Calculus MA1002-B Quiz 02
National Central University, Mar. 24 2020
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Problem 1. (2pts) Determine whether the series >} — is convergent or divergent.
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Solution. Let a,, = o . Then a,, > 0 and the fact that lim (1 + é)x = e implies that
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By the ratio test, we conclude that > a, converges absolutely; thus > a, is convergent. =
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Problem 2. (3pts) Determine whether the series )| (1 - ﬁ) is convergent or divergent.
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Solution. Let a,, = (1 - — —2> Then a,, > 0 for all n > 2 and /a,, = <1 — = — —2> . Moreover,
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By the fact that lim (1 — f)x = e~ !, we obtain from the Squeeze Theorem that
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By the root test, we conclude that > a, converges absolutely; thus > a, is convergent. =
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Problem 3. (2pts) Determine whether the series )] sin” 7 is convergent or divergent.
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Solution. Let a,, = sin™ — and b, . By the fact that 0 < sinz < x for all x > 0, we have
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0 < a, < b, for all n e N. Moreover, b, < 27" for all n > 4. Since >} 27" is a geometric series with
) o n=4 "
common ratio 50 we find that > 27" converges. By the direct comparison test, Y. b, converges;
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thus > a, is convergent. D
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is convergent or divergent.
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Problem 4. (3pts) Determine whether the series »]
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Solution. Let a, = SR and b, = cos( n)' Then a, = — — b,,. Since
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the Dirichlet test implies that Z b, is convergent. Since Z o0 is divergent, we find that Z ap is
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divergent. O



