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Problem 1. Evaluate the following iterated integrals.
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Problem 2. Evaluate the double integral
ĳ

R

f(x, y) dA with the following f and R.

(1) f(x, y) = y2exy, and R is the region bounded by y = x, y = 4 and x = 0.

(2) f(x, y) = xy, and R is the region bounded by the line y = x ´ 1 and parabola y2 = 2x+ 6.

(3) f(x, y) = sin4(x+ y), and R is the triangle enclosed by the lines y = 0, y = 2x, and x = 1.

(4) f(x, y) = x2 + x2y3 ´ y2 sinx, and R =
␣

(x, y)
ˇ

ˇ |x| + |y| ď 1
(

.

(5) f(x, y) = |x| + |y|, and R =
␣
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ˇ

ˇ |x| + |y| ď 1
(

.

(6) f(x, y) = xy, and R is the region in the first quadrant bounded by curves x2 + y2 = 4,
x2 + y2 = 9, x2 ´ y2 = 1 and x2 ´ y2 = 4.

(7) f(x, y) = x, and R is the region in the first quadrant bounded by curves 4x2 ´ y2 = 4,
4x2 ´ y2 = 16, y = x and the x-axis.

(8) f(x, y) = exp(´x2 ´ 4y2), and R =
␣
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ˇ

ˇx2 + 4y2 ď 1
(

.

(9) f(x, y) = exp
(2y ´ x

2x+ y

)
, and R is the trapezoid with vertices (0, 2), (1, 0), (4, 0) and (0, 8).



Problem 3. Evaluate the triple integral
¡

D

f(x, y, z) dV with the following f and D.

(1) f(x, y, z) = x ´ y + z2, and D is the solid region bounded above by z = 1 + x2 + y2, bounded
below by z = 0, and inside x2 + y2 = 4.

(2) f(x, y, z) = 1, and D is the solid region bounded by z = x2 + y2, x2 + y2 = 4 and z = 0.

(3) f(x, y, z) = 1, and D =
!
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, where a, b, c ą 0.

Problem 4. Evaluate the integral
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double integral and evaluating the double integral by changing the order of integration.

Problem 5. Let a, b be positive constants. Evaluate the integral
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2
, there does not exist a real-valued continuous function u such that

for all x in the closed interval [0, 1],

u(x) = 1 + λ
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Hint: Assume the contrary that there exists such a function u. Integrate the equation above on the
interval [0, 1].

Problem 7. Find the surface area for the portion of the surface z = xy that is inside the cylinder
x2 + y2 = 1.

Problem 8. Let Σ be a parametric surface parameterized by

r(u, v) = X(u, v)i + Y (u, v) j + Z(u, v)k , (u, v) P R .

Define E = ru ¨ ru, F = ru ¨ rv and G = rv ¨ rv. Show that

}ru ˆ rv}2 = EG ´ F 2 .

Hint: You can try to make use of εijk, the permutation symbol.
Remark: This quantity EG´F 2 is called the first fundamental form (associated with the parametriza-
tion r).

Problem 9. Let k ą 0 be a constant. Show that the surface area of the cone z = k
a
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lies above the circular region x2 + y2 ď r2 in the xy-plane is πr2

?
k2 + 1 by the following methods:

1. Use the formula
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1 + }(∇f)(x, y)}2 dA directly.

2. Find a parametrization of the cone above using r, θ (from the polar coordinate) as the param-
eters and make use of the formula
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Problem 10. Let Σ be the surface formed by rotating the curve

C =
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ˇ

ˇ

ˇ
x = cos z, y = 0,´

π

2
ď z ď
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)

about the z-axis. Find a parametrization for Σ and compute its surface area.

Problem 11. The figure below shows the surface created when the cylinder y2 + z2 = 1 intersects
the cylinder x2 + z2 = 1. Let Σ be the part shown in the figure.

Σ

(1) Find the area of Σ using the formula
ĳ

R

a

1 + }(∇f)(x, y)}2 dA.

(2) Parameterize Σ using θ, z as parameters (from the cylindrical coordinate) and find the area of

this surface using the formula
ĳ

D
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›(rθ ˆ rz)(θ, z)
›

› d(θ, z).

(3) Parameterize Σ using θ, ϕ as parameters (from the spherical coordinate) and find the area of

this surface using the formula
ĳ

D

›

›(rθ ˆ rϕ)(θ, ϕ)
›

› d(θ, ϕ).

(3) Find the volume of this intersection using triple integrals.

Problem 12. Let Σ be the surface obtained by rotating the smooth curve y = f(x), a ď x ď b

about the x-axis, where f(x) ą 0.

1. Show that
r(x, θ) = xi + f(x) cos θ j + f(x) sin θk, (x, θ) P [a, b] ˆ [0, 2π] ,

is a parametrization of Σ, where θ is the angle of rotation about the x-axis (see the accompa-
nying figure).



2. Show that the surface area of Σ is
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Problem 13. Let S be the subset of the upper hemisphere z =
a

1 ´ x2 ´ y2 enclosed by the curve
C shown in the figure below

where each point of C corresponds to some point (cos t sin t, sin2 t, cos t) with t P
[
´
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2
,
π
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]
. Find the

surface of S via the following steps:

(1) Let R be the region obtained by projecting S onto the xy-plane along the z-axis. Suppose that
R can be expressed as R =

␣

(x, y)
ˇ

ˇ c ď y ď d, g1(y) ď x ď g2(y)
(

. Find c, d and g1, g2, and

find the surface area of S using the formula
ĳ
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a

1 + }(∇f)(x, y)}2 dA.

(2) The surface S is a parametric surface parameterized by

S =
!

r
ˇ

ˇ

ˇ
r = cos θ sinϕi + sin θ sinϕ j + cosϕk for some (θ, ϕ) P D

)

.

Find the domain D inside the rectangle [0, 2π]ˆ [0, π], and find the surface area of S using the

formula
ĳ

D

›

›(rθ ˆ rϕ)(θ, ϕ)
›

› d(θ, ϕ).

Problem 14. Rewrite the following iterated integrals as an equivalent iterated integral in the five
other orders.
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Problem 15. Find volume of the solid that lies under z = x2 + y2 and above the region R in the
xy-plane bounded by the line y = 2x and parabola y = x2.

Problem 16. Evaluate the triple integral
¡

D

dV , where D is bounded by z = x2 + y2, x2 + y2 = 4

and z = 0.

Problem 17. Evaluate the double integral
ĳ

R

arctan y

x
dA using the polar coordinate, where

R =
␣

(x, y) P R2
ˇ

ˇ 1 ď x2 + y2 ď 4, 0 ď y ď x
(

.

Problem 18. Evaluate the triple integral
¡

D

x exp(x2+ y2+ z2) dV , where D is the portion of the

unit ball x2 + y2 + z2 ď 1 that lies in the first octant.

Problem 19. Evaluate the triple integral
¡

D

a

x2 + y2 + z2 dV , where D is the region lying above

the cone z =
a

x2 + y2 and between the spheres x2 + y2 + z2 = 1 and x2 + y2 + z2 = 4.

Problem 20. Use the cylinder coordinate to find the volume of the ball x2 + y2 + z2 = a2.

Problem 21. Use the spherical coordinate to find the volume of the cylindricality x2 + y2 = r2,
where 0 ď z ď h.

Problem 22. Compute the volume of D given below using triple integrals in cylindrical coordinates.

(1) D is the solid right cylinder whose base is the region in the xy-plane that lies inside the cardioid
r = 1 + cos θ and outside the circle r = 1 and whose top lies in the plane z = 4.

(2) D is the solid right cylinder whose base is the region between the circles r = cos θ and r = 2 cos θ
and whose top lies in the plane z = 3 ´ y.



Problem 23. Compute the volume of D given below using triple integrals in spherical coordinates.

(1) D is the solid between the sphere ρ = cosϕ and the hemisphere ρ = 2, z ě 0.

(2) D is the solid bounded below by the sphere ρ = 2 cosϕ and above by the cone z =
a

x2 + y2.

Problem 24. Convert the integral
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to an equivalent integral in cylindrical coordinates and evaluate the result.

Problem 25. Find the integrals given below with specific change of variables.
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)
dx using change of variables x = u2 ´ v2, y = 2uv.

(4) Let R be the region in the first quadrant of the xy-plane bounded by the hyperbolas xy = 1,

xy = 9 and the lines y = x, y = 4x. Find
ĳ
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(c
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x
+
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(5) Let D be the solid region in xyz-space defined by

D =
␣

(x, y, z)
ˇ

ˇ 1 ď x ď 2, 0 ď xy ď 2, 0 ď z ď 1
(

.

Find
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(x2y + 3xyz) dV using change of variables u = x, v = xy, w = 3z.



Problem 26. Evaluate the double integral
ĳ

R

(x + y)ex
2´y2 dA, where R is rectangle enclosed by

the lines x ´ y = 0, x ´ y = 2, x+ y = 0, and x+ y = 3.

Problem 27. Let f be continuous on [0, 1] and let R be the triangular region with vertices (0, 0),
(1, 0), and (0, 1). Show that

ĳ

R

f(x+ y) dA =

ż 1

0

uf(u) du .

Problem 28. Let A be the area of the region in the first quadrant bounded by the line y =
1

2
x, the

x-axis, and the ellipse 1

9
x2 + y2 = 1. Find the positive number m such that A is equal to the area of

the region in the first quadrant bounded by the line y = mx, the y-axis, and the ellipse 1

9
x2+y2 = 1.

Hint: Try to make change of variables so that the computation of the area of the region in the first
quadrant bounded by the line y = mx, the y-axis, and the ellipse 1

9
x2 + y2 = 1 looks the same as

the former one.


