Problem 1. Determine whether the sequence $\{a_n\}_{n=1}^{\infty}$ converges or diverges. If it converges, find the limit.

(1)
$$a_n = \frac{\ln n}{\ln(2n)}$$
 (2) $a_n = \frac{(-1)^{n+1}n}{n+\sqrt{n}}$ (3) $a_n = n\sin\frac{1}{n}$ (4) $a_n = n - \sqrt{n+1}\sqrt{n+3}$

(5)
$$a_n = \sqrt[n]{n^2 + n}$$
 (6) $a_n = (3^n + 5^n)^{\frac{1}{n}}$ (7) $a_n = \frac{1}{\sqrt{n^2 - 1} - \sqrt{n^2 + n}}$

(8)
$$a_n = \sqrt{n} \ln \left(1 + \frac{1}{n} \right)$$
 (9) $a_n = \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{2^n n!}$ (10) $a_n = \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{2^n (n+1)!}$.

Problem 2. Determine whether the series $\sum_{n=1}^{\infty} a_n$ is convergent or divergent. If it is convergent, find its sum.

(1)
$$a_n = \frac{1}{1 + (\frac{2}{3})^n}$$
 (2) $a_n = \ln\left(\frac{n^2 + 1}{2n^2 + 1}\right)$ (3) $a_n = e^{-n} + \frac{1}{n(n+1)}$ (4) $a_n = \frac{1}{n^3 - n}$

(5)
$$a_n = \frac{40n}{(2n-1)^2(2n+1)^2}$$

Problem 3. Find values of x for which the following series converges.

(1)
$$\sum_{n=1}^{\infty} (-4)^n (x-5)^n$$
 (2) $\sum_{n=1}^{\infty} \frac{2^n}{x^n}$ (3) $\sum_{n=1}^{\infty} \frac{\sin^n x}{3^n}$ (4) $\sum_{n=1}^{\infty} e^{nx}$.

Problem 4. Let $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ be sequences of real numbers.

- (1) Show that if $\lim_{n\to\infty} (a_n + b_n)$ D.N.E. and $\lim_{n\to\infty} b_n$ converges, then $\lim_{n\to\infty} a_n$ D.N.E.
- (2) Show that if $\sum_{n=1}^{\infty} (a_n + b_n)$ diverges and $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ diverges.

Problem 5. Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of real numbers, and $\{\sigma_n\}_{n=1}^{\infty}$ be a sequence of real numbers defined by

$$\sigma_n = \frac{a_1 + a_2 + \dots + a_n}{n} = \frac{1}{n} \sum_{k=1}^n a_k.$$

- (1) Show that if $\lim_{n\to\infty} a_n = a$ exists, then $\lim_{n\to\infty} \sigma_n = a$.
- (2) Suppose that $\lim_{n\to\infty} \sigma_n = a$ exists, is it necessary that $\lim_{n\to\infty} a_n = a$?

Problem 6. Let $\{a_n\}_{n=0}^{\infty}$ be a sequence of real numbers defined recursively by

$$a_{n+1} = \sqrt{1 + a_n} \quad \forall n \in \mathbb{N} \cup \{0\}, a_0 = 0.$$

Show that $\{a_n\}_{n=1}^{\infty}$ converges and find the limit.

Problem 7. Let $a_n = \left(1 + \frac{1}{n}\right)^n$.

(1) Show that if $0 \le a < b$, then

$$\frac{b^{n+1} - a^{n+1}}{b - a} < (n+1)b^n.$$

(2) Deduce that $b^n[(n+1)a - nb] < a^{n+1}$.

(3) Use
$$a = 1 + \frac{1}{n+1}$$
 and $b = 1 + \frac{1}{n}$ in (2) to show that $\{a_n\}_{n=1}^{\infty}$ is (strictly) increasing.

- (4) Use a = 1 and $b = 1 + \frac{1}{2n}$ in (2) to show that $a_{2n} < 4$.
- (5) Use (3) and (4) to show that $a_n < 4$.
- (6) Deduce that $\{a_n\}_{n=1}^{\infty}$ converges.

Problem 8. Let a, b be positive real numbers, a > b. Let two sequence $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ be given by the recursive relation

$$a_{n+1} = \frac{a_n + b_n}{2}, \ b_{n+1} = \sqrt{a_n b_n} \quad \forall n \in \mathbb{N}, \qquad a_1 = \frac{a+b}{2}, \ b_1 = \sqrt{ab}.$$

Complete the following.

- (1) Show (by induction) that $a_n > a_{n+1} > b_{n+1} > b_n$ for all $n \in \mathbb{N}$.
- (2) Deduce that $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ both converges.
- (3) Show that $\lim_{n\to\infty} a_n$ and $\lim_{n\to\infty} b_n$ both exist and are identical.

Problem 9. Let $\{a_n\}_{n=0}^{\infty}$ be a sequence of real number defined by the recursive relation

$$a_{n+1} = \frac{1}{2 + a_n} \quad \forall \, n \geqslant 0 \,, \qquad a_0 = \frac{1}{2} \,.$$

Complete the following.

- (1) Show that the sequence $\{a_{2n}\}_{n=0}^{\infty}$ is a decreasing sequence; that is, $a_{2n+2} \leq a_{2n}$ for all $n \in \mathbb{N} \cup \{0\}$.
- (2) Show that the sequence $\{a_{2n+1}\}_{n=0}^{\infty}$ is an increasing sequence; that is, $a_{2n+3} \ge a_{2n+1}$ for all $n \in \mathbb{N} \cup \{0\}$.
- (3) Show that $a_{2k+1} \leq a_{2\ell}$ for all $k, \ell \in \mathbb{N} \cup \{0\}$.
- (4) Show that the two sequences $\{a_{2n}\}_{n=0}^{\infty}$ and $\{a_{2n+1}\}_{n=0}^{\infty}$ converges to the same limit.
- (5) Show that $\{a_n\}_{n=0}^{\infty}$ converges.

Problem 10. The Fibonacci sequence $\{f_n\}_{n=1}^{\infty}$ is a sequence defined recursively by

$$f_1 = 1$$
, $f_2 = 1$ and $f_{n+2} = f_{n+1} + f_n \ \forall n \in \mathbb{N}$.

Show the following.

(1)
$$\frac{1}{f_{n-1}f_{n+1}} = \frac{1}{f_{n-1}f_n} - \frac{1}{f_nf_{n+1}}$$
 for all $n \ge 2$.

(2)
$$\sum_{n=2}^{\infty} \frac{1}{f_{n-1}f_{n+1}} = 1.$$

(3)
$$\sum_{n=2}^{\infty} \frac{f_n}{f_{n-1}f_{n+1}} = 2.$$

Problem 11. Consider the series $\sum_{n=1}^{\infty} \frac{n}{(n+1)!}$.

- (1) Find the partial sum S_1 , S_2 , S_3 and S_4 . Do you recognize the denominators? Use the pattern to guess a formula for S_n .
- (2) Prove your guess by induction.
- (3) Show that the given series is convergent, and find the sum.