Problem 1. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a function such that

$$f(x,y) + f(y,z) + f(z,x) = 0$$
 $\forall x, y, z \in \mathbb{R}$.

Show that there exists $g: \mathbb{R} \to \mathbb{R}$ such that

$$f(x,y) = g(x) - g(y) \quad \forall x, y \in \mathbb{R}.$$

Problem 2. In the following sub-problems, find the limit if it exists or explain why it does not exist.

$$(1) \lim_{(x,y)\to(0,0)} \frac{x+y}{x^2+y} \qquad (2) \lim_{(x,y)\to(0,0)} \frac{x}{x^2-y^2} \qquad (3) \lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4+y^2} \qquad (4) \lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$$

(5)
$$\lim_{(x,y)\to(0,0)} \frac{x^3 - y^3}{x^2 + y^2}$$
 (6) $\lim_{(x,y)\to(0,0)} (x^2 + y^2) \ln(x^2 + y^2)$ (7) $\lim_{(x,y)\to(0,0)} \frac{xy^4}{x^4 + y^4}$

(8)
$$\lim_{(x,y)\to(0,0)} y \sin\frac{1}{x}$$
 (9) $\lim_{(x,y)\to(0,0)} x \cos\frac{1}{y}$ (10) $\lim_{(x,y)\to(0,0)} \frac{x^2+y^2}{\sqrt{x^2+y^2+1}-1}$

$$(11) \lim_{(x,y,z)\to(0,0,0)} \frac{xy+yz+zx}{x^2+y^2+z^2} \quad (12) \lim_{(x,y,z)\to(0,0,0)} \frac{xy+yz^2+xz^2}{x^2+y^2+z^2} \quad (13) \lim_{(x,y,z)\to(0,0,0)} \arctan \frac{1}{x^2+y^2+z^2}$$

Problem 3. Discuss the continuity of the functions given below.

1.
$$f(x,y) = \begin{cases} \frac{\sin(xy)}{xy} & \text{if } xy \neq 0, \\ 1 & \text{if } xy = 0. \end{cases}$$

2.
$$f(x,y) = \begin{cases} \frac{e^{-x^2 - y^2} - 1}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 1 & \text{if } (x,y) = (0,0). \end{cases}$$

3.
$$f(x,y) = \begin{cases} \frac{\sin(x^3 + y^4)}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Problem 4. Let $f(x,y) = \begin{cases} 0 & \text{if } y \leq 0 \text{ or } y \geq x^4, \\ 1 & \text{if } 0 < y < x^4. \end{cases}$

- 1. Show that $f(x,y) \to 0$ as $(x,y) \to (0,0)$ along any path through (0,0) of the form $y = mx^{\alpha}$ with $0 < \alpha < 4$.
- 2. Show that f is discontinuous on two entire curves.

Problem 5. Find $\frac{\partial}{\partial x}\Big|_{(x,y,z)=(\ln 4,\ln 9,2)} \sum_{n=0}^{\infty} \frac{(x+y)^n}{n!z^n}$. Do not write the answer in terms of an infinite sum.

Problem 6. Let $f(x,y) = (x^2 + y^2)^{\frac{2}{3}}$. Find the partial derivative $\frac{\partial f}{\partial x}$.

Problem 7. Let $f(x,y,z) = xy^2z^3 + \arcsin(x\sqrt{z})$. Find f_{xzy} in the region $\{(x,y,z) \mid |x^2z| < 1\}$.

Problem 8. Let $\vec{a} = (a_1, a_2, \dots, a_n)$ be a unit vector, $\vec{x} = (x_1, x_2, \dots, x_n)$, and $f(x_1, x_2, \dots, x_n) = \exp(\vec{a} \cdot \vec{x})$. Show that

$$\frac{\partial^2 f}{\partial x_1^2} + \frac{\partial^2 f}{\partial x_2^2} + \dots + \frac{\partial^2 f}{\partial x_n^2} = f.$$

Problem 9. Let $f(x,y) = x(x^2 + y^2)^{-\frac{3}{2}}e^{\sin(x^2y)}$. Find $f_x(1,0)$.

Problem 10. Let $f(x,y) = \int_1^y \frac{dt}{\sqrt{1-x^3t^3}}$. Show that

$$f_x(x,y) = \int_1^y \left(\frac{\partial}{\partial x} \frac{1}{\sqrt{1-x^3t^3}}\right) dt$$

in the region $\{(x,y) | x < 1, y > 1 \text{ and } xy < 1\}.$

Problem 11. The gas law for a fixed mass m of an ideal gas at absolute temperature T, pressure P, and volume V is PV = mRT, where R is the gas constant. Show that

$$\frac{\partial P}{\partial V} \frac{\partial V}{\partial T} \frac{\partial T}{\partial P} = -1.$$

Problem 12. The total resistance R produced by three conductors with resistances R_1 , R_2 , R_3 connected in a parallel electrical circuit is given by the formula

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \,.$$

Find $\frac{\partial R}{\partial R_1}$ by directly taking the partial derivative of the equation above.

Problem 13. Find the value of $\frac{\partial z}{\partial x}$ at the point (1,1,1) if the equation

$$xy + z^3x - 2yz = 0$$

defines z as a function of the two independent variables x and y and the partial derivative exists.

Problem 14. Find the value of $\frac{\partial x}{\partial z}$ at the point (1, -1, -3) if the equation

$$xz + y \ln x - x^2 + 4 = 0$$

defines x as a function of the two independent variables y and z and the partial derivative exists.

Problem 15. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a function such that $f_x(a,b)$ and $f_y(a,b)$ exists. Suppose that c = f(a,b).

- 1. Using the geometric meaning of partial derivatives, explain what the vectors $(1, 0, f_x(a, b))$ and $(0, 1, f_y(a, b))$ mean.
- 2. Suppose that you know that there is a tangent plane (which we have not talked about, but you can roughly imagine what it is) of the graph of f at (a, b, c). What should the equation of the tangent plane be?