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Chapter 8

Integration Techniques and Improper
Integrals

8.1 Basic Integration Rules

We recall the following formula:

1. Let f, g be functions and k be a constant. Then
ka(x) dr = k‘ff(x) dx | f(f +g)(x) dx = ff(m) dr + fg(x) dr .

2. Let r be a real number. Then

1 r—+1 : -
Jxrdx: 7r+1x +C ifr#-—1,
lnz+C ifr=-1.

1
3. If a > 0, then Jam dr = —a”® + C. In particular, Jex dr =¢e* + C.

Ina
: 1 I
4. If a # 0, Jsm(am) dx = ——cos(ax) + C, fcos(ax) dx = —sin(ax) + C,
a a

1 1
Jtan(a:c) dr = —In|sec(ax)| + C, Jcot(ax) dr = —1In|sin(az)| + C,
a a

1 1
Jsec(ax) dx = —In|sec(ax)+tan(ax)|+C, fcsox dx = ——In | csc(ax)+cot(az)|+C.
a a

D. Jse(zQxdx =tanz + C, Jsecxtanxdx =secx + C.
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6. If a > 0, then

dx B oz c dx 1 . T c
ﬁ—arcsma—l— s m—aarcana—i—
d 1 Va2 — a?
—x:—arctanu—kC.
vz —a?  a a

2
Example 8.1. Find the indefinite integrals f 33244_9 dx, J g;;lf_g dx and J x;lig dx.

From the formula above, it is easy to see that

4 4
Jx2+9dx:§arctan§+0.

dz 2%(:&’ +9)

2249 7 2249

: d _ [z
, using the formula I In|f(z)| = Fiz)’ we find that

4
Jx2i9dx:2ln|x2+9|+C:21n(x2+9)+6'.

Noting that

42? 4(x? +9) — 36 36
Finally, noting that x;j— 5= (@ ;2_ +)9 =4 by the formula above we find that

4 2
foigd:czélx—lQarctan%—l—C.

2
Example 8.2. Find the indefinite integrals J \/43_7 dz, j \/43167 dz and j \/jiﬁ dz.

From the formula above,

3 T
——dz =3 in—+C.
Jm x arcs1n2+

For the second integral, we let 4 — 22 = u. Then —2xdx = du; thus

f—%dx: —gfu_édu: _gl i %u; +C = -3(4— 2%
For the third integral, first we observe that
J 322 iy — 3(z* —4)
V4 — a2 V4 — a2

Let x = 2sinu. Then dx = 2 cosu du; thus

J\/4—x2dx = 11/4(1 —sin®u) - 2cosudu = J40082udu = J 2+ 2cos(2u)] du

= 2u +sin(2u) + C = 2u + 2sinucosu + C

2 N
:2arcsing+m/1—%+C:2arcsing+¥+0.

N|—=

+C.

12 T
dx+f—dx: —3J\/4—x2dx+12arcsin—.
V4 — x? 2



Therefore,

3 3
\/le_ixzdx:6arcsing — éx\/4—x2+0.

Remark 8.3. One should add
—Va2—22+C and vat+ 22+ C

| e | e

into the table of integrations.

du

u —

dx du 1 1
Jite=la =] G- D as=me =m0

=zr—In(l+¢€")+C.

Let u =1+ €*. Then du = e¢*dx which implies that dx = T Therefore,

Another way of finding the integral is by observing that

1 14e” e :1_%(1+e$)_
I4+er 14+er 1+e” 14+er
/
thus using the formula 4 In|f(z)] = ! (x), we find that
dx f(z)

dx
=1z —1In(1 r .
Jl—i—em r—In(l1+¢e*)+C

8.2 Integration by Parts - 4 %4 4

Suppose that u, v are two differentiable functions of . Then the product rule implies that

dv
Therefore, 1f v and u—— are Riemann integrable (on the interval of interests),

J—vdx%—fu%da: = (wv)(z) +C.

dv
Symbolically, we write d—v dr ad vdu and u— dr as udv, the formula above implies
X
that

fudv = uv Jvdu.



Theorem 8.5: Integration by Parts

If v and v are functions of x and have continuous derivatives, then
Judv = uv — Jvdu.

Example 8.6. Find the indefinite integral J Inx dz. Recall that we have shown that

Jlnxdx:xlna:—x+0

using the Riemann sum. Let v = Inz and v = z (so that dv = dx). Then integration by

parts shows that

1
flnxd:nlenx*fxd(lnz) :xlnx*f$-de:$lnx~fd$:xlnx*x+0.

Example 8.7. Find the indefinite integral Jx cosz dx. Recall that we have shown that

fxcosxdm =gxsinxz +cosx + C

using the Riemann sum. Let u = z and v = sinx (so that dv = cosx dz). Then integration

by parts shows that
f&:cosxdm =zxsinx — fsinxdaz‘ =zsinz +cosz +C'.

Principles of applying integration by parts: Choose u and v such that v du has simpler

form than wdv, and this is usually achieved by
1. finding u such that the derivative of u is a function simpler than u, or
2. finding v such that the derivative of v is more complicate than v.
Example 8.8. Find the indefinite integral Jxem dx.

Let u =z and v = e” (so that dv = e”dx). Then integration by parts shows that

Ja:exdzvzxez *Jexdx =(x—1)e"+C.



Example 8.9. Find the indefinite integral Jaf In x dx, where r is a real number.

Suppose first that r # —1. Let u = Inx and v =

1:10’”“. Then integration by parts

r+
shows that
1 1 1 1 1
Jxrlnxdx:—mr+llnx—f 2 —de = ——2" M nx — Jxrdx
r+1 r+1 x r+1 r+1
1 1
=— ¢ lng — O
r+1 (r+1)2

Now if r = —1. Let u = v = Inz. Then integration by parts implies that
-1 2 1 2 -1
Jx Inzxdr = (Inx)” — Jlnx -—dr = (Inz)” — Jx Inxdx
x

which implies that
1
Jx_l Inxdr = é(lnx)2 +C.

Therefore,
g — ;:ﬂ“ +C ifr# -1,
Jxrlnwdx: r+1 1 (r+1)2
5(1113:)24—0 if r=-1.

Example 8.10. Find the indefinite integral sz cosxdr.

Let u = 22 and v = sinz (so that dv = cos z dz). Then integration by parts shows that
JxQ cosxdr = x?sinw — Jsinz 2 dr = a?sinx — Zstinxdx.
Integrating by parts again, we find that
stinxda: = —xcosx + Jcosxdx = —xcosx +sinx + C;
thus we obtain the

fﬁcosxdm = 2?sinz + 2z cosz — 2sinx + C'.

Example 8.11. Find the indefinite integrals je” sin(bx) dr and Je” cos(bx) dx, where

a,b are non-zero constants.



Let u = sin(bx) (or u = cos(ar)) and v = a e (so that dv = e** dz). Then

1
fe‘”” sin(bx) de = —e* sin(bx) — b Je” cos(bx) dx ,
a a

1
Je‘” cos(bz) dx = —e** cos(bx) + b Jeax cos(br) dx .

a a
The two identities above further imply that
1 b

Je‘w sin(bzx) de = —e* sin(bx) — — fe“” cos(bx) dx
a a

1 brl b
= —e™sin(bx) — — [—e‘”” cos(bx) + — Je‘” sin(bx) dm}
a

a aLa

1 azr : b azx 2 ar .
= —e"sin(bx) — ¢ cos(bx) — e Je sin(bz) dx ;

a
thus .
f@‘“’ sin(bz) dx = pER [ae™ sin(bx) — be™ cos(bz)] + C'.
Similarly,
ax 1 axr ar .
Je cos(bx) dx = prpT [ae™ cos(bx) + be™ sin(bx)] + C'.

(8.2.1)

(8.2.2)

Remark 8.12. By the Euler identity (?7?), Je‘” sin(bz) dx and Je‘” cos(bx) dx are the

real and imaginary part of the integral f e®eb® dz. By the fact that e®@e®® = el

1
pretending that Jecz dr = —e“ + C' for complex number ¢, we find that
c

. 1 , 1
ax ibr _ (a+ib)x _ azx . s
fe e dx P +C Tt [ cos(bz) + isin(bz)] + C
a—1b . .
= T [ cos(bx) + isin(bz)] + C
- ﬁ [acos(bx) + bsin(bz) + i(asin(bx) — beos(bz))] + C';
a

thus we conclude (8.2.1) and (8.2.2).

a+ib)x

and

Example 8.13. Find the indefinite f e du, Jx" sin(az) dr and f x"™ cos(ax) dz, where

a > 0 is a constant.

Let u = 2" and v = a~'e® (so that dv = €® dx), v = —a~! cos(azx) (so that dv = sin(ax))

and v = a~'sin(ar) (so that dv = cos(ax)) in these three cases. Then

1 1 1 n
a"edr = —x"e®™ — | Ze®™ nz" ldr = —ame™ — = | 2" e du .
a a a a



Moreover,

1
Jx” sin(ax) dz = ——12" cos(ax) + z fﬂc”_l cos(ax) dz ,
a a
1 . n 1 .
x" cos(ax) dr = —x" sin(ax) — — | 2" sin(az) dz .
a a

The two identities above further imply that the following recurrence relations

n o 1 n o1 n(n — 1) n—2
JZE sin(ax) dr = —T cos(ax) + 27 sin(ax) — — J$ cos(ax) dx ,
1 -1
Jx” cos(az) dx = —x" sin(ax) + %x"’l cos(ax) — n(n—g) Jx"2 sin(az) dx .
a a a

Example 8.14. Using integration by parts, we have
f cos" xdx = Jcosn_1 rd(sinx) = sinz cos" 'z — J sinz d(cos" ! x)
=sinzcos" 'z + (n — 1) Jsin2 xcos" % xdx
=sinzcos” '+ (n—1) J(l —cos*x) cos" ? v dx
=sinzcos" 'z + (n—1) Jcos”_2 rdr—(n—1) fcos” rdz;

thus rearranging terms, we conclude that

: n—1 -1
fcos"mdw _mnrees 7.7 Jcos”%cdx. (8.2.3)
n n
Similarly,
on—1 -1
Jsinnxdx = BTER LT Jsin"‘Qxdx. (8.2.4)
n n

Theorem 8.15: Wallis’s Formulas

If n is a non-negative integer, then

5 5 2mn! 2
f sin?t g dr = J cos?™ gy dr = ﬂ
0 0 (2n+1)!

and

jus jus 2 '
JQ sin2”xdx:f2 cos?" x dr = (2n) .
0 0 (2mn!)?

NN




Proof. Note that (8.2.3) implies that

3 i nlpe=5 p—1 (2 —1 (2
f cos" rdr = ST COS TP + r f cos" 2 xdr = n J cos" 2 xdx .
0 n =0 n Jo n Jo
Therefore,
2 2 2 2 on—2 (2
J cos? M xdr = " J cos? ' xdr = n_.zn f cos? B adr =---
0 2n+1 Jy 2n+1 2n—-1 ),
o 2m—2 2n—4 QF 2 4 n
— . . . — CcOS T dx — . — ...
2n+1 2n—1 2n-—3 3 Jo 3 5 2n +1
2247 (2n)*  (2"nl)?
 (2n+1)! (2n+1)!
and
2 on—1 2 on—1 2n—3 (2
f cos?" x dx = " J cos?" 2y dr = n 2n J cos? A ydr = -

~2n—1 2n—3 2n-5 1J’5 0 e L3 -1 m
T -2 2m—4 2, I T L Ty

B (2n)! T 2n)! =«
C2242...(2n)2 2 (2"m!)2 27
The substitution z = g — u shows that
2 2
f sin" x dx = f cos" x dx for all non-negative integers n ,
0 0

so we conclude the theorem.

Theorem 8.16: Stirling’s Formula

|
lim v V2.

n—00 nn+0.56—n

jus

Proof. Let I, = jQ sin” x dx. Then Wallis’s formula shows that
0

(2n)! 7 (2"n!)?
Iy = — 2 = d Ipy= .
= o2y M 2= (on 1 1)

. . . . T
Moreover, since sin?**2? z < sin®* ™'z < sin®" z on [O, 5}, we also have I5,.9 < Io,41 < Lo,

for all n > 0. Therefore,

12n+2 I2n+1
< <1 Vn=0.
[2n [211 "



Note that

(2(n+1))!
Iopio B Iynyy B 22(n+1) ((n + 1)!)2 _ 2n+1
22n(n!)?
thus lim Tt _ 1. As a consequence, the Squeeze Theorem implies that lim st _ 1.

n—oo lop n—0  I2n

Let s, = n . Then the fact that the function y = (1 + 7) 09 i decreasing on
X

nnt0.50—n
(0,0) (left as an exercise) and (??) show that s,, > s,41 = 0 for all n € N. Therefore, the

completeness of the real number (see Theorem ?7) implies that lim s, = s exists. Moreover,

n—ao0
22n(n!)2
Loy o+ 2% (nl)? 2
L, () = 2n)!2n+1)! =
22n(n!)2 2
B 24n(8nnn+0.5€7n)4 2
= 82n(2n)2n+0.56—2n82n+1<2n + 1)2n+1.56—2n—1 T
_ Sn ‘1 i)—2n—1.5;
SonS2n+1 2T 2n
thus (?7?) implies that
L5, 4 1 2
1= lim 24 = fjm —n . = =2
n—w  [op n—0 SonSon+1 2 27
The theorem is then concluded by the fact that s > 0. [

8.3 Trigonometric Integrals

In this section, we are concerned with the integrals
J sin™ x cos" x dx and J sec™ xtan" x dx |

where m, n are non-negative integers.

8.3.1 The integral of sin™ x cos" x

e The case when one of m and n is odd
Suppose m = 2k + 1 or n = 20 + 1. Write

fsin%“ xcos" xdxr = JCOS” 2(1 — cos® z)¥sinz dr = — Jcos" z(1 — cos” 2)* d(cos )



and
Jsinm xcos* M dr = fsinm z(1 — sin® z)* cos v dox = fsinm (1 — sin? z)* d(sin z)
so that the integral can be obtained by integrating polynomials.

Example 8.17. Find the indefinite integral f sin® z cos* z dx.

Let u = cosx. Then du = —sinx dx; thus

Jsin?’ reostrdr = J(l — cos*z) cos? rsinz dr = — J(l —uH)ut du

1 1 1 1
—gu5—|—?u7+C’: —gcossx%—?cos?x%—c.

We also write

fsin3 xcos* v dr = J(l — cos®x) cos* wsinx dr = — J(l — cos® x) cos® x d(cos )

I 5 I
=——cos’x+ =cos'z+C.
SR A

e The case when m and n are both even

First we talk about how to integrate cos™ z. We have shown the recurrence relation (8.2.3)
in previous section, and there are other ways of finding the integral of cos™ x without using
integration by parts. The case when n = 2¢ 4+ 1 can be dealt with the previous case, so we

focus on the case n = 2¢. Make use of the half angle formula

1 2
cos’z = L ooster) CZS( z) ,

we can write
1 22)\ ¢ e . w=2z) o .
fcos%xda: = J (H%W) dx = ;)Q—; fcosl(Qx) dz = ;)Zg—il Jcosludu

which is a linear combination of integrals of the form f cos’ u du, while the power i is at most

half of n. Keeping on applying the half angle formula for even powers of cosine, eventually

integral f cos’ udu will be reduced to sum of integrals of cosine with odd powers (which

can be evaluated by the previous case).



Example 8.18. Find the indefinite integral J cos® z dx.

By the half angle formula,

1 2x)\3 1
Jcos6 rdr = J <+c+(x)) dr = 3 J [1+ 3cos(2z) + 3 cos®(2z) + cos®(2z)] du

1
- gf [1 + 3cos(2z) + g(l + cos(4z)) + (1 — sin’(2z)) COS(QZE)] dx
—lf(§+4 (20) + > cos(4 ))d —ij in?(22) d( sin(2z))
=3 \3 cos(2z) + 5 cos(dx) ) dz — - | 8 x) d( sin(2x

_ Ipbx i 3 . I .3
=3 [7 + 2sin(27) + 3 5111(4:6)} & sin(2z) + C'.

Now suppose that m = 2k and n = 2¢. Make use of the half angle formulas

1-— 2 1 2
—C;S( z) and cos® T = L coster) C;S( z)

sin?z =

to write )
Jsin% xcos® xdr = pYaY] (1- cos(2:c))k(1 + (:08(2:1:))1Z dx .
Expanding parenthesis, the integral above becomes the linear combination of integrals of

the form f cos'(2z) dz.

Example 8.19. Find the indefinite integral J sin? z cos* z dx.
By the half angle formula,

1-— 2 1 2 2
fsin2 xcost xdr = f cos(2z) ( + cos( x)) dx
2 2

= % J [1 — cos(22)] [1 + 2 cos(2z) + cos®(2z)] da
_ é J [1 + cos(2x) — cos?(2z) — cos®(2z)] dx

_ % J <1_#S(4x) 1 sin(2z) cos(20)] dx

_ é[g _ Singlx)] + 4—18 sin®(2z) + C'.

8.3.2 The integral of sec” xtan” x

d d
Rule of thumb: make use of T tanz = sec? z and . secxr = secx tan x.
XT i



e The case when m is even

Suppose that m = 0 and n > 2. Then we obtain the recurrence relation

ftan” xdr = Jtan"‘2 rtan®z dr = ftan”_2(sec2 x—1)dx

1
= Jtan”_2 d(tanx) — ftann_2 rdr = | tan" ! x — Jtam"_2 xdx.

n [—
Suppose that m = 2k is even and positive. Using the substitution u = tanz, we have
fseczk rtan" xrdr = JsecQ(k_l) rtan” zsec’ z dr = J(l + tan® z)* ! tan” x d(tan z)

which can be obtained by integrating polynomials.

e The case when n is odd

Suppose that n = 2¢ + 1 is odd and m > 1. Then
Jsecm rtan® ! x dr = J sec™ !z tan?* sec x tan x dr = J sec™ ' z(sec? z — 1)" d(sec z)
which can be obtained by integrating polynomials.

e The case when m is odd and n is even

Suppose that m = 2k + 1 and n = 2¢. Then

fsec%+1 ztan® x dx = fsec%“ z(sec’ x — 1) du;

thus it suffices to know how to compute J sec” xdx.

Using integration by parts,
J sec” xdr = Jsecm_2 rd(tanx) = tanzsec™ 2z — ftan x d(sec™ 2 z)
= tanzsec™ 2z — (m — 2) ftam2 wsec™ ? xdx
= tanzsec” ?x — (m — 2) J(sec2 r— 1)sec" ?xdx

thus rearranging terms we obtain the recurrence relation

m— 2 m — 2
sec™ xdx = tanzsec™ 2z + — | sec™ % 2 dx.
m—1 m—1



Example 8.20. Find the indefinite integral J sec?(3x) tan?(3z) dx.

By the discussion above,
1
fsec4(3x) tan®(3z) dr = 3 JsecQ(i’)m) tan®(3x)d(tan(3x))
1
- gf [ tan®(3z) + 1] tan®(3z)d(tan(3z))

P L iant
3[6 tan (3x)—|—4tan (3$)} +C.

Example 8.21. Find the indefinite integral J\/ a? + z2dx.
By the substitution of variable z = atan @ (so that dz = asec?#df), we find that

1 1
f\/cﬁ + 22dx = JaQSecgﬁdQ = a2<§tanese(:0+ Efsecé’cw)

(tan@sec9+ln]secﬁ+tan6|) +C

(a: \/a2+x2 ‘:c+\/a2+x2‘>+c
a a

MI%MIQ

&

/2 2
_ e +x ln(m+Va2+x)—i—C (8.3.1)

8.3.3 Other techniques of integration involving trigonometric func-
tions

e Integration by substitution (for integrand with special structures):

Example 8.22. Find the indefinite integral f \/OS% dx.
Let u = sinz. Then du = cos x dx; thus
cos’x (1 —u?) J 13
——du= | (u"2—uz)du
4/sin :c \/ﬂ ( )
1 1 5
= 1u%— gug—l—C:Z\/sinx——singx—i-C.
- 3 1+ 3 2
Example 8.23. Find the indefinite integral f ey da:.

Rewrite the integrand into a fraction of sine and cosine, we find that

1
Jseczx dx:fc.os;c dxzf — d(sinz) = —sin"'z 4+ C = —csczx + C.
tan“ x sin“ x s~ x



anx

Example 8.24. Find the indefinite integral f N

Let uw = secx. Then du = sec x tan x dz; thus

tan3x sec?z — 1) secxtanx u?—1 :
J f d.CE:J = du:f(ué—u_;)du
«/secx secz T u2

2
:§u2 +2u_5+0—§sec2x—l—2czos2x+0

dzx.

e When the angular variable are different, making use of the sum and difference formula:

Example 8.25. Find the indefinite integral J sin®(5x) cos(4x) da.

Using the sum and difference formula

sinf cos ¢ = % [sin(@ + ¢) +sin(f — ¢)] , sinfsing = % [cos(@ — ¢) —sin(0 + qﬁ)} ,
we find that
fsmg’ 5x) cos(4 = % fsm [sin(9z) + sinz] dz
sin(5z) [ cos(4z) — cos(14z) + cos(4z) — cos(6z)] dx

f [2sin(92) + 2sinz — sin(19z) + sin(9z) — sin(11z) + sinz] dz

ool»—*OOI»— »l>|

1 1
s(9z) — 3cosx + T cos(19z) + T COS(llCC)} +C.

c,o|>—l

8.4 Partial Fractions - % i» & 3\

In this section, we are concerned with the integrals f Jl\)fgwi dx, where N, D are polynomial
X
functions.
Write N(x) = D(x)Q(z) + R(x), where @, R are polynomials such that the degree of R

is less than the degree of D (such an R is called a remainder). Then N(@) _ R(x) + R(m).
D(z) D(z)

Since it is easy to find the indefinite integral of R, it suffices to consider the case when the

degree of the numerator is less than the degree of the denominator.

W.L.O.G., we assume that N and D no common factor, deg(N) < deg(D), and the

leading coefficient of D is 1. Since D is a polynomial with real coefficients,

(ﬁx—i—q] )(ﬁx + bz + ¢;)* >,



where r;,d; € N, g; # g for all j # k, b; # by or ¢; # ¢ for all j # k, and b§—4cj < 0 for all

RN

2

1 < j < m. In other words, —¢; are zeros of D with multiplicity r;, and
are zeros of D with multiplicity d;, here i = 4/—1. Therefore,

VSIS AL [S B G

m n
for some constants A;;, Bj, and Cj,. Note that there are )| r;+2 >, d; = deg(D) constants
j=1 j=1

to be determined, and this can be done by the comparison of coefficients after the reduction

of common denominator.

Remark 8.26. In this remark we “show” that a rational function N/D with deg(N) <
deg(D) can always be written as the sum of partial fractions (8.4.1). Suppose that « is a
zero of D with multiplicity k so that D(z) = (z — «)* f(z), where f(x) is a polynomial and
f(a) # 0. Since

N@) N N@f) - f@N@)  glo)
D(z) (z—a)tf(a) (z — o)k f(2) f(a) (z —a)kf(x)’
where g(z) = N(z) — f(a:)‘?&?. Since g vanishes at z = «a, g(z) = (z — a)™h(x) for some
polynomial h satisfying h(a) # 0 (and we remark that here m is not necessarily less than
k). Therefore, with 8 denoting the constant Jm, we obtain that
N@) B _@—a)h) _ )

D(x) (z—a)f  (z—a)f(x) (z—a)if(z)’
where k; = 0 and hy(«) # 0if k; > 0. We note that f and h; are both polynomials satisfying
deghy < ki + deg(f) and f(«) # 0. Applying the process continuously, we obtain that

N(z) < G Ny (z)
D)~ 2@ —aF " Dya)

i=1
for some polynomials Ny, D;(= f) with deg(N;) < deg(D;) = deg(D)—k and some sequence
of constants Cy, Cy, - - -, Ck, where Dy () # 0. This explains the presence of the first sum on
the right-hand side of (8.4.1) (and also shows how to find the coefficient Aj,., in the highest

1 .
order term ————— for each j).
J

(z + g;)



2
2
P17+ 200+ 6 5 the form of (8.4.1).
3+ 212 +

Note that 2% + 22% + z = z(2? 4+ 22 + 1) = z(z + 1)?; thus to write the rational function

Example 8.27. Write

above in the form of (8.4.1), we must have

b2+ 200 +6 A B C

3 +202 x+as+1+(az+1)2

for some constant A, B, C'.

Multiplying both sides of the equality above by x(z + 1)?, we find that
5024202+ 6 = Az +1)° + Bx(z + 1)+ Cx = (A+ B)2* + 2A+ B+ )z + A;

thus A, B, C satisfy

A+B=5
2A+B+C =20
A=6.

Therefore, A =6, B=—1 and C' = 9; thus
52420z +6 6 1 9

¥ +22+ _a:_x+1+(:1:+1)2'

. .
Example 8.28. Write o the form of (8.4.1).

Note that 7 + 1 = (22 + 2z + 1)(2% — V22 + 1), s0
1 Ax+ B Cx+ D
i1 22442+ 1 +x2—\@x+1.
Multiplying both sides of the equality above by * + 1, we have

1= (Az+ B)(2? = V2zx + 1) + (Cz + D) (2> + V22 + 1)
= (A4 )2’ + (—V2A+ B+V2C + D)2? + (A— V2B + C +v2D)z + (B + D);
thus comparing the coefficients, we find that A, B, C, D satisfy
A+C=0
—V2A+B++V2C+D =0

A—\2B+C++2D=0
B+D=1.



Therefore, the first and the third equations imply that A = —C' and B = D; thus the second
and the fourth equation shows that A = —C' = 1 and B=D = % As a consequence,

2v/2

11 T+4/2 —z++/2 ]
i1 2v2la2 \2r 1 22— 20+ 1)

N(z)
D(z)

N(x)
D(x)’
for

In order to find the integral of by writing in the form of (8.4.1), it suffices

ngx + ng

to find the integral of @+ bz + o)

J Aje flﬂg(l”rq]')l_“rc ite#1,
U B
(x + q;)* Aglnlz + gl +C  if =1,

Note that

ng!E—FOjg _ @ 2I+bj 4 (C
(22 +bjx + c)f 2 (224 bjx +¢)t it

_ bijg) 1
2 ($2 + bjl’ + Cj)e

and

(1:2—|—bw—|—04)"dx: e 2 -
J J In(z* + bjz +¢;) +C ife=1,

J 27 + b; L(x2+bjx+cj)1—f+c ift¢+#1,

1
it suffices to compute f @25 ba + cj)f dz.

B. .
thus to find the integral of jer + Cle

Nevertheless, with a denoting the number PR

] 1 1 b;
d.%:f 2 dw:J j dlr =5
ez (o= %)+ =)' [EETE

. . b;
which can be computed through the substitution x — 5] = atanu:

(=l

j) =g Jcos%_2 wdu .

1
[

Example 8.29. Find the indefinite integral f‘fif—l
X



Using the conclusion from Example 8.28, we find that

de 1 r+4/2 —x+4/2 J
Jx4+1_2\f 22 442z + 1 x2—\/§x+1} .
2 + /2 1 2z—4/2 ;
Q\FJ 2 24Pr+1 2 22—Pr+1 \fx+1} v
V2 1 V2
J_'—+_' ]dm
2f 2 22442041 2 22—\2r+1
_ J 27 + /2 N V2 242 N V2 }d:v
42 ) a2 42241 (l’—F%)Q—}—(%P 22 — 2z + 1 (x_%)Q_i_(l)Q
1 [lnx2+\/§x+l
44/2 -2z +1

+ 2arctan(v/2z + 1) + 2arctan(v2z — 1)] +C.

secx

dx.

Example 8.30. Find the indefinite integral f

Let u = secz. Then du = sec x tan x; thus

J secx dw_Jsecxtanxdx_J du _J du
tan®x tan? z @12 ) (ut1)2(u—1)2

Write o 1)21(u —)e is the form of (8.4.1):

1 A B C D

(u+1)2(u—1)2_u+1+(u+1)2+u—1+(u—1)2’

where A, B, C, D satisfy
Aw+1)(u—1+Blu—-12+Cu—1)(u+1)*+Du+1)*=1.
Therefore, A, B, C, D satisfy

A+C=0
-A+B+C+ D=0
—A-2B-C+2D =0
A+B-C+D=1



1
which implies that A= B=—-C = D = ~. As a consequence,

4
f du 1J[ 1 n 1 1 n 1 }d
== — u
(u+1)2(u—-1)2 4)lu+1 (u+1)? w—1 wu—1)2
1 1 1
[ - ———1 —1——] C
4[n|“+’ o ikl vy
1 u—+1 2u
_1y R e
4[11“_1 u? —1 T
thus
sec x 17, |secx+1 2secx
dz =[] - |+c.
JtanSx T A Msecz —11 T tantz *
Example 8.31. Find the indefinite integral J\/ tan x dzx.
2
Let u = v/tanz. Then u? = tanz which implies that 2udu = sec? z dx or 1_1?54 = dx.

Therefore,

2u? 1 U U
Vta d—f :—J —
J nrar 1—|—u4u V2 —V2u+1 u2 Vou+1
]_ _
I B s fu+1\+_j[ bt au
22 w2 +2u+1 \fu+1 u2 4++2u+1
1 w2 —\2u+1 V2

= In ‘ + — arctan(\/iu — 1) + arctan(v/2u + 1) + C

242 w2 +2u+1
1 tanz — v2tanz +1 V2 V2tanx

= In ‘+—arctan—+ ,

24/2  ltanz +/2tanzx + 1 1—tanz

where we have use the fact that

| au

T
arctan x + arctan y = arctan 1 Ty +C

to conclude the last equality.

Example 8.32. Find the indefinite integral J)l’ where n is a positive integer.
L4 am)n

and —2 "t dx = u" ! du; thus

Let 1 +27" = u". Then 2" =
u” —1

—_rn n—2
Jd—xlzf d 1:f ’ 1(*x_"_1)dx:*f " du
(1+azm)n r(l+az™)n (14+x=)n ur — 1




which is the indefinite integral of a rational function of u and we know how to compute it.

In particular, when n = 4,

u? u? 1 1 1 1 1 1

W1 @Dt D@+ 4 u—1 4 a+i 2 @1

thus

Ju4u_1d“: Zln‘U—U—Z—llﬂ\u+1|+§ar0tanu—|—(}

which further implies that

d 1 41 _ 1
J—wlz—ln W’+_arctan |:(1+x_4)ij|+c
A+29)s 4 TayzeHig1l 2

e The substitution of ¢t = tang

In Section 5.3 we have introduced the substitution ¢ = tan% to find the anti-derivative of

trigonometric functions. We recall that if t = tan g, then

sinx = 2t cosx = 1-¢ and dx = 2dt
1427 142 142

Using this substitution, the anti-derivative of rational functions of sine and cosine can be

computed via the integration of rational functions.

S€C T

Example 8.33. Find the indefinite integral f dx.

S
tan® z
Rewriting the integrand, we have

sec T cos?
5—dr = ——dr.
tan® x sin® x

L 2t 1—¢? 2t
L = —. Th i == _ -t _ Ay
et t tan2 en sinx 1+t2,COSJZ 1+t2anddx 1—|—t2’t us
qh 2dt 1 (1—1%)2 1
seer e [ aEEE 20t L fA=E) G L s gy
Jtan%dx_f(?ﬂg,ut? zJ Ea 4J(t 267 + 1) dt
(1+t2)3
= | — = _ 1 -
4[ 5t 2n|t|+2t +C
_ T2t 2:8}_1 ‘ x‘
_S[tan 5 cot 5 2111 tan2 +C.



Example 8.34. Find the indefinite integral J dx.

24 sinz
: 2t 1—¢2 2dt
Let ¢ = tan —. Then sinz = ——, cosx = —— and dr = ——; thus
2 1+¢2 1+¢2 1+¢2

2

1 dt
d _
JQ—i—sinx v JQ+1+t21+t2 Jt2+t+1 J(Hé)%r(x/ﬁ)?
+C =

2 + 1 2t +1
= arctan 2 arctan ——— + C
V3 f V3
2 2 x
= — arctan (—tan— + —) +C.
V3 V3 2 43

8.5 Improper Integrals - & f 4~

Recall that given a non-negative continuous function f : [a,b] — R, the area of the region

enclosed by the graph of f, the z-axis and lines z = a, x = b is given by f f(z) de.What
happened when ‘

1. the function under consideration is non-negative and continuous on the whole real line
and we would like to know, for example, the area of the region enclosed by the graph
of f and the z-axis and is on the right-hand (or left-hand) side of the line x = ¢?

2. the function under consideration blows up at a point ¢ € [a,b]; that is, lim+ f(x)
r—ct

diverges to o0 or —o0 (so that f is not continuous at ¢ but everywhere else) and we
would like to know the area of the region enclosed by the graph of f, the z-axis and

lines x = a and = = b?

b
Note that the definition of a definite integral | f(z)dx requires that the interval [a,b] be

0 a b b
finite and f be bounded. Therefore, J f(z) d, f f(z)dx and J f(z)dx when f is
a —00 a

unbounded are meaningless in the sense of Riemann integrals. How do we compute the area

of those unbounded regions?



Definition 8.34: Improper Integrals with Infinite Integration Limits

1. If f is Riemann integrable on the interval [a, b] for all a < b, then
oe b
J f(z)dx = lim | f(x)dx.
a b—0 Jg
2. If f is Riemann integrable on the interval [a, b] for all a < b, then

J_ flz)dx = lim | f(z)dx

—
a 0 a

3. If f is Riemann integrable on the interval [a, b] for all a < b, then

ff d:p_f e dx+ff

where ¢ is any real number.

In the first two cases, the improper integral converges when the limit exists. Other-
wise, the improper integral diverges. If the limits, as b approaches « (or a approaches
—0), approaches o0 or —oo, then the improper integral diverges to oo or —co. In the
third case, the improper integral on the left converges when both of the improper
integrals on the right converges, and diverges when either of the improper integrals
on the right diverges. The improper integral on the left diverges to oo (or —oo) if
it diverges and the improper integrals on the right is oo + o0, o0 + C or C' + o (or
(—0) + (=), (—20) + C or C + (—0)).

0

Example 8.35. Evaluate J
0

Since an anti-derivative of the function y =

e *dx and f dx.
2 +1

e and y = P is y = —e ™ and

y = arctan z, the Fundamental Theorem of Calculus implies that

r=b
=lim(l—-e?)=1-lime?’=1
=0 b—0 b—o0

0 b
J e “dr=1lim | e “dr=lim(—e™®)

0 b—0o0 0 b—o0

and
x=b

= lim arctanb = g

S| b
J dx = lim dx = lim arctanz
=0 b—0

0 «r2 + 1 b—0 0 SE2 + b—0o0

Q0

Example 8.36. Evaluate f (1 —z)e *dx.
1

Let u=1—2 and v = —e™* (so that dv = e™* dx). For any real number b, integration



by parts implies that

f@ e tdr = [(1—2)(—e )| - f(—e—w)(—dx) — (1—bet— f e d

1

—(1—=b)e " +e*

Therefore,

0 b
f (1—2)e®dr=lim | (1 -x)e"dr=lim(be™®—e!)=—¢7".
1

b—o0 1 b—o0

T

e}
Example 8.37. Evaluate J ¢ dr.

B
0
To evaluate the integral above, we evaluate the two integrals

o] x 0 x
f ¢ Qxdx and J e—zmd:v
o 1+e _o1l+e

By the substitution of variable u = ¢*, we find that du = e* dx; thus

: 1
flfe% dx:fl—ku? dU:arctanu—{—C’:arCtan(ex)_’_C‘

Therefore,
o e* b e* r=b
J - dr = lim dx = lim arctan(e”)
o 1+e% b—oo Jo 14 e b—a0 2=0
T
= li tan(e’) — arctan 1] = —
lim [arctan(e”) — arctan 1] 1
and similarly,
0 ex 0 ex =0
f - dr = lim dr = lim arctan(e”)
w1+ e a—s—o0 | 1+ 2 a——o0 z=a

. ay] T
= lim_ [arctan 1 — arctan(e®)] = R

Q0 T

The two integrals above implies that J 672 de ="
—plte® 4

Example 8.38. The improper integral J x dx diverges to oo, and the improper integral

0
f (sinx — 1) dx diverges to —co. The improper integral f sinz dx diverges, but not

—o0 o

diverges to o0 or —oo, and the improper integrals f x dx diverges but not diverges to oo
-0
or —oo.



o0
Example 8.39. The improper integral f >
0

w .
sin s
dr = —.
0 T 2

what its value is. In fact,

Theorem 8.40

1. If f is Riemann integrable on the interval [a, b] for all a < b, then

ff dx_jf dx—i—f flz Va<c,

provided that the improper integrals on both sides converge or diverge to oo (or
—o0).

2. If f is Riemann integrable on the interval [a, b] for all a < b, then

Jf dx—J f(x dx+Jf Ve<b,

provided that the improper integrals on both sides converge or diverge to oo (or
—0).

Q0
3. If f is Riemann integrable on the interval [a,b] for all a < b and f f(z)dx
—00

converges or diverges to o0 (or —o0), then

ff d:z:—l—ff dx—f f(z dx+ff Va,beR.

Proof. We only prove 1 and 3, for the proof of 2 is similar to the proof of 1.

1. By the properties of the definite integrals, for a < ¢ we have

Lbf(x) dr = ch(x) dx—i—fcbf(:c) dx

f d“”_e}i%Jf dx:gigg[ch(x)dﬁff(g;)dx}

:L f(x) dm+blggoff(m> du = ff(m dw+f f(z)dz

thus



a0
3. If J f(x)dx converges or diverges to oo (or —o0), then both improper integrals

J f(z)dx and f f(z) dx converge or diverge to oo (or —o0). Therefore,

ff da:—i—ff dx—J f(z dw+ff dx—i—ff
:J_Oof(x)da:—l—L flz)dz. O

Definition 8.41: Improper integrals with Infinite Discontinuities

1. If f is Riemann integrable on [a,c| for all a < ¢ < b, and f has an infinite

discontinuity at b; that is, lim f(z) = o or — oo, then
T—b~

Lbf(:v) dr = cligl— ch(x) dx

2. If f is Riemann integrable on [c,b] for all @ < ¢ < b, and f has an infinite

discontinuity at a; that is, hm f(z) =00 or — oo, then

w—>a

Lf( ir = tim [ (o) ds

C"(l c

3. Suppose that a < ¢ < b. If f is Riemann integrable on [a, c—¢] and [c+e€, b] for all

0 < € « 1, and f has an infinite discontinuity at ¢; that is lim+ f(z) =00 or —o0
r—C

and lim f(x) =0 or — o0, then

o Lb f(x)de = Lc f(z)dx + f f(z)dx

The convergence and divergence of the improper integrals with infinite discontinuities

are similar to the statements in Definition 8.34.

1

Example 8.42. Evaluate f 275 da.
0

We observe that the integrand has an infinite discontinuity at 0. Therefore,

1 1
3 =1 3
f r-3dr = lim t735dr = lim -3 = lim —(1—a§) =5
0

a—0t a—0t+ 2 T=a a—0t 2 2

2

Example 8.43. Evaluate f r 3 dx.
0



We observe that the integrand has an infinite discontinuity at 0. Therefore,

2 2 2
J 3 dr = lim 2 dr = lim ( 5 )

0 a—07t J, a—0t

o (L L)
= 1m —_— _— = N
T=a a—0t 8 2a2 ’

2
thus the improper integral f =3 dx diverges to 0.
0

2
Example 8.44. Evaluate f r3dx.

-1
Since the integrand has an infinite discontinuity at 0,

2 0 2
f 3 dr = f x 3 dr + f 3 dx.
1 1 0

We have shown in previous example that the second integral on the right-hand side diverges

to co. Similarly, the first integral on the right-hand side diverges to —oo since

= 11m {(— == — | = —00;
r=—1 b—0— 2()2 2 ’

0 b 2
3 dr = lim 3 dr = lim
-1 b—0— J_ b—0— 2

2
thus the improper integral f 73 dx diverges (but not diverges to oo or —0).
-1

-2
Remark 8.45. Even though y = —% is an anti-derivative of the function y = 272, you

cannot apply the “Fundamental Theorem of Calculus” to conclude that

2 —2 =2 1 1
f e 3de =2 :——+—:§
. e 87278

since y = 7% is not Riemann integrable on [—1,2].

Similar to Theorem 8.40, we also have the following

Theorem 8.46

If f is Riemann integrable on [a, ¢] for all a < ¢ < b, and f has an infinite discontinuity

at a or b, then

Lbf(x)dx:J:f(x)dx—l—f)f(x)dx Va<c<b,

provided that the improper integrals on both sides converge or diverge to oo (or —o0).




b
We can also consider improper integral J f(z)dx in which a = —o0 or b = o0, and f

has an infinite discontinuity at ¢ for a < ¢ < b. In this case, we define

Loof(x)dx—Ldf(x)dx—i—Loof(x)dx vd> e,
Jboof(x)dxZJdoof(x)dx+Lbf(x)dx Vd <c,

and etc. In other words, when the integrand and the domain of integration are unbounded,
we divide the integral into improper integrals of one type and compute those integrals

separately, pretending that the summing rule

Lbf(l‘>d:p _ El f(x)dx+fl2f(x)dx+...+J:1 f(a:)dx+£l f(z)dx

also holds for improper integrals.

0
Example 8.47. Evaluate L \/E((j;x—i—l)

We observe that the integrand has an infinite discontinuity at 0, and the domain of

integration is unbounded. Therefore,

J\fx—l— f\fx%—l ffx—i—l)

d
By the substitution v = \/x, du = —x; thus

NG
d 2d
fﬁ(;:_ 1 = JuQ fl = 2arctanu + C' = 2arctan/z + C .
Therefore,
| =1
J f&:+ ai0+f fx—i— a0t z=a
= alirgl+ <2 : % — 2arctan \/5) =—
and

foo dz ~ im J
1 Vr(z+1) b \f:v—i—l b

= lim <2arctan\[—2-—> =7 — T_
b—00 4 2

SEN

As a consequence,

oo™

J, D



Definition 8.48

b
absolutely if j | f(2)| dz converges.

b
Let J f(z) dx, where a,b could be infinite, be an improper integral.

b
1. The improper integral J f(x) dzx is said to be absolutely convergent or converge

b
2. The improper integral j f(z) dzx is said to be conditionally convergent or con-

b b
verge conditionally if J f(x) dz converges but j | f(2)| dz diverges (to o).

Remark 8.49. Even though it is not required in the definition that an absolutely convergent

improper integral has to converge, it is in fact true an absolutely convergent improper

integral converges.

S
Example 8.50. The improper integral J M g s conditionally convergent but not
x

0
absolutely convergent. To see that the improper integral is not absolutely convergent, we

note that if n e N,

sm x—|—2

fzm s1nx‘dx_z”:f2k” smx‘dx_ZJ%

0 o1 Y2(k-1)r

(T \smx| JQW |sm:c]
ZJ |z +2(k kz:l 2km

x+2

thus by the fact that

21 1+1+(1+1>+(1+1+1+1>+ < ! +o )
ko2 \3 4 5 6 7 8 7=t p ] 2nl 42 2n
1+1+(1+1)+(1+1+1+1> <1+1+ +1)
T2 \4 4 8§ 8 8 8 n o 2n 2"

1 1 1 n n 2"1vterms
=l+-4+-+ to==+1>—,
Tyt gt +% 5 t123

n terms

we find that

which approaches o0 as n — o0.



Theorem 8.51: A special type of improper integral

p—1

P diverges to co if p <1

fooda: — ifp>1,
1

e Comparison Test for Improper Integrals
In the last part of this section, we consider some criteria which can be used to judge if an
improper integral converges or diverges, without evaluating the exact value of the improper

integral.

Theorem 8.52: Direct Comparison Test

Let f and g be continuous functions and 0 < g(z) < f(z) on the interval [a, ).

o6}
1. If the improper integral f f(z)dx converges, then the improper integral
0 a
J g(x) dx converges.

a

2. If the improper integral J x) dz diverges to o0, then the improper integral
J f(z) dx diverges.

Similar result also holds for improper integrals given by other two cases in Definition

8.34 and the case with infinite discontinuities.

b b
Proof. For b > a, define G(b) = J g(x)dx and F(b) = f f(z)dz. By the Fundamental

Theorem of Calculus, F,G : [a,00) — R is differentiable (hence continuous). Since 0 <

g(x) < f(z) on [a,0), for all b > a we have 0 < G(b) < F(b), and F,G are monotone

increasing.
0
1. If the improper integral J f(z) dx converges, the blim F(b) = M exists. Since F' is
a —®0
monotone increasing, F'(b) < M for all b > a; thus G(b) < M for all b > a. By the
monotonicity of G, lim G(b) exists.
2. If the improper integral J x) dz diverges to oo, hm G(b) = 0; thus the fact that

G(b) < F(b) implies that lim F(b) = . O

b—o0

0
Example 8.53. Consider the improper integral f e dz. Note that e™** < e~ for all
1



x € [1,00). Since

o b z=b
e Pdr=1lim | e®dr=lim(—e™") = lim(e? —e™) = -,
1 b—w Jq b—ao0 =1 b—o0

0
by Theorem 8.52 we find that the improper integral J e dx converges.
1

D Gin2 202
. . . 1

Example 8.54. Consider the improper integral J Sm;p dx. Note that y < — for all
1z T T

x € [1,00). Since

© 1 ! , Lyje=b 1
L — dx = lim —Qda::hm(——) :hm(g—l):—l,

I‘z b—0o0 1 T b—0o0 T lx=1 b—0o0

o0
by Theorem 8.52 we find that the improper integral j e dx converges.
1

Example 8.55 (The Gamma Function). The Gamma function I' : (0,0) — R is defined
by

o0
['(x) = J t" e tdt.
0
We note that for each x € R, the integrand f(t) = t*~'e~" is positive on [0, 20).

1. If # > 1, the function y = t*'e~ 2 is differentiable on [0,0) and has a maximum at
the point t = 2(x — 1). Therefore,

0<fO) <2 Yz—1""'ez Vt=0.

By the fact that

0 . b . . t=b ,
J e2dt=1m | e 2dt = lim (— 26_5) = lim (2 - 26_5) =2,

0 b—w J b—0 t=0 b—o0
o0
we find that the improper integral f t*~le~t dt converges.
0

2. If 0 <z < 1, the function f has an infinite discontinuity at 0. Therefore,
0 1 0
J e dt:J tx—le—fdt+f et dt .
0 0 1

Again, the function y = t*~le~2 is bounded from above by 2*71(x — 1)*71; thus the



e}
same reason as above show that the improper integral J t*~le~t dt converges.
1

On the other hand, note that f(t) < ¢*~! for all ¢ € [0, 1]. By the fact that

t=1 1—-a”
= lim
t=a a—0t xT

1 1 t* 1
J " tdt = lim | ¢ 'dr = lim — =—,
0 a—0t J, a—0+ T x

1
we find that the improper integral J t*~le=tdt converges. Therefore, the improper
0
Q0
integral f t*~le~t dt converges.
0

3. If # <0, then t*"'e~" > t*"le~! for all t € [0, 1]. By the fact that

1 1
J t*te7tdt = lim t*te7ldt = o0,

0 a—0t J,

1
Theorem 8.52 implies that the improper integral J t*~le=t dt diverges to oo. This
0

0
implies that the improper integral J t*~le~t dt diverges to oo as well.
0

Theorem 8.56: Limit Comparison Test

Let f and ¢ be positive continuous functions on the interval [a,00). If the limit

lim f() = L for some 0 < L < o0, then
z—n g(x)

oe} e}
J f(z)dx converges if and only if J g(x)dzx converges.

a

Similar result also holds for improper integrals given by other two cases in Definition

8.34 and the case with infinite discontinuities.

Proof. By the fact lim J;Eg = L, there exists M > a such that
Tr—00
L
)M—L’ < —= whenever x> M .
g(x) 2
Therefore,
L 3L
0< §g(:v) < f(x) < 79(1‘) whenever x> M .

By the direct comparison test,

Q0 Q0
f f(x)dx converges if and only if J g(z)dx converges.
M M



The theorem is then concluded since J f(z) dx and f x) dz are both finite. [

1 - 1 -
Example 8.57. Consider the improper integral f re dx. Since lim (+16/)/$ =1,
r—00 X
the limit comparison test implies that
1+e® “dx
J + dx converges if and only if J — converges.
1 z 1 T

0
By Theorem 8.51, we find that the integral f dv diverges; thus the improper integral
1 X

Q0 1 —T .
f te dx diverges.
1

x
Example 8.58. Consider the improper integral J T Note that this is an improper
x + tanx
integral with infinite discontinuity at = = 0. Since
T+ tanz tan x sin
lim+—:1+lim =14 lim =2,
z—07F T z—0t X z—0t T COST
the limit comparison test implies that
B dx
—— converges if and only if — converges.
0 T+tanw
. . . Tdr i dx .
Since the improper integral — diverges (to ), we must have ———— diverges.
0o T 0 T+tanx
Example 8.59. Determine the convergence of the improper integral JOO _dr
p * . 1 g p p g 0 m *
_2 1 _1 . .
Note that i x73(x +1)73(x — 1)73. In the interval [0, 0), the integrand has

singular points at 0 and 1. Write

JOO x _J? dx _}_Jl dx +j2 dx +J°O dx (85.1)
o Vat—a2 ), Y2t — a2 1 Nt — 2 1 Vat — a2 o rt— a2 o
1. Let f(z) = —z 3 (z+1)"3(z—1)"3 and g(z) = 273. Then f, g are positive continuous
on [a, 5] for all a > 0. Moreover,
e

o = S -nT] =10,



and
% % 2 1 x:% 3
der = li “3dr = lim 3x3 -
L g(z) dzx ai%l+ ) x x ai%l+ T T

1
which shows that the improper integral J2 g(x) dx converges. Therefore, the limit
0

1
: Y 2 2 d
comparison test implies that JQ f(x)de = — JQ 3796 converges.
0 T

. Let f(z) = —a3(z +1)"3(z — 1)73 and g(z) = —(z — 1)3. Then f, g are positive

. 1 1
continuous on [5, b} for all 5 < b < 1. Moreover,

lim _f(x) = lim x_%(x—l— 1)_% —275 > 0,
e—1- g(r)  a—1-

and

1 b _
f (x)d lim | (z—1)3d lim Sz — )3 = 2
xr)dr = — lim x— xr=— lim —(x — =
%g 1= s o1 2 =1 24

1
which shows that the improper integral J g(x) dx converges. Therefore, the limit
1

converges.

2
1 1
. . . dx
comparison test implies that L f(z)de = — L Yk — 2

. Similar to the previous case, we let f(z) = 73 (z4+1)"3(z—1)"5 and g(z) = (z—1)3.

Then f, g are positive continuous on [a, 2| for all 1 < a < 2. Moreover,

lim J(@) = lim x*%(qﬁ— 1)*% =275 >0,
r—1t g(l’) r—1t
and ) )
3 g |2=2 3
dzl _]-_ld :_1 - —1)s = —
Jy stwrae= i | @ har= - im S 0i 7 <3

2
which shows that the improper integral J g(x)dx converges. Therefore, the limit
1
f _dr converges
1 vVt — a2 8es:

. Let f(z) =2 3(z+1)"3(x—1)"3 and g(z) = z~3. Then f, g are positive continuous

2
comparison test implies that J flx)de =
1

on [2,b] for all b > 2. Moreover,

i

2
_2 1)~
m ——= = lim vt )
r—00 g(;ﬂ) Tr—00 T~

Wl

(e = 1)

lim { i 1> 0
A\ @Dy T T

wik| ol



and

®© b 4 1 |x=b
J g(x)dr =1lim | z73dr=— lim 3z"3 =3

2 b—0 2 b—0 =2
0
which shows that the improper integral J g(x) dx converges. Therefore, the limit
ison test implies that | f(z)d [
comparison test implies tha x)dr = ———— converges.
p p L f L pa— g

Since the four improper integrals on the right-hand side of (8.5.1) converges, we find that

0
the improper integral J converges.
0

dzr
Yot _ 2

8.5.1 The Laplace transform (# > > % %)

Definition 8.60: Laplace Transform

Let f : [0,00) — R be continuous. The Laplace transform of f, denoted by Z(f), is
the function defined by

L(f)(s) = foo e=SUF(¢) dt (: lim Re—stf(t)dt>,

0 R—w Jo

and the domain of Z(f) is the set consisting of all numbers s for which the integral

converges.

Remark 8.61. In general, the Laplace transform of f can be defined, without assuming
Q0

that f is continuous on [0, c0), as long as the integral j et f(t) dt makes sense. Moreover,
0

if f is continuous and satisfies
()] < Me*™  Vte[0,0), (8.5.2)

then Z(f)(s) exists for all s > a. A function f is said to be of exponential order « if there
exist M > 0 such that the growth condition (8.5.2) holds.

Example 8.62. Let f : [0,00) — R be given by f(t) = t” for some p > —1. Recall that the
Gamma function I" : (0,00) — R is defined by

0
[(x) = J e~ dt
0



We note that if —1 < p < 0, f is not of exponential order a for all a € R; however, the

Laplace transform of f still exists. In fact, for s > 0,

R sR t

Z(f)(s) = lim | e dt = lim e*t(
0

R—0 0 R—0

)P@ _Tp+1)

s/ s sptl

In particular, if p = n € N u {0}, then

n!
(Z(f)(s):SnJrl Vs>0.

Example 8.63. Let g : [0,00) — R be given by ¢(¢) = e sin(bt) for some b # 0. Using
(8.2.1), we find that

1
Je(“_s)t sin(bt) dt = Goafi i (a — s)el" ) sin(bt) — bel@ ) cos(bt)| 4+ C'.
Therefore, for s > a,
Q0
Z(9)(s) = J et sin(bt) dt
0
=i 1 (a—s)t o bt b (a—s)t bt t=b
- bL%m (a—s)e sin(bt) — be cos(bt) o
B b
C(s—a)24 b2
Similarly, if h(t) = e* cos(bt), using (8.2.2) we find that for s > a,
Q0
Z(h)(s) = f el cos(bt) dt
0
— i ! @99 cos(bt) + be@ M sin(b) ||
- bglgom (a—s)e cos(bt) + be sin(bt) -
. s—a
(s —a)2+0b*"

Theorem 8.65: Linearity of the Laplace transform

Let f,g:]0,00) — R be functions whose Laplace transform exist for s > « and ¢ be
a constant. Then for s > «,

L Z(f+9)(s) = Z(f)(s) + ZL(9)(s). 2. Z(cf)(s) = cZ(f)(s)-




Theorem 8.66

Suppose that f : [0,00) — R is a function such that f, f', f”,--- , f™ are continuous
of exponential order a, and f(™ is piecewise continuous. Then .Z(f(™)(s) exists for

all s > a, and

L(f")(s) = s"L(f)(s) =" f(0)—s"2f'(0) =+ - —sf2(0) = f"7D(0) . (8.5.3)

Proof. We prove by induction. Suppose that f is continuously differentiable on [0, 00) and

is of exponential order a. Then for s > «,

oo b t=b b
f e S f'(t)dt = lim | e *" f'(t)dt = lim [e_St f(t) T sJ e f(t) dt]

0 b—o0 0 b—o0 0

=5 [ i) - 50+ i e 5 0) = s2(D)(s) - 1O

0

which shows that (8.5.3) holds for n = 1 and all continuously differentiable f.
Now suppose that (8.5.3) holds for all k-times continuously differentiable function f.

Then if s > a and f is (k + 1)-times continuously differentiable function on [0, ),

g(f(kJrl))(S):g((fl>(k))(8)
=5 L(f)(s) =" 0) =) (0) = = s(F) 2 (0) = (£)" 7 (0)

=" [sZ(f)(s) - ()] SLF0) = sF 2 (0) = — s FTD(0) = £(0)

=" L(f)(s) — 8" F(0) = sFTHF(0) = sF2F(0) — - - — s FD(0) — £(0)

which implies that (8.5.3) holds for the case n = k + 1. The theorem is then concluded by

induction. O]

e Applications in solving the ordinary differential equations

Let ag, a1, -+ ,an_1, Yo, Y1, " ,Yn_1 be given numbers, and g : [0,00) — R be a continuous
function of exponential order. The idea of solving an ordinary differential equation (here y

is the unknown function to be solved) of the form

any'™ + an 1y 4+ b ary’ + agy = g(s), (8.5.4a)
y(0) =40,4'(0) = 1, -+, " "(0) = Y1, (8.5.4b)

using the method of the Laplace transform is based on the following facts:



1. The Laplace transform is a one-to-one mapping in the sense that if f and ¢ are

continuous function such that Z(f) = Z(g) for s > «, then f = g on [0, ).

2. The solution of (8.5.4) is of exponential order « (so that the Laplace transform of

derivatives of y can be computed using Theorem 8.66).

Under these two facts, we then take the Laplace transform of (8.5.4a) and apply Theorem
8.65 and 8.66 to obtain, by letting Y (s) = Z(y)(s), that

an[s"Y () = " yo — " Pyr — -+ — SYn—2 — Yn1]
+ a1 [$"TY(8) = 8" Pyo — Sy — - — SYn—3 — Yn—2)
+ an—2 [SH_QY(S) - Sn_gyo - 3n_4yl — = SYn—a — ?/n—zﬂ

4+t [SY(S) — yo] —+ CLQY(S) = g(g)(s) ;
thus

1
Y(s) = X
ApS™ + Ap_18" 1+ a,_98" 2+ -+ ays+ ag

% [L(0)(5) + 5o(ans™ + 15" 2+ -+ ars + )

+y1(ans” ? + ap 18" 4 - azs+ag) £ + Yn—o(@ns + an_1) + yn,l}
1 n—1 n—j—1
= ZL(g)(s ; Gy s"_j_e_l} )
ApS™ + Ap_1 871 +an28”3+~-+a13+a0[ (9)(s) + Zy] Z ¢

7=0 £=0

The final step is to identify which function gives the Laplace transform above.

Example 8.64. Find the function y satisfying
y" + 2y’ + by = sint, y(0)=1, y'(0)=0.

Using the result in Example 8.63 and Theorem 8.66, with Y denoting .Z(y) we find that

1

s°Y (s) — s+ 2[sY (s) — 1] + 5Y (s) = o

Vs>a

for some a. Therefore,

Y (s) 1 < 1 n +2> s+2 . 1
s2+2s+5\s2+1 (s+1)24+22  (s24+2s+5)(s2+1)




Writing the last term as the sum of partial fractions, we have

1 B 1( S s—2>‘
(2425 +5)(s2+1) 10\s2+2s+5 s2+1/’

thus
s+ 2 1 s 1 s—2
Vi§)=_ "2 5 1
O = sz T 061 e 2 105251
_11 s+ 1 9 2 1 S 1 1

_E(s+1)2+22+%(5+1)2+22_E52+1+582+1'

Therefore, Fact 1 and Example 8.63 imply that

9 1 1
“teos(2t) + 2_()6_t sin(2t) — — cost + —sint.

y(t) 10 z
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