate the value of A(R), and compute the limit of the sum above as ||P|| approaches
0 in order to obtain A(R). In fact, we should be able to consider any point ¢; € [z;_1, x;]

and consider the limit of the sum

n
H}jl”fgo 2 fle)(zi — zi-1)
if the region R does have area.

Now let us forget about the concept of the area. For a general function f : [a,b] — R,
we can also consider the limit above as |P| approaches 0, if the limit exists. The discussion

above motivates the following definitions.

Detfinition 4.6: Partition of Intervals and Riemann Sums

A finite set P = {x¢,x1, -+ ,x,} is said to be a partition of the closed interval [a, b] if

a=1x9 <z <--- <z, =>b Such a partition P is usually denoted by {a = z¢ < ; <
.-+ < 2,}. The norm of P, denoted by |P|, is the number max {z; —z;_1 |1 <i < n};

that is
| P = max {z; 21 [ 1< i < n}.

A partition P = {a =2g <1 < -+ < x, = b} is called regular if z; — z;_1 = |P| for
all 1 <i<n.
Let f : [a,b] — R be a function. A Riemann sum of f for the the partition

P={a=xy<z1 < <x, =0} of [a,]] is a sum which takes the form
D fle) (@ —zia),
i=1

where the set = = {cg, 1, ,cn_1} satisfies that x; | < ¢; < x; for each 1 <7 < n.

Definition 4.7: Riemann Integrals - % & # »

Let f : [a,b] — R be a function. f is said to be Riemann integrable on [a, b] if there

exists a real number A such that for every € > 0, there exists 4 > 0 such that if P
is partition of [a, b] satisfying |P| < J, then any Riemann sums for the partition P
belongs to the interval (A — e, A+ ¢). Such a number A (is unique and) is called the

Riemann integral of f on [a, b] and is denoted by f(z)dx.
[a,b]

Remark 4.8. For conventional reason, the Riemann integral of f over the interval with left

b
end-point a and right-end point b is written as J f(z)dz, and is called the definite integral



of f from a to b. The function f sometimes is called the integrand of the integral.
We also note that here in the representation of the integral, z is a dummy variable; that

is, we can use any symbol to denote the independent variable; thus

Lbf(x) dr = Lbf(t) dt = Lb f(u) du

and etc.
The following example shows that no all functions are Riemann integrable.

Example 4.9. Consider the Dirichlet function

0 if z is rational ,
flz) =

1 if x is irrational ,

on the interval [1,2]. By partitioning [1,2] into n sub-intervals with equal length, the
Riemann sum given by the right end-point rule is always zero since the right end-point of
each sub-interval is rational. On the other hand, by partitioning [1,2] into n sub-intervals
using geometric sequence 1, 7,72, -+ ,r"~1 2 where r = 2w, by the fact that ¢ ¢ Q for each

1 <i < n—1 the Riemann sum of f for this partition given by the right end-point rule is

n n—1
Zf(rz)(rz . Ti—l) _ 2(,,,@ . Ti—l) — b0 + P2yl 4ot 1l pn—2
=1 =1
2
=l =21
r

which approaches 1 as r approaches 1. Therefore, f is not integrable on [1,2] since there
are two possible limits of Riemann sums which means that the Riemann sums cannot con-

centrate around any firxed real number.

Theorem 4.10

If f:]a,b] - R is continuous, then f is Riemann integrable on [a, b].

b

Example 4.11. In this example we compute f x%dxr when ¢ # —1 is a rational number
a

and 0 < a < b. Since f(z) = 27 is continuous on [a, b], by Theorem 4.10 to find the integral
it suffices to find the limit of the Riemann sum given by the left end-point rule as |P|

approaches 0.



3=

We follow the idea in Example 4.5. Let r = <é) and z; = ar’, as well as the partition
a

P={a=xy <z <+ <xy=>}) Then the Riemann sum of f for the partition P given

by left end-point rule is

” , : 4 LI n(g+1) _ q
o i—1\q i i—1\ _ q+1l(,. (i—1)(¢g+1) _ ,q+1 . r
L(P)—;(ar Yi(ar' —ar'™) =a’ (r 1);7“ =a’ (r 1>—r‘1+1—1
r—1
— g+1 _ q+1
T et _q (b a®ty.
. d "
Since —| 79"t = (¢ + 1), we have
d?” r=1
ritt -1 d
lim — = — g+l 1:
rllr% r—1 dT’r:lT q+ ’

thus by the fact that r — 1 as n — o (or |P| — 0), we find that

patl _ gatl
lim L(P)= lim L(P)= ——
[P0 ) [P0 ) q+1
b patl _ gatl
Therefore, J x?dx = Y if ¢ # 1 is a rational number and 0 < a < b.
a q

Example 4.12. Since the sine function is continuous on any closed interval [a, b, to find
b

sinx dr we can partition [a,b] into sub-intervals with equal length, use the right end-
pgint rule to find an approximated value of the integral, and finally find the integral by

passing the number of sub-intervals to the limit.

Let Az =

b— . . . . . .
¢ and x; = a + 1Ax. The right end-point rule gives the approximation

Z sinz; Az = Z sin(a + iAz)Ar = Az 2 sin(a + iAx)

=1 =1 =1

of the integral.

Using the sum and difference formula, we find that

cos [a+ (i — %)Aw] —cos [a+ (i+ %)Am} = 2sin(a + 1Ax) sin % ;



thus if sin % # 0,

2, sin(a 4+ iAz) = @ [(COS (a + éAa:) — COS (a + gA@) + (cos (a + gAx)

)

— CoS (a+gAx)> +---+cosla+ (n— %)Am}

— CoS [a—l— (n+ %)Azﬂ

which, by the fact that a + (n + %Am) =b+ %AI, implies that

n Ar
Z sin x; Az = —2 [COS (a + %Ax) — COS (b + %Aaz)] .

in Az
i=1 2

S1n

By the fact that lim S

z—0 X

= 1 and the continuity of the cosine function, we conclude that

—
a n—00 4

b n
f sinz dx = lim Zsinsza: =cosa — cosb.
=1

Theorem 4.13

Let f : [a,b] — R be a non-negative and continuous function. The area of the region

enclosed by the graph of f, the z-axis, and the vertical lines x = a and z = b is

Lb f(z)dz.

Example 4.14. In this example we use the integral notation to denote the areas of some

common geometric figures (without really doing computations):

2 1 V3
l.f Vi —2?2dr =27 ; Z.J \/4—x2dx:2§+\/§; S.J V4 — 22dz =7 + /3.
-2 -1 -1

4.2.1 Properties of Definite Integrals

Definition 4.15

1. If f is defined at x = a, then f f(z)dx =0.

a b
2. If f is integrable on [a, b], then L flz)dx = —J f(x)de = —J[ ’ f(x)dx.

a




Remark 4.16. By the definition above, if f is Riemann integrable on [a, b], J f(x)dx is
b
the limit of the sum

n n

Z flzi)(zi —xi-) and Z f(@i1) (@ — 25-1)

i=1 =1
asmax{]xi—xi,ﬂ‘léién}—>O, where 19 = b > 21 > 29 > -+ > T, = a.

Theorem 4.17

If f is Riemann integrable on the three closed intervals determined by a, b and ¢, then

Lbf(x)dx:ff(x)dx+ff(x)dm.

Theorem 4.18

Let f,g : [a,b] — R be Riemann integrable on [a,b] and k be a constant. Then the
function kf + g are Riemann integrable on [a, b], and

b

Jb(kf + g)(2) d = k:Lbf(x) da ij o(z) dz

a a

Theorem 4.19

b
If f is non-negative and Riemann integrable on [a, b, then f f(z)dx = 0.

Corollary 4.20

If f, g are Riemann integrable on [a,b] and f(z) < g(x) for all a < x < b, then

J:f(x) dr < J:gm i

Theorem 4.21

If f is Riemann integrable on [a,b], then |f| is Riemann integrable on [a, b] and

Lbf(x) dz| < Lb\f(x)\dx.




Theorem 4.22: ¥ %3 7
Let f : [a,b] — R be a function. If f is Riemann integrable on [a, b], then f is bounded
on [a, b]; that is, there exists M > 0 such that

|f(x)| <M whenever z € [a,b].

Proof. Let f be Riemann integrable on [a,b]. Then there exists A € R and § > 0 such
that if P is a partition of [a,b] satisfying |P| < J, then any Riemann sum of f for P

belongs to (A — 1, A+ 1). Choose n € N so that b-a

< 0. Then the regular partition
={a=x9<x1 <+ <x, =b}, where x; = a + b_Taz', satisfies |P| < 4.

Suppose the contrary that f is not bounded. Then there exists z* € [a, b] such that
oo A+ | X
‘f@ )‘ S ‘1“; ‘f(xz)‘

Suppose that z* € [z3_1,24]. By the fact that 3 f(z:)(zi — 1) + f(2*) (2 — 24-1) Is a
ik
Riemann sum of f for P, we have
A—-1< 2 f(il)z)(l’Z — $i—1) + f(l'*)(l‘k — l’k_l) <A+1.

i=
i#k

for all 1 < i < n, the inequality above shows that

Since x; — x;_1 =

AL S pe) < gy < MAED if (&)

i#k z#k

and the triangle inequality further implies that

[ |A|+ +2\fxz} )<%+Z{f@2)|

Therefore, we conclude that

] < A e < P 4 S ),

itk

a contradiction. ]



Example 4.23. Let f:[0,1] — R be defined by

f(x):{ %fxe(O,l],
0 ifx=0.

Then f has only one discontinuity in [0, 1] but f is not Riemann integrable on [0, 1] since f

ISER

is not bounded.

4.3 The Fundamental Theorem of Calculus

In this section, we develop a theory which shows a systematic way of finding integrals if the
integrand is a continuous function.

Definition 4.24

A function F is an anti-derivative of f on an interval I if F'(x) = f(x) for all z in 1.

Theorem 4.25

If F is an anti-derivative of f on an interval I, then G is an anti-derivative of f on
the interval I if and only if G is of the form G(x) = F(z) + C for all z in I, where C
is a constant. (E HcAp e S Bcp £ - ¥ #i)

Proof. Tt suffices to show the “=" (only if) direction. Suppose that F' = G’ = f on I.
Then the function h = F' — G satisfies h'(x) = 0 for all z € I. By the mean value theorem,

for any a,b € I with a # b, there exists ¢ in between a and b such that
h(b) — h(a) = h'(c)(b—a).

Since h'(z) =0 for all z € I, h(a) = h(b) for all a,b € I; thus h is a constant function. [

Theorem 4.26: Mean Value Theorem for Integrals - # » }2ig 32

Let f : [a,b] — R be a continuous function. Then there exists ¢ € [a, b] such that

j f(2)dz = f(S)(b—a).

Proof. By the Extreme Value Theorem, f has a maximum and a minimum on [a,b]. Let

M = f(x1) and m = f(x3), where x1, x5 € [a,b], denote the maximum and minimum of f



n [a, b, respectively. Then m < f(z) < M for all z € [a,b]; thus Corollary 4.20 implies
that

(b—a)—medxéfbf(x)dxéLbde—M(b—a).

Therefore, the number J f(z)dx € [m, M]. By the Intermidiate Value Theorem, there

exists ¢ in between x; and x5 such that f(c) J f(z ]

Theorem 4.27: Fundamental Theorem of Calculus - #&#f » 7 * 32

Let f : [a,b] — R be a continuous function, and F' be an anti-derivative of f on [a, b].
Then

b
f f(z)dez = F(b) — F(a).

Moreover, if G(x f f(t)dt for x € |a,b], then G is an anti-derivative of f.
We note that for = € [a, b|, f is continuous on [a, x]; thus f is Riemann integrable on
[a, ] which shows that G(x J f(t) dt is well-defined.

Proof of the Fundamental Theorem of Calculus. Note that for h # 0 such that x+h € [a, b],

we have
G(m+h}2 f fe dt—Jf dt J £0

By the Mean Value Theorem for Integrals, there exists ¢ = ¢(h) in between = and x + h such

that ijﬂh f(t)dt = f(c). Since f is continuous on [a, b], liin fle) = li_r)n f(e) = f(z); thus

lim G =G 1 J f(t)dt = lim f(c) = f(z)

h—0 h h—0 h

which shows that G is an anti-derivative of f on [a, b].
By Theorem 4.25, G(z) = F(x) + C for all € [a,b]. By the fact that G(a) = 0,
C = —F(a); thus

| r)de =60 = £ ) - Fla)

which concludes the theorem. OJ



Example 4.28. Since an anti-derivative of the function y = 2%, where ¢ # —1 is a rational

number, is y = , we find that
g+1
b an a1 patl — gqatl
f zldr = — =
a q—l—lm:b q+1x:a q—l—l

Example 4.29. Since an anti-derivative of the sine function is negative of cosine, we find
that ,
J sinz dx = (— cos)(b) — (—cos)(b) = cosb — cosa.

a

Jz
Example 4.30. Find ddf sin'® ¢ dt for x > 0.
T Jo

Let F(z) = J sin'® ¢ dt. Then by the chain rule,
0

d , d 1,
%F(\/@:F (ﬁ)@ﬁ:mF (V).

By the Fundamental Theorem of Calculus, F’(z) = sin'® z; thus

d (V" o d sin'® \/x
£ in'®¢dt =~ p(Va) = = VT
dx ), S dx (V) 2\/x

Theorem 4.31

Let f : [a,b] — R be continuous and f is differentiable on (a,b). If f’ is Riemann

integrable on [a, b], then

f f(@)dz = f(b) — f(a).

b
Proof. Let € > 0 be given, and define A = f f'(x) dz. By the definition of the integrability

there exists § > 0 such that if P = {a = a?o <x; < -+ < x, = b} is a partition of [a, D]
satisfying |P|| < d, then any Riemann sums of f for P belongs to the interval (A—e, A+e¢).

Let P ={a =29 <z <- - <z, = b} be a partition of [a, b] satisfying that |P| < 9.
Then by the mean value theorem, for each 1 < 7 < n there exists r;_1 < ¢ < x; such that

f(z;) — f(ziz1) = f'(¢;)(x; — x;—1). Since



is a Riemann sum of f for P, we must have

i=1 i=1

8
<
|
~
—
8
<
Il

f() = fla),

we conclude that

b
f(b) — f(a) —J f’(qr)d:v‘ <e.
Since € > 0 is chosen arbitrarily, we find that fb fl(x)dz = f(b) — f(a). O

Remark 4.32. If f’ is continuous on [a,b|, then the theorem above is simply a direct
consequence of the Fundamental Theorem of Calculus. The theorem above can be viewed

as a generalization of the Fundamental Theorem of Calculus.

Theorem 4.27 and 4.31 can be combined as follows:

Theorem 4.33

Let f : [a,b] - R be a Riemann integrable function and F' be an anti-derivative of f
on [a,b]. Then

f f(z)dx = F(b) — F(a).

Moreover, if in addition f is continuous on [a,b], then G(z) = J f(t)dt is differen-

tiable on [a, b] and
G'(z) = f(x) for all z € [a, b] .

Definition 4.34

An anti-derivative of f, if exists, is denoted by f f(z) dx, and sometimes is also called

an indefinite integral of f.

e Basic Rules of Integration:



Differentiation Formula Anti-derivative Formula
d
o) f 0dz = C
dx
d ro__ r—1 q — gqu—l ] _
A=Y de:c—q+1+C’ itqg#—1
disinm:cosx fcosxdx:sinx+0
T
%cosx:—sinx Jsinxd:c:—cosijC
ditanx:se(?x fsechda::tanx—i—C
T
%Secx:secxtanx fsecxtanxda::secx—i-C’
d
o [kf(z) + g(z)] = kf'(z) + g'(x) f [kf'(x) + g/ ()] do = kf(x) + g(x) + C

4.4 Integration by Substitution - % #c%

Suppose that g : [a,b] — R is differentiable, and f : range(g) — R is differentiable. Then
the chain rule implies that f o g is an anti-derivative of (f’ o g)g’; thus provided that

1. (fog)’is Riemann integrable on [a, ],
2. f’is Riemann integrable on the range of g,

then Theorem 4.31 implies that
f (g(@))g' (@) do = f (fog) (@) dr=(fog)() — (f o 9)(a)
g(b)
= £(9() — £ (g(a)) = f L (44.1)

Replacing f’ by f in the identity above shows the following

Theorem 4.35

If the function u = g(z) has a continuous derivative on the closed interval [a, b], and

f is continuous on the range of g, then

b 9(b)
f fl9(@))g"(x)dx = | f(u)du.

a g(a)




The anti-derivative version of Theorem 4.35 is stated as follows.

Theorem 4.36

Let g be a function with range I and f be a continuous function on I. If g is

differentiable on its domain and F' is an anti-derivative of f on I, then

f £ (9(2)g" () da = F(g(x)) +C

Letting u = g(z) gives du = ¢'(x) dz and

ff(u)du:F(u)—i—C.

Example 4.37. Find f(mQ +1)%(2x) dx.

Let u = 22 + 1. Then du = 2zdx; thus
2 2 2 L3 L s 3
(x4 1)°(2z)de = | v du = g +C = g(:v +1)°+C.
Example 4.38. Find fcos(f)m) dx.
Let v = 5z. Then du = bdx; thus
1 1. L.
Jcos(5a:) de = R Jcosudu = o sinu +C = R sin(bz) + C'.
Example 4.39. Find f sec? z(tanx + 3) dz.
Let u = tanz. Then du = sec?® zdx; thus
2 L, Lo
sec”z(tanz + 3)dr = | (u+3)du = U +3u+C = étan r+3tanz + C'.
On the other hand, let v = tanz + 3. Then dv = sec? z dx; thus
2 Ly 1 2
sec”z(tanz +3)dr = | vdv = U+ C= §(tanx +3)*+C
1, 9
= §tan x+3tanaz‘+§+C.

We note that even though the right-hand side of the two indefinite integrals look different,

. . 9 .
they are in fact the same since C' could be any constant, and 5 + C is also any constant.



2zdz
NEZES
Method 1: Let 2 = 22 + 1. Then dx = 2zdz; thus

Example 4.40. Find J

2zdz dz 1 3 2 3, ., 2
—_— —_— -3 = — 3 = — 1 3 .
K] J\% T3 dx 2$3+C 2(z +1)3 +C

Method 2: Let y = v/22 + 1. Then y? = 22 4 1; thus 3y?dy = 2zdz. Therefore,

2zdz 3y2dy 3, 3., 2
f‘"’z?—i—l ; fody 5Y +C 2(z+ )3 +C

18 tan? z sec? z

Example 4.41. Find j (2 + tan? 2)2

Let u = 2 + tan®z. Then du = 3tan® xsec® dx; thus

6
_— 4+ C
2+tan3x+

18 tan® x sec® x 6du
= _— = 6 —2 d - _6 -1 O = —
J (2 + tan? )2 f u? JU “ v

Sometimes an definite integral can be evaluated even though the anti-derivative of the
integrand cannot be found. In such kind of cases, we have to look for special structures so
that we can simplify the integrals. There is no general rule for this, and we have to do this
case by case.

2xsinx
3 + cos(2x)
Let the integral be I. By the substitution © = 7 — x, we find that

Example 4.42. Find j
0

I:fo 2(7?—u)sin(7r—u)<_1)du:J7r 2(7r—u)sinudu
~ 3+ cos(2(m —u)) 0o 3 +cos2u
:J” 27 sinu du—fﬂ 2usinu du:ZWJW sin u du—1:
o 3+ cos2u o 3+ cos2u o 3+ cos2u
thus
T sinu T d(cosu) T (Tt dv
l=7n| ——du=—-7 =——
0 3+ cos2u o 3+2cos?u—1 2 ), vr+1

N

T (Y dv T [T secy T (1 T
) 2 ) 2 dy = 5 dy = —.
2J),ve4+1 2 tan“y + 1 2 4

i -
4 4



Chapter 5

Logarithmic, Exponential, and other
Transcendental Functions

5.1 Inverse Functions

Definition 5.1

A function g is the inverse function of the function f if
flg(x)) =x for all x in the domain of g (5.1.1)

and
g(f(z)) =« for all z in the domain of f. (5.1.2)

The inverse function of f is usually denoted by 1.

Some important observations about inverse functions:
1. If g is the inverse function of f, then f is the inverse function of g.
2. Note that (5.1.1) implies that

(a) the domain of g is contained in the range of f,
(b) the domain of f contains the range of g,

(c) g is one-to-one since if g(z1) = g(x2), then x1 = f(g(z1)) = f(g(x2)) = x2
and (5.1.2) implies that
(a) the domain of f is contained in the range of g,

82



(b) the domain of g contains the range of f,
(c) f is one-to-one since if f(z1) = f(x2), then z1 = g(f(x1)) = g(f(z2)) = 2.

According to the statements above, the domain of f~! is the range of f, and the range
of f~!is the domain of f.

3. A function need not have an inverse function, but when it does, the inverse function

is unique: Suppose that g and h are inverse function of f, then

(a) the domain of g is identical to the domain of h (since they are both the range of

);
(b) for each x in the range of f,
flg(x)) = = = f(h(z))
thus by the fact that f is one-to-one, g(x) = h(x) for all z in the range of f.
Therefore, g and h are identical functions.

Example 5.2. The functions

flz) =22 -1 and g(x) =

are inverse functions of each other since

flo =2[§ ] — 1=t 1=

and

g(f(a) = {| T = Vs =

A function f has an inverse function if and only if f is one-to-one.

Proof. 1t suffices to show the “<” direction. Suppose that f is one-to-one. Then for each

x in the range of f, there exists only a unique y in the domain of f such that f(y) = x.

Denote the map x — y by g; that is,

y=g(x) if f(y)=x and z € Range(f).



Then f(g(z)) = « for all z in the range of f. Since the domain of g is the range of f, we
find that
f(g(z)) =« for all  in the domain of g.

On the other hand, by the definition of g we must also have
g(f(x) ==z for all z in the domain of f;

thus f has an inverse function. [

Theorem 5.4
Let f be a function with inverse f~!. The graph of f contains the point (a,b) if and

only if the graph of f~! contains the point (b,a).

Proof. Let (a,b) be on the graph of f. Then b = f(a) which implies that f~!(b) =
f~Y(f(a)) = a. Therefore, (b,a) is on the graph of f~1. O

Remark 5.5. Theorem 5.4 implies that the graph of f and the graph of f~! is symmetric
above the straight line y = x.

Theorem 5.6

Let f be a function defined on an interval I and have an inverse function. Then

1. if f is continuous on I, then f~! is continuous on its domain;
2. if f is strictly increasing on I, then f~! is strictly increasing on the range of f;
3. if f is strictly decreasing on I, then f~! is strictly decreasing on the range of f;

4. if f is differentiable on an interval containing ¢ and f’(c) # 0, then f~! is
differentiable at f(c).

Proof. We only show 2 (and the proof of 3 is similar).

To show that f~! is strictly increasing on the range of f, we need to show that
f (1) < f(xy) if 21 < 25 are in the range of f.

Nevertheless, if f is increasing on [ and x; < x5 are in the range of f, there exists y; =
f7 Y1) and yo = f~'(x9) in I such that f(y;) = z; and f(y2) = xo. Since 11 < Ta, Y1 = Yo;
thus the trichotomy law implies that y; < ys. O



Remark 5.7. If [ is not an interval, then even if f : I — R is one-to-one and continuous,
g) U (g,ﬂ') and f(z) = tanz. Then

clearly f : I — R is one-to-one, onto and continuous; however, the inverse function is not

f~! might be discontinuous. For example, let [ = [O,

continuous at 0: you can check this by looking at the graph of f~!.

(0.7)

Figure 5.1: The graph of f~!

From the graph of f~!, we find that lim+ f~Hx) = 0 while lim f~!(z) = 7; thus f is not
z—0 z—0~
continuous at 0.

Theorem 5.8: Inverse Function Differentiation

Let f be a function that is differentiable on an interval I. If f has an inverse function

g, then g is differentiable at any z for which f’(g(x)) # 0. Moreover,

g'(x) = ——  forall @ with f'(g(z)) # 0.

Proof. Suppose that f is differentiable at g(c) € I and f’(g(c)) # 0. We show that g is
differentiable at c. If k& # 0 is small enough, g(c+ k) — g(c) = h. Then c+ k = f(g(c) + h).

Moreover, h — 0 as k — 0 since ¢ is continuous (by Theorem 5.6). Therefore,

gle+ k) —g(c) _ h B h
k flg(e) +h) = f(g(c))  flg(c) +h) — f(g(c))
1 1
which approaches as k approaches zero. Therefore, ¢'(c) = . O
pproaches Frorgy 5 K app 99 = e
5.2 The Function y =Inx
b patl _ gatl
Recall Example 4.11 that f xidx = B if ¢ # —1 is a rational number and

b
0 < a < b. What happened to the case f 27 1dz? In the following, we define a new

a



function which can be used to compute this integral.

Definition 5.9
The function In : (0,0) — R is defined by

lnx:f %dt Vo >0.

1

T
We emphasize again that we cannot write Inz = J — dx since the upper limit in the
1 X

integral is some arbitrary but fixed number (denoted by x) and the variable of the integrand

should be really arbitrary.

Remark 5.10. For historical reason, when the variable is clear we should ignore the paren-
theses and write In z instead of In(x). On the other hand, if the variable is product of several

variables such as xy, for the sake of clarity we should still write In(zy) instead of In zy.

5.2.1 Properties of y =Inx
e Differentiability

. . 1. .
Since the function y = — is continuous on (0,0), the Fundamental Theorem of Calculus
T

implies the following

ilnx: 1 for all z > 0.
dzx T

In particular, the function y = Inz is continuous on (0, c0).

Corollary 5.12

The function In : (0,00) — R is strictly increasing on (0, 90), and the graph of y = Inx

is concave downward on (0, o).

Example 5.13. In this example we prove that

2

x—Egln(l—l—m)éx Ve >0. (5.2.1)

2
Let f(z) =In(1+x) —z + % and ¢g(z) = In(1 + 2) — z. Then for z > 0,

RO o R S T
f(x)—1+x 1+m—1+$>0, g'(z) = 1= <0.




The two identities above shows that f is strictly increasing on [0,00) and g is strictly

decreasing on [0, o). Therefore,
f(z)> f(0)=0 and g(z) <g(0)=0 Ve >0.
These inequalities lead to (5.2.1).

e The range

Next we show that lim Inz = o0 and lim Inax = —oo. To see this, we note that
r—0 T—>—0

2m 2 4 8 on
1n@@==[ 1dt:J‘1dt+J‘1dr+J 1ﬁ+~-~+f %ﬁ
1 ’ 1 . 2 4 ' 4 on—1

=12 i 2 i=1 i=1
and
9—n 1 27n+1 2—n+2 1
1n(2n):J 1dt:_f 1dt:_[f 1dt+f 1dt_|_...+f ldt}
Lt gon b gon 1 gons1 t Lt
n 2171' _ 271' n 1 n
:_Zf *ﬁ zf _Z 91— :_ZQZ‘?
=1 =1 =1
thus we have lim Inx = c0 and lim Inx = —oo. By the continuity of In and the Interme-

r—00 r——00

diate Value Theorem, for each b € R there exists one a € (0,R) such that b = Ina. By the

strict monotonicity In : (0,00) — R is one-to-one and onto.

Remark 5.14. In particular, there exists one unique number e such that Ine = 1. We note

that ) . )
1 1 1 0.5 0.5 5
m2=| Zdat=| = a2+ 2=2<1
n Ltdt f tdt+£.5tdt 5085

wac [ ([ e [ [ [ s

0.25 025+025+025+44J%47
~125 15  1.75 2
Ml

—1+1+1+1+1+1———>1
5 6 7 8 5 6 840 '

Therefore, 2 < e < 3. In fact, e ~ 2.718281828459.

and




Example 5.15. In this example we show that there is no slant/horizontal asymptote of

the graph of y = Inx. Recall that if the graph of y = Inx has a slant/horizontal asymptote
y = mx + k, then m = lim B% ond k= lim (Inxz — max). We first show that lim Iz _y,

r—00 I xr—00 r—00 T

Let € > 0. Choose M = max{%, 1}. Then if x > M, for all 1 < ¢ < x we have

1 11 171 1 -1 11
0<ﬂ:—f —dt:—” —dt+f —dt]<c +—J Zdt.
x z )t zl) t t x x t

C c

By the mean value theorem for integrals (Theorem 4.26), there exists ¢ < d < x such that

f %dt:‘,E;C;thusifx>]\/_/and1<c<a:7

Inz 1Jx1 c—1 z—¢c c¢—1 1 ec
= dt < <

0<—=-— <
x x )t x +d$

where the last inequality is concluded by choosing 1 < ¢ < z and ¢ < 2. Therefore, for every
€ > 0 there exists M > 0 such that

Inx
——0‘<6 whenever = > M.
x
This is exactly the definition of lim 2T . However, since the range of In is R, lim Inz =
r—00 T T—00

oo which implies that
lim(lnz —0-x) D.N.E.

z—0

Therefore, there is no slant/horizontal asymptote of the graph of y = Inz.

e Logarithmic Laws

The most important property of the function y = Inxz is the relation among Ina, Inb and

In(ab). By the property of integration,

abl al abl abl

1 1 a a

By the substitution ¢ = au, dt = adu; thus

abl b 1 bl
f Zdt: —adu:f—du:lnb.

a 1 au 1 U

Therefore, we obtain the identity:

In(ab) =Ina +Inb Va,b>0. (5.2.2)



Having established (5.2.2), we can show that the function In is a logarithmic function

for the following reason. First, we observe that for all @ > 0 and n € N,
In(a") = In(a" 'a) = In(a" ') + Ina = In(a"?a) + Ina = In(a"?) + 2lna=--- =nlna.

Moreover, by the definition of In, 0 = In(1) = In(a®) = 0ln a; thus

In(a") =nlna  Va>0,neNu{0}.
Next, by the law of exponents, for a > 0 and n € N we have

0=1In(a’) =In(a" - a™") = In(a") + In(a™™) =nlna +In(a™").
Therefore, for all n € N, we also have In(a™") = —nlIna; hence
In(a") =nlna Va>0,neZ.

The identity above also implies that if k,n € Z and n # 0,

k k

nin(a~) =1In((a»)") = In(a") = kIna,

and this shows that

k
ln(a%):—lna Va>0,nkeZ,n+#0.
n

As a consequence,
In(a") =rlna Va>0,reQ.

Finally, we find that In(e") = rlne = r, so Inx is indeed the logarithm of = to the base e.
In other words, we obtain that

T

1
logex:lnx:f ;dt Vo >0. (5.2.3)

1

Theorem 5.16: Logarithmic properties of y = Inx

Let a, b be positive numbers and r be a rational number. Then
1. In1=0; 2. In(ab) =Ina + Inb;

3. In(a") =rlng 4. In (%) =Ina—Inb.




Remark 5.17. Since the function y = Inx has the logarithmic property, it is called the

natural logarithmic function.

2 | 22
Example 5.18. Let f(z) = 3(7?/% Since In f(z) = 2In(z* 4+ 3) —Inz — éln(:c2 +1) for
x > 0, by the chain rule we find that
fl(x) d dx 1 2z
= -— 1 = s
flz) dx nf(w) 22+3 x 3(2+41)’
thus (2432 1 d A ) )
, x°+3 T T
S 2 | — s
(@) zv/z? +1 ldr nf(z) 24+3 x  3(x2+1)

Theorem 5.19

If f is a differentiable function on an interval I, then In|f| is differentiable at those

point x € [ satisfying f(z) # 0. Moreover,

d
%ln|f($)}: for all z € [ with f(z) #0.

Proof. Note that the function y = |z| is differentiable at non-zero points, and

d d 2 1 oy 1 xr
dx|x| dx(x ) 2(x )7z 2 7 Vo #0

N

If f(c) # 0, by the fact that the natural logarithmic function In is differentiable at |f(c)|,
the absolute function | - | is differentiable at f(c) and f is differentiable at ¢, the chain rule

implies that y = In | f(x)| is differentiable at ¢ and

d L fle) f'(e)
- 1 = = . [l
drlo=c n|f(@) £ (<) |f(c)|f (© f(e)
Example 5.20. d%: In|cosz| = _C(S)isn; = —tanz for all z with cosx # 0.
(2% + 3)?

Example 5.21. Compute the derivative of f(z) = for z > 0.

Let h(z) = In f(x). Then

xvx? +1

d 1
o) =M@= [21n(2 +3) ~ Inz - 5 I +1)
d d 1d
4x 1 2x

C22+3 oz 3(x2+1);



thus (2437 4 . 5
x° 4+ X X
f'(z) =

S rila? 43 x 3+ 1)

5.3 Integrations Related to y =Inx

Theorem 5.19 implies the following

1 /
1. szz:1n|$|+0; 2. JJ;((;E)) dz =In|f(z)| + C.

Example 5.23. Compute f;il dx. From observation, the numerator is a half of the
X
derivative of the denominator, so

1( 2 1
J L = J - dr =S In(a® +1) +C.

21Ty ™

1

zlnx

Example 5.24. Compute J dr. Let w =1Inx. Then du = %d:v; thus

1 1
J dx:fadu:lnm\—i—C:ln]lnx\+C’.

zlnzx

Theorem 5.25

1. Jsina:dx:—cosx+0; 2. fcosxdx:sinx+0;
3. ftanxdx:—1n|cosx|+(]:1n|secx|—|—(];

4. J secxdr = In|secx + tanzx| + C.

. 2t 1—¢? 2dt
};roof. We only prove 4. Let ¢t = tan g Then sinx = T cosT = o e and dx = m;
thus

1+t 2 2 —2

1 1

t+1

t_1)+0.



The conclusion then follows from the identity

2
t+1 sin 3 + cos 5 (81n2—|—c082) 1—|—2$1n20032

t—1 sin% —cosk Sinzg — cos? £ —Ccosx
1+sinx
=————— = —(secx +tanx). O
COS T

Finally we compute j In x dx for a > 0. Suppose first that a > 1. Following the idea
1

of Example 4.5, we let r = an and x; = r' as well as a partition P = {1 = 2y < 11 <
-+ <z, = a} of [1,a]. Then the Riemann sum of f for the partition P given by the right
end-point rule, which happens to be the upper sum of f for the partition P, is

S(P) = Z In(z;)(z; — xio1) = Z () (rf — 1) = (r — 1) 1an il

i=1 i=1

. d .
Note that iri=! = d—r"; thus
T

n e n d i d n ; dTn+1—T [(n+1)r”—1}(r—1)—r”+1+r
;zr 122%7“ ZT _

TdrE T dr or1 (r—1)?
™ —(n4+1)r"+1  nar—(n+1)a+1
I o e e V2
By the fact that n = m—a,
Inr

B ralna—alna —alnr +1nr

S(P) = r—1

Since |P|| — 0 is equivalent to that r — 1,

lim S(P) = lim ralna —alna—alnr +Inr _ i
IP|—0 r—1 r—1 dr

(Talna—alna—alnrJrlnr)
r=1

=alna—a+1.

If 0 < a <1, by Remark 4.16 it suffices to show that an — 1lasn approaches infinity.
Nevertheless, an = 1 /(1/ ) and the denominator approaches 1 as n approaches infinity;

thus lim ax = 1 evenif 0 < a < 1.
n—0o0

Theorem 5.26

1. f Inxdr =alna —a+1 for all a > 0; 2. Jlna:dx:xlnx—quC’.
1




N
Example 5.27. Find the limit lim (%) .

n—o \N

k
Consider the sum Z - ln e This sum looks like a Riemann sum of the “integral”
=1

f In z dz; however, since Inx blows up at = 0, Inz is not Riemann integrable on [0, 1].

In other words, the sum is not a Riemann sum for a particular integral.

On the other hand, by the monotonicity of the function y = Inz, we find that
1k &Sk 1.k 11 1k
Z—ln—zz In— < fln:vdx Z—ln—:——ln——l—Z—ln—;
Znon Znoon =noon non =n o n

thus by Theorem 5.26,

3=

1.k 1.1 1
N
:Tl n n n

Therefore, by the fact that lim nn _ 0, we conclude from the Squeeze Theorem that

n—ow M
"1k
limZ—ln—:—l.
now=nn

Finally, note that

n

ann—:—Zln—:—lnn—L ln(Z:L) ;

k=1

S=

thus the continuity and strict monotonicity of y = In x implies that
n\n 1
i ()21
n—oo \n" e

5.4 Exponential Functions

In the previous section we have shown that the natural logarithmic function In : (0,0) — R
is one-to-one and onto. Therefore, for each a € R there exists a unique b € (0, 00) satisfying
a = 1Inb. The map a — b is called the natural exponential function. To be more precise, we

have the following

Definition 5.28

The natural exponential function exp : R — (0, 00) is a function defined by

exp(z) =y if and only if r=Iny.




By the definition of the natural exponential function, we have
exp(lnz) =2 Ve (0,0) and In(exp(z)) =2 VzeR. (5.4.1)

Therefore, exp and In are inverse functions to each other; thus exp : R — (0,00) is one-to-
one, onto, and strictly increasing. Note that by the definition, exp(0) = 1.

Let a > 0 be a real number. If r € Q, a" is a well-defined positive number and the
logarithmic laws implies that

Ina"=rlna.

By the definition of the natural exponential function, a” = exp(rlna) for all r € Q. Since
exp : R — (0,00) is continuous, for a real number z, we shall defined a” as exp(xzIna) and

this induces the following

Definition 5.29

Let a > 0 be a real number. For each z € R, the exponential function to the base a,

denote by y = a”, is defined by a” = exp(xIna). In other words,

a® =exp(zlna) VzeR.

Remark 5.30. For each x € R, the number 17 is 1 since 1* = exp(zIn1) = exp(0) = 1.
Remark 5.31. The function y = e” is identical to the function y = exp(x) since
e’ = exp(zlne) = exp(x) VzeR.

Therefore, we often write exp(x) as e* as well (even though e*, when z is a irrational

number, has to be defined through the natural exponential function), and write a® = e®!n®

Moreover, by the definition of the natural exponential function,

In(a”) = In(exp(xzlna)) = zlna Va>0and zeR. (5.4.2)

5.4.1 Properties of Exponential Functions

e The range and the strict monotonicity of the exponential functions

Note that Theorem 5.6 implies that exp : R — (0, 0) is strictly increasing. Suppose that
a > 1. Then Ina > 0 which further implies that

a™ = exp(z;Ina) < exp(zgIna) = a™ Vo, <.



Similarly, if 0 < a < 1, the exponential function to the base a is a strictly decreasing
function.

Moreover, since exp : R — (0, 0) is onto, we must have that for 0 < a # 1, the range of
the exponential function to the base a is also R. Therefore, for 0 < a # 1, the exponential

function a : R — (0, o0) is one-to-one and onto.

e The law of exponentials

(a) If @ > 0, then a*™¥ = a®a? for all z,y € R: First we show the case when a = e. Let

exp(z) = ¢ and exp(y) = d or equivalently, x = Inc and y = Ind. Then
™ = exp(x + y) = exp(Inc + Ind) = exp(In(cd)) = cd = e”e? .

For general a > 0, by the definition of exponential functions, for =,y € R,

zlna+ylna xlnaeylna

a™ = exp((z +y)Ina) = e =e =exp(zlna)exp(ylna) = a®a” .

(b) If a > 0, then a* ¥ = a—y for all z,y € R: Using (a), we obtain that
a

a* YoV = a" VY = q” Ve,yeR;
r— a”
thus a®7¥ = — for all z,y € R.
a

(¢) If a,b > 0, then (ab)® = a®b® for all z € R: By the definition of the exponential

functions,

(ab)a: _ 6$ln(ab) — ea:(lna+lnb) _ exlna-l—aclnb — 6aclnaezclnb — a%b® .

(d) If a,b > 0, then <%)x = Z—I for all x € R: Using (b), we obtain that

zlna T
aN® _ xln% __ _zln(ab™!) _ _xz(lna—Inb) __ € o a
— = e b = ¢ = € —_ T = T .
b exlnb b=

(e) If a >0, then (a”)? = a™ for all x,y € R: Using (5.4.2),

x
(az)y — eylna — 6wyh’la — a® .



e The differentiation of the exponential functions

ie‘l” =e® for all z € R.
dx

Proof. Define f : (0,00) - R and g : R — (0,90) by f(z) = Inz and g(z) = exp(z) = €*.
Then f and g are inverse functions to each other, and the Inverse Function Differentiation

implies that

g'(z) = m VzeR with f'(g(z)) #0.
Since f'(x) = i’ f'(g(x)) = g(lx) = exp(—x) # 0 for all x € R; thus
g'(x) = g(x) VzeR. 0

Corollary 5.33

1. f e?dr =e* —1 for all a > 0; 2. fe“’dxze‘”—i-c.
0

The following corollary is a direct consequence of Theorem 5.32 and the chain rule.
Corollary 5.34

Let f be a differentiable function defined on an interval /. Then

d
%ef(x):exf’(x) Veel.

Corollary 5.35

1. For a > 0, ia"”:a””lnafor allz e R (so Ja‘”d:c:a—i-C).
dx Ina

2. Let r be a real number. Then %xr = rgz" ! for all x > 0.

3. Let f, g be differentiable functions defined on an interval I. Then

f'(=)
()

%If(x)l"(“”) =|f(2)|" | g' () In | f ()| + 9(x) Vel with f(x) # 0.

Proof. The corollary holds because a® = e*™?, 2" = e""? and |f(z)[9®) = es@MIF@I O



—-3/x
Example 5.36. d %= e*%di<—§) _ 3 for all x # 0.
x

dz® x x?
Example 5.37. Let f: (0,00) — R be defined by f(x) = z". Then
d d
f(x) = %e“ﬂnx = e“lnx%(:vlnx) =2°(lnx +1).

Example 5.38. Find the indefinite integral meelﬂ dz.
Let u = —2%. Then du = —2xdz; thus

) ) ) )
f5xe_12 dx = 3 J6_$2(—2x) dx = —5 fe" du = —56“ +C = —56_3”2 +C.
0
Example 5.39. Compute the definite integral J e” cos(e”) dx.
-1
Let u = e*. Then du = e* dx; thus

0 1 u=1
f e” cos(e”) dx = J cosudu = sinu = sin1 —sin(e™!).
-1 e—1

5.4.2 The number e

By the mean value theorem for integrals, for each z > 0 there exists ¢ € [1,1 + z| such that

1
—dt = -
t c

In(1+2) 1 f“w 1
1

T T

which implies that

= exp (5).

1 1 1 1
(14 2)r =exp (In(1+ g;)%) = exp <M>
x
By the fact that the natural exponential function is continuous, we find that
oy (14294 = i o () = i s (1) =

r—0t z—0t C c—1+ c

Note that the limit above also shows that

r—00

. 1\z
e=lim (1+ E) . (5.4.3)

In(1+x)

Example 5.40. Let f(z) = (1+2): =e = . Then

f/(x):(l_f'x)%'l—’_x 2 - 72

—In(1 + ) (1+x)i<1_ 1+$—ln(1+$>>'



Let g(z) =1— : L In(1 + z). Then

+x

1 1 -z
"(x) = — = <0 if z>0.
9'() (1422 142 (142x)? n

Therefore, g(x) < g(0) = 0 if x > 0; thus f'(x) < 0 for x > 0. This implies that f is strictly
decreasing on (0,0). This fact then implies that the function h(z) = (1 + %)m is strictly
increasing on (0, o).

1

'\ %
Example 5.41. From Example 5.27 we find that for large n we have <n—n> ~ ! which
n e

™. This is in fact not true since the n-root of any constant,

seems to imply that n! ~ n"e”
or even n, converges to 1. In this example, we try to determine how n! behaves as n — o0.
Recall that the graph of ¥y = Inx is concave downward. Therefore, we have the two

figures below

YA YA

10) // 2 3 4 n—1mn ; O
n 2n+1
(a) Under-estimate of J In xdx (b) Over-estimate of ‘[ In zdx
1 1
and find that
n “Ink+In(k—1) 1@ 1S 1
Inxdx = = — Ink+ - Ink=In(n!) — =Ilnn
Jl ng 2 2 ng 2 ];1 ( ) 2

and
2n+1 n n
f lna:‘dxéZ21n(2k:):2nln2—|—221nk:2nln2—|—21n(n!).
1 k=1 k=1
Theorem 5.26 then shows that

1 1 1 1
ln(n!)—§lnn<nlnn—n+1 and (n+§)ln(n—|—§) —|—§1n2—n<1n(n!).

As a consequence, we conclude that

1 \n+05 n!
- < — KL
V214 )" S g <e VneN. (5.4.4)



1 \z405 . . .
Note that the function f(z) = (1+ %) "9 ig decreasing on (0, ) since (5.2.1) shows that

f'(x) :f(x)%[(:v+%)ln (1+%)] Zf(:v)[ln (1—{—%) —%} <0 forallxz>0;

thus (5.4.3) and (5.4.4) imply that

|
V2 <L<e VneN.

nn+0.56—n

5.5 Logarithmic Functions to Bases Other than e

Let 0 < a # 1 be a real number. The logarithmic function to the base a, denoted by

log,, is the inverse function of the exponential function to the base a. In other words,

y =log, x if and only if a’ =x.

Theorem 5.43

Let 0 < a # 1. Then log, x = E—z for all z > 0.

Proof. Let y =log, x. Then a¥ = z; thus (5.4.2) implies that
ylna=In(a’) =z
Inx

which shows y = e [

na
5.5.1 Properties of logarithmic functions

e Logarithmic laws

The following theorem is a direct consequence of Theorem 5.16 and 5.43.

Theorem 5.44: Logarithmic properties of y = log,

Let a, b, ¢ be positive numbers, a # 1, and r is rational. Then
1. log,1=0; 2. log,(bc) = log, b + log, c;

3. log,(a*) = z for all z € R; 4. a'&® =z for all x > 0;

5. log, (b) = log, b —log, c.

C




e The change of base formula

We have the following identity

1
log, c = 08 € Va,b,c>0,a,b#1.
log, a

In fact, if d = log, ¢, then ¢ = a?; thus log, ¢ = dlog, a which implies the identity above.

e The differentiation of y = log, =

By Theorem 5.43, we find that
1

Ve >0.
zlna

%logax =

Similar to Theorem 5.19, if f is differentiable on an interval I, we also have

/()

d :
ﬁloga‘f(x)‘ = F)Ina for all x € I with f(z) #0.

5.6 Indeterminate Forms and L’Hospital’s Rule

Theorem 5.45: Cauchy Mean Value Theorem

Let f,g : [a,b] — R be continuous on [a,b] and differentiable on (a,b). If g’(x) # 0
for all « € (a,b), then there exists ¢ € (a,b) such that

f'e) _ f(b) — f(a)
g'(c)  g(b) —gla)

Proof. Let h : [a,b] — R be defined by

h(z) = (f(z) = f(a)) (9(b) — g(a)) = (£(b) = f(a)) (9(2) — g(a)) -
Then h(a) = h(b) = 0, and h is differentiable on (a,b). Then Rolle’s Theorem implies that

there exists c € (a,b) such that h'(c) = 0; thus for some c € (a,b),

f(e)(g(b) — gla)) — (f(b) = f(a))g'(c) = 0.
Since g'(z) # 0 for all € (a,b), the Mean Value Theorem implies that g(b) # g(a).
Therefore, the equality above implies that
F1Q) _ 1) - fa)
9'(c)  g(b) —g(a)
for some c € (a, b). O




Theorem 5.46: L’Hospital’s Rule

Let f,g be differentiable on (a,b), and

f'(z)
voat g/(z)
1. lim f(z) = lim g(z)=0; 2.
then lim /(@) exists, and
z—at g(x)
S
im —= =
A ()

/(@) and

g(z)

f'(x)
g'(z)

be defined on (a,b).

exists, and one of the following conditions holds:

= lim g(z) = oo,

r—a™t

lim+ f(x)

r—a

lim J(z)

a—at g'(x)

It

Proof. We first prove L’'Hospital’s rule for the case that lim f(z) = lim. g(xz) = 0. Define

F,G: (a,b) - R by

F(x):{ f(O:L’) if x € (a,b),

ifr=a,

r—a™t T—a

G(x):{ g(ox) if x € (a,b),

d
an fx=a.

Then for all x € (a,b), F,G are continuous on the closed [a,z], and differentiable on the
open interval with end-points (a,z). Therefore, the Cauchy Mean Value Theorem implies

that there exists a point ¢ between a and x such that

f'(c)
g9'(c)

Since ¢ approaches a as x approaches a, we have

_Eo
G'(c)

po £ o) fe)

smat g(0)  cmat () emat g'(2)
thus

P B (O F(x)

roat g(w)  woat g'(c)  aat g/(2)

Next we prove L’Hospital’s rule for the case that lim+ flz) =
/
L = lim (@)

P (@)

lim g(z) = oo. Let

z—at

and € > 0 be given. Then there exists §; > 0 such that

L8 <

whenever
g9'(v) 2

a<z<a+d(<h).



Let d = a+ §;. For a < x < d, the Cauchy mean value theorem implies that for some ¢ in

(x,d) such that

Note that the quotient above belongs to (L — L+ %) (if a < x < d). Moreover
fl@) = fd)  fl) _ (f(=) = f(d)g(x) — (9(=) — g(d)) f(x)
g9(x) —g(d)  g() (9() — g(d)) g()
_ (f@) = £(d)g(d) — (9(z) — g(d)) f(x) _ f'(c)g(d) [f(d)
(9(x) — g(d)) g(d) 9'(c) g(z)  g(x)’
thus
flz) = fld)  flz) ey|gld)| |/
o(z) = 9(d) _g(x)‘< <|L|+§> (— ‘ ‘ whenever a <x <d.
Since hm g(x) = oo, the right-hand side of the inequality above approaches zero as x

I—Nl

approaches a from the right. Therefore, there exists 0 < § < d1, such that

’f($)_f(d)—f($)‘<§ whenever a <z <a+d(<d<b).
—g(d) g(z)l 2
As a consequence, if a <z < a+ 4,
flx) ‘ flz f x ‘ ’f z) — f(d)
J— L —_— E—
g(z) ‘ g(x) i (x) — g(d) =32 * 2~ ¢
which concludes the theorem. [

Remark 5.47. 1. L’Hospital Rule can also be applied to the case when hrlr)l replaces lim

r—at
in the theorem. Moreover, the one-sided limit can also be replaced by full limit lim

r—C

if ¢ € (a,b) (by considering L’Hospital’s Rule on (a,c) and (c,b), respectively). See

Example 5.48 for more details on the full limit case.

2. L’Héspital Rule can also be applied to limits as x — o0 or x — —o0 (and here b or a
has to be changed to oo or —o0 as well). To see this, we note that if F/(z) = f(l) and
X
1 . . . . .
G(z) = g(;), then either xlir(r)l+ F(z) = xlg& G(z)=0or xlirgr F(z) = xlirg{r G(x) =
thus L’Hd6spital Rule implies that
1(1 r(1y=1 /

Y lim 2

e gle) w0t g'(5) 0t o' ()5 w0t Gy 0t Gly) e g(a)




/
3. L’Hospital’s rule only states that under suitable assumptions, if the limit of (@)

g9'(x)
exists, so does the limit of fE:U; and the limits are identical, but not the other way
glx
around. In other words, under the same assumptions in the statement of L’Hospital’s
rule, the existence of the limit of féxi does NOT implies the existence of the limit of
gz
f'(x)

o) For example, consider the case f(z) = ze™* ~sin(z~*) and g(z) = e~* . Then
.
the Squeeze Theorem implies that hH(l) f(z) = liH(l] g(x) =0, and

lim J(x) = limasin(z*) =0.
r—0 g(qj) z—0

~—

NS

-2
)

However, since f/(z) = [(1+42z72) sin(z~*)—4z™* cos(x*‘l)}e*"“"_2 and g'(x) = 227 3™

we have ) 1
< = —(2* z)sin(z™) — = x4
) = g+ 2e)sina™) — T cos(a™)

whose limit, as x approaches 0, does not exist.

e Indeterminate form v

e2r — 1
T

Let f(z) = €** — 1 and g(x) = z. Then f, g are differentiable on (0,1) and g(x) #
0,9'(x) # 0 for all x € (0,1). Moreover,

Example 5.48. Compute ling)

/ 2z
lim L) i 2

=2
r—0t g/(ZL‘) z—0t 1

and lim f(z) = lim g(x) = 0. Therefore, L’Hospital’s Rule implies that

z—0t z—0t

TGO G

0t g(z)  am0t g'(x)

Similarly, by the fact that

1. f,g are differentiable on (—1,0) and g(z) # 0,¢'(x) # 0 for all x € (—1,0),

fl(x) - 2¢e%° _ 9

Y

3. lim f(z)= lim g(z) =0,

z—0t z—0t



!/
L’Hospital’s Rule implies that lim f() = lim / /(x) = 2. Theorem ?7? then shows that
#a) a—0- g(x)  2—0- g'(z)
x

lim &——~ = 2 exists.
=0 g(z)

From the discussion in Example 5.48, using L’Hospital’s Rule in Theorem 5.46 we deduce

the following L.’Hospital’s Rule for the full limit case.

Theorem 5.46%

Let a < ¢ < b, and f, g be differentiable functions on (a,b)\{c}. Assume that g'(z) # 0

for all x € (a,b)\{c}. If the limit of f((i; as x approaches c produces the indeterminate
g

form g (or %), that is, lim f(z) = lim g(z) = 0 (or lim f(z) = lim g(z) = <o), then
f(z) f'(x)

provided the limit on the right exists.

e Indeterminate form %

1 .4 1
Example 5.49. In this example we compute lim —nx. Note that lim dxdnx = lim — =0,
r—00 T r—00 %1’ r—00 T

so L’Hospital’s Rule implies that

Inz 4 Ing
lim — = hmdﬂCT:o.
r—0 I r—00 %x

In fact, the logarithmic function y = In x grows slower than any power function; that is,

Inz
lim — =0 Vp>0.
z—o0 P
. - .1 1. 1 . I
To see this, note that lim <2 = lim —%— = - lim — = 0, so L’Hospital’s Rule implies
’ d 1
T—00 @:L‘p z—00 prP— p z—wo TP
that J
Inz Llnx
lim — = lim 4
z—00 P z—ow Lapp
dx

e Indeterminate form 0 - o

iy

Example 5.50. Compute lim e *4/z. Rewrite e™*\/x as —: and note that
x—00 €

d 1

. . 1
lim 4z Y — =
T—00 %ew rz—0 et T—00 2\/§€Z




Therefore, L’Hospital’s Rule implies that

NG 4 /x

lim — = lim dfi =0.
rz—ow et z—o0 L e
dx

In fact, the natural exponential function y = e grows faster than any power function;
that is,

xp
lim — =0 Vp>0.
r—o0 et
The proof is left as an exercise.
e Indeterminate form 1%
Example 5.51. In this example we compute lil%(l + z)=. Rewrite (1+2)* as i (i
In(1
the limit lim In(l +z) exists, then the continuity of the exponential function implies that
_ 1 . In(1+2)
g1+ )2 = ety ).

Nevertheless, since lim In(1 + x) = 0, lir% r =0 and

x—0
d
L In(l+=x 1
lim % = lim =1
z—0 El‘ z—0 ] +x

thus liH(l)(l +1)r =exp(l) = e.

e Indeterminate form (°

Example 5.52. In this example we compute lim (sinx)®. When sinz > 0, we have

z—07t
. x _ _xlnsinx __ Insinz
(sinz)” =e =e 1/
Since .
lim 32 Insinx Y i y
1m+T: 1nr1+ == 1anr ——xcosz =0,
x—0 Tr x—0 2 r—0T SIN T

by L’Hospital’s Rule and the continuity of the natural exponential function we find that

. . x . Insinz 0
lim (sinz)® = lim e /= =¢’ =1.
x—07F z—0t




e Indeterminate form oo —

z—1+ \lnxz x-—1

) 1 1 —1-1
Rewrite — — _ T ne

Inz x—1

Example 5.53. Compute lim ( ! ! )

and note that the right-hand side produces indeter-
(x—1)Inzx
minate form g2 approaches from the right. Also note that

d%(;z:—l—lnx)_ -+ x—1
L(z—1)Inz Inz+ =4

zhnx +x—1

which, as x approaches 1 from the right, again produces indeterminate form —. In order to
find the limit of the right-hand side we compute

lim %(x —1)

=1+t Lglnz+2-1)

thus L’Hospital’s Rule implies that

1 1

im ——— = —;
=1+ Ilnzx+1+1 2

_ r—1 _ d(zx—1) 1
llm ———— = lim —
s+t zlne +x—1

-1t Lgne+ao—-1) 2
This in turm shows that

o x—1—-Inzx
lim =

_ L(z—1-Inz)
e—1t (x—1)lnx

x—1
-1t Lz —1)Inz

1
m — = —
-1+ zlnz +z—1 2

5.7 The Inverse Trigonometric Functions: Differentia-
tion

Definition 5.54

The arcsin, arccos, and arctan functions are the inverse functions of the function
m™ T m™ T
f: [—5,5} — R, g : [0,7] > R, and h : (

—5,5) — R, respectively, where
f(z) =sinx, g(x) = cosz and h(x) = tanz. In other words,

1. y = arcsin z if and only if siny = =, where —

T<y<T —1<o<l.
2 2
2. y = arccos x if and only if cosy = x, where 0 < y <7, -1 <z < 1.

3. y = arctan z if and only if tany = =, where —




Remark 5.55. Since arcsin, arccos and arctan look like the inverse function of sin, cos and

1 1

tan, respectively, often times we also write arcsin as sin™", arccos as cos™ ", and arctan as

tan—!.

-2 3T T
=°" and arctanl = _.
5 ) , and arctan 1

1 T
Example 5.56. arcsin 3= arccos ( 1

Example 5.57. Suppose that y = arcsinz. Then y € [—g, g} which implies that cosy > 0.
Therefore, by the fact that sin?y 4+ cos?y = 1, we have

cosy =4/1 —sin?y = /1 — 22 if y=arcsinz.

In other words, cos(arcsinz) = /1 — 22.

Similarly, if y = arccos z, then y € (0, ) which implies that siny > 0. Therefore,

siny:\/l—cos2y:\/1—x2 if y = arccosx
or equivalently, sin(arccos z) = /1 — z2.

Example 5.58. Suppose that y = arctanz for some z € R. Then y € (—g, %) which
implies that cosy > 0. Therefore,

1 1 1
secy  +/1+tanly V1+a?

cosy =

As for sin y, we note that y > 0 if and only if z > 0; thus siny = < instead of ——~ ).
y y y y= s )
Therefore,
in(arctanz) = ——— and  cos(arctan ) = ——
sin(arctanr) = ——— and cos(arctanz) = —— .
1+ 22 V14 a2

Theorem 5.59: Differentiation of Inverse Trigonometric Functions

d i 1
1. %arcsmx = ﬁ forall -1 <z < 1.
2 iarccosx——# forall -1 <z <1
S dx T V1—22 )

3. di arctanx = N for all z € R.

x 1+ 2




Proof. By Inverse Function Differentiation,

1 1
— inr = = Vee(—1,1
dz T cos(arcsinz) /1 — 22 ze(-L1),
! ! Vrze(—1,1)
— arccos r = =— xe(—
dx — sin(arccos ) V1 — a2 C
and
1 1 1

— arctanx = = 5 = VreR. O
dx sec’(arctanz) 1+ tan*(arctanz) 1+ 22

Remark 5.60. By Theorem 5.59,

d ) 1 1
— ( arcsin x + arccos x)

dx :\/1—x2_\/1—x2:

Therefore, the function y = arcsinx + arccosz is constant on the interval (—1,1). The

0 V-1l<zx<l.

constant can be obtained by testing with z = 0 and we find that

arcsin o + arccos r = Veel[-1,1], (5.7.1)

T
2
where the value of the left-hand side at x = +1 are computed separately.

Example 5.61. Find the derivative of y = arcsinz + zv/1 — x2.
By Theorem 5.59 and the chain rule, for —1 < z < 1 we have

dy 1 e— 1 2\—1 _ 9./ 2
5——w+ 1—2z —.73'5(1—:13)2(227)—2 1—x2.
Example 5.62. Find the derivative of y = arctan /x.

By the chain rule,

dy 1 d 11 1

dr 1+\/§2@\/§: 1+:172\/5:2\/§(1+:v)'

5.8 Inverse Trigonometric Functions: Integration

Theorem 5.63

Let a be a positive real number. Then

dzx

:arcsinquC’. 2. f”
a ac+x

1
= Zarctan z +C.
a a

1jdac
) Va2




Proof. 1. Let x = asinu. Then dx = a cosudu; thus

J dx B acosu
Va2 —a? v/ a2(1 — sin u)

2. Let = atanu. Then dx = asec? udu; thus

d 2 1 1
J ° :J Qasecu du:—Jdu:g—i—C’:—arctanszC.
a?( a a

a? + a2 1 + tan?® u) a a

du = du:u—i-C':arcsing—i-C'.
a

dx
Example 5.64. Find the indefinite integral J, where a > 0 is a constant.
P g T2

Let x = asecu. Then dx = asecutanudu; thus

f dx B asecutanu
Va2 —a? £/ a?(sec?u
=1In )a _a’—i—C ln{x+\/x2—a2’+0

secudu = In|secu + tanu| + C

Example 5.65. Find the indefinite integral J \/%, where a > 0 is a constant.
T a

Let x = atanu. Then dx = asec? udu; thus

CLSGC u

f\/a2+x2 va2(tan® u + 1)
) 2
zln’:E—jLa+—’+C:1n}x+\/x2+a2|+0.
a a

du = | secudu = In|secu + tanu| + C

Example 5.66. Find the indefinite integral f _dr where a > 0 is a constant.

xvVr2 — a2’

Let x = asecu. Then dxr = asecwutanu; thus

dx asecutanu 1 u
= =—|du=-+C.
xV/x? — a? asecur/a’(sectu—1) a a
7_ 2 oo a—
If x = asecu, then tanu = u; thus u = arctan Y~ which implies that
a a
f L arctan Y2 =% | ¢
———— = —arctan —— )
Wz —a? a a

Example 5.67. Find the indefinite integral f \/eixi—l'

Let uw = e®. Then du = e*dx; thus dx = du which implies that
u

dx du
—— - | ———— —arctanvVu2 — 1+ C = arctanve2 — 1 + C.
J\/e%—l Jux/zﬂ—l

]



x+2

mdw.

Example 5.68. Find the indefinite integral f

Let x = 2sinu. Then dx = 2 cosudu; thus

T+ 2 2sinu + 2

—dr = | —]——
V4 — 22 V4 — 4sin’u

:2arcsing—24/1— (g)2+C:2arcsing—\/4—:{72—1—0.

Example 5.69. Find the indefinite integral J 5 de
X

-2cosudu = J(Qsinu+2)du: 2u—2cosu+C

—dx+ T
First we complete the square and obtain that 22 — 4z +7 = (z —2)? + 3. Let x — 2 =
Vv3tanw. Then dr = +/3 sec? udu; thus

1 1 1 T
du=— |du= —u+C = —arctan —— + C.
! x/ﬁfu 3 BB

J dz V3sectu

x2—4x+7: 3tan?u + 3

Example 5.70. Find the indefinite integral qu / 1 _T_x dx.
T
11—z

Note that the integrand can be rewritten as N Therefore,
-

f 1—xd f 1—2x J f 1 J f x d

\N——dr = | ——=dr = | —=dr — | ——=dx

1+x A1 — 22 V1 — 22 V1 — 22
=arcsinz +vV1—22+C.

Example 5.71. In this example, we compute J arcsin x dx. Note the by the substitution

r = sinwu,

Jarcsin:vdx = Jucosudu;

thus it suffices to compute the anti-derivative of the function y = x cosz. We first compute

the definite integral J x cosx dx.
0

By Example 4.12, for 0 < z < 7 we have

Sy 1 T 1
;sm(m) =~ Jemz [cosg —cos ((n+ §)x)] :



Therefore, if 0 < z < T,

izcos (ix) %Zsm(ix) _ 4 1 — [cosg — cos ((n + %)m)]

dx 2 sin 5

— COS 5 [cosg — COS ((n + %)x)]

1 1 1 1
2sin § [—ﬁsing +n+ §)sin ((n—{— §)x)} '

By partitioning [0, a] into n sub-intervals with equal length, the Riemann sum of y = x cos x

for this partition given by the right end-point rule is

iaa  a . ia
:Z—cos—— = — ) icos—.
n? ¢ n
=1 =1
Letting r = ﬂ, we find that
2n
n
I, = 4r? Z i cos(2ir)
i=1
—r?cosr r _ _
= ——— [cosr — cos(cH—T)] + — [—rsmr + (a+r)sin(a+ 1)
sin®r sinr
which, by the fact tha
i
a
J zcosxdr = lim [, = —(1 —cosa) + asina = asina + cosa — 1.
0 n—00

The identity above further implies that
fxcos:cdx =xsinx +cosz + C';
thus with the substitution x = sin u,
Jarcsinxdaz = fucosudu = usinu+ cosu+ C = zarcsinz + V1 — 22+ C.
Using (5.7.1), we also find that

Jarccosxdx :J(g —arcsinx) dr = gx —zarcsine — V1 —224+C
:x(g —arcsinx) —V1—22+C =zarccosz —V1—x22+C.
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