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Problem 1. Suppose that f : [a,b] — R is three times continuously differentiable, h = b-

c=12 ;— b. Show that there exists £ € (a, b) such that
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Hint: Find the difference f(b) — f(a) by write f as the sum of its third Taylor polynomial about ¢

and the corresponding remainder. Apply the Intermediate Value Theorem to deal with the sum of

the remainders. We note that the identity above implies that
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Problem 2. Suppose that f : [a,b] — R is four times continuously differentiable, h = b—a and
_ ot b. Show that there exists £ € (a, b) such that
" fa_2f0+fb f(4)€

Hint: Find the sum f(a) + f(b) by write f as the sum of its third Taylor polynomial about ¢ and
the corresponding remainder. Apply the Intermediate Value Theorem to deal with the sum of the
remainders. We note that the identity above implies that
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h2

)‘ < h—2 max ‘f(4)(x)‘.
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Problem 3. Suppose that f : [a,b] — R is four times continuously differentiable. Show that
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through the following steps.
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1. Let ¢ = —5 and h = — Write f as the sum of its third Taylor polynomial about ¢ and

the corresponding remainder and conclude that

L f(x)dr = 2hf(c) + %f”(c) —|—f Rs(z) dz .
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2. Show (by Intermediate Value Theorem) that there exists £ € (a, b) such that
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3. Use (%) in (xx) and conclude (¢).



Problem 4. Find the interval of convergence of the following power series.
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is called the Bessel function of the first kind of order 0. Find its domain (that is, the interval of

convergence).

Problem 6. The function .J; defined by
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is called the Bessel function of the first kind of order 1. Find its domain (that is, the interval of

convergence).

Problem 7. The function A defined by
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is called an Airy function after the English mathematician and astronomer Sir George Airy (1801~
1892). Find the domain of the Airy function.

Problem 8. A function f is defined by
flx)=1+20+2"+22° + 2" + - ;

that is, its coefficients are ¢y, = 1 and cg,11 = 2 for all n > 0. Find the interval of convergence of

the series and find an explicit formula for f(x).



