Problem 1. Define

$$f(x,y) = \begin{cases} x^2 \arctan \frac{y}{x} - y^2 \arctan \frac{x}{y} & \text{if } x, y \neq 0, \\ 0 & \text{if } x = 0 \text{ or } y = 0. \end{cases}$$

Find $f_{xy}(0,0)$ and $f_{yx}(0,0)$.

Problem 2. Show that each of the following functions is not differentiable at the origin.

(1)
$$f(x,y) = \sqrt{x} \cos y$$
 (2) $f(x,y) = \sqrt{|xy|}$

Problem 3. In the following, show that both $f_x(0,0)$ and $f_y(0,0)$ both exist but that f is not differentiable at (0,0).

$$(1) f(x,y) = \begin{cases} \frac{5x^2y}{x^3 + y^3} & \text{if } x^3 + y^3 \neq 0, \\ 0 & \text{if } x^3 + y^3 = 0. \end{cases}$$

$$(2) f(x,y) = \begin{cases} \frac{2xy}{\sqrt{x^2 + y^2}} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

$$(3) \ f(x,y) = \begin{cases} \frac{3x^2y}{x^4 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

$$(4) \ f(x,y) = \begin{cases} \frac{\sin(x^3 + y^4)}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Problem 4. Let $f, g: (a, b) \to \mathbb{R}$ be real-valued function, h(x, y) = f(x)g(y), and $c, d \in (a, b)$. Show that if f is differentiable at c and g is differentiable at d, then h is differentiable at (c, d).

Problem 5. Show that the function $f(x,y) = \sqrt{x^2 + y^2} \sin \sqrt{x^2 + y^2}$ is differentiable at (0,0).

Problem 6. Investigate the differentiability of the following functions at the point (0,0).

$$(1) f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

$$(2) f(x,y) = \begin{cases} \frac{xy}{x + y^2} & \text{if } x + y^2 \neq 0, \\ 0 & \text{if } x + y^2 = 0 \end{cases}$$

(3)
$$f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{\sqrt{x^2 + y^2}} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$