**Problem 1.** In class we have introduced the permutation symbol  $\varepsilon_{ijk}$  and use it to define the cross product: for two given vectors  $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k} = \sum_{i=1}^{3} u_i \mathbf{e}_i$  and  $\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k} = \sum_{i=1}^{3} v_i \mathbf{e}_i$ , the cross product  $\mathbf{u} \times \mathbf{v}$  is defined by

$$\mathbf{u} \times \mathbf{v} = \sum_{i=1}^{3} \left( \sum_{j,k=1}^{3} \varepsilon_{ijk} u_{j} v_{k} \right) \mathbf{e}_{i} = \sum_{i,j,k=1}^{3} \varepsilon_{ijk} u_{j} v_{k} \mathbf{e}_{i}.$$

Use the summation notation above without expanding the sum (不要展開成向量和的形式,直接用 $\Sigma$  操作) and the identity

$$\sum_{i=1}^{3} \varepsilon_{ijk} \varepsilon_{irs} = \delta_{jr} \delta_{ks} - \delta_{js} \delta_{kr}$$

to prove the following.

- (1)  $\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} (\mathbf{u} \cdot \mathbf{v})\mathbf{w}$  for all vectors  $\mathbf{u}, \mathbf{v}, \mathbf{w}$  in space. (Is the associative law  $\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) \times \mathbf{w}$  true?)
- (2)  $(\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d}) = \begin{vmatrix} \mathbf{a} \cdot \mathbf{c} & \mathbf{b} \cdot \mathbf{c} \\ \mathbf{a} \cdot \mathbf{d} & \mathbf{b} \cdot \mathbf{d} \end{vmatrix}$  for all vectors  $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$  in space.

## Problem 2.

- (1) Let  $\mathbf{u}, \mathbf{v}$  be vectors in space satisfying  $\mathbf{u} \cdot \mathbf{v} = \sqrt{3}$  and  $\mathbf{u} \times \mathbf{v} = \mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$ . Find the angle between  $\mathbf{u}$  and  $\mathbf{v}$ .
- (2) Let  $\mathbf{u}, \mathbf{v}$  be vectors in space. What can you conclude if  $\mathbf{u} \times \mathbf{v} = \mathbf{0}$  and  $\mathbf{u} \cdot \mathbf{v} = 0$ ?
- (3) Let  $\mathbf{u}, \mathbf{v}, \mathbf{w}$  be vectors in space. Show that if  $\mathbf{u} \neq \mathbf{0}$ ,  $\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot \mathbf{w}$  and  $\mathbf{u} \times \mathbf{v} = \mathbf{u} \times \mathbf{w}$ , then  $\mathbf{v} = \mathbf{w}$ .

## Problem 3.

(1) Let P be a point not on the line L that passes through the points Q and R. Show that the distance d from the point P to the line L is

$$d = \frac{\|\mathbf{a} \times \mathbf{b}\|}{\|\mathbf{a}\|},$$

where  $\mathbf{a} = \overrightarrow{Q}\overrightarrow{R}$  and  $\mathbf{b} = \overrightarrow{Q}\overrightarrow{P}$ .

(2) Let P be a point not on the plane that passes through the points Q, R, and S. Show that the distance d from P to the plane is

$$d = \frac{\left|\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})\right|}{\|\mathbf{a} \times \mathbf{b}\|},$$

where  $\mathbf{a} = \overrightarrow{QR}$ ,  $\mathbf{b} = \overrightarrow{QS}$  and  $\mathbf{c} = \overrightarrow{QP}$ .

**Problem 4.** Show that the polar equation  $r = a \sin \theta + b \cos \theta$ , where  $ab \neq 0$ , represents a circle, and find its center and radius.

**Problem 5.** Replace the polar equations in the following questions with equivalent Cartesian equations.

(1) 
$$r^2 \sin 2\theta = 2$$
 (2)  $r = 4 \tan \theta \sec \theta$  (3)  $r = \csc \theta e^{r \cos \theta}$  (4)  $r \sin \theta = \ln r + \ln \cos \theta$ .

**Problem 6.** Let C be a smooth curve parameterized by

$$r(t) = (\cos t \sin t, \sin t \sin t, \cos t), \qquad t \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right].$$

- (1) Show that C is a closed curve on the unit sphere  $\mathbb{S}^2$ .
- (2) Using the spherical coordinate, the curve C above corresponds to a curve on the  $\theta\phi$ -plane. Find the curve in the region  $\{(\theta,\phi) \mid 0 \le \theta \le 2\pi, 0 \le \phi \le \pi\}$ .



Remark: 想像球面是地球,有人開飛機飛行了 C 這個路線。這個路線在世界地圖上對應到另一個曲線,第二小題即是要求在世界地圖上這個曲線為何。

**Problem 7.** Let C be a smooth curve parameterized by

$$\mathbf{r}(t) = (\cos(\sin t)\sin t, \sin(\sin t)\sin t, \cos t), \qquad t \in [0, 2\pi].$$

- (1) Show that C is a closed curve on the unit sphere  $\mathbb{S}^2$ .
- (2) Using the spherical coordinate, the curve C above corresponds to a curve on the  $\theta\phi$ -plane. Find the curve in the region  $\{(\theta,\phi) \mid 0 \le \theta \le 2\pi, 0 \le \phi \le \pi\}$ .



**Problem 8.** In class we talked about how to find the total distance that you travel when you walk along a path according to the position vector  $\mathbf{r}:[a,b]\to\mathbb{R}^2$ . The total distance travelled can be computed by

$$\int_a^b \|\boldsymbol{r}'(t)\| \, dt$$

when r is continuously differentiable. Complete the following.

- 1. Let  $\mathbf{r}:[0,4\pi]\to\mathbb{R}^2$  be given by  $\mathbf{r}(t)=3\cos t\mathbf{i}+3\sin t\mathbf{j}$ . Find the image of  $[0,4\pi]$  under  $\mathbf{r}$ .
- 2. Compute the integral  $\int_0^{4\pi} \| \boldsymbol{r}'(t) \| dt$ . Does it agree with the length of the curve  $C = \boldsymbol{r}([0, 4\pi])$ ?

**Problem 9.** To illustrate that the length of a smooth space curve does not depend on the parametrization you use to compute it, calculate the length of one turn of the helix in Example 1 with the following parametrizations.

1. 
$$\mathbf{r}(t) = \cos(4t)\mathbf{i} + \sin(4t)\mathbf{j} + 4t\mathbf{k}, t \in \left[0, \frac{\pi}{2}\right].$$

2. 
$$r(t) = \cos \frac{t}{2} \mathbf{i} + \sin \frac{t}{2} \mathbf{j} + \frac{t}{2} \mathbf{k}, t \in [0, 4\pi].$$

3. 
$$r(t) = \cos t \mathbf{i} - \sin t \mathbf{j} - t \mathbf{k}, t \in [-2\pi, 0].$$