Calculus MA1002-B Quiz 08
National Central University, May. 12 2020
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Problem 1. Let U be an open set in R?, f : U — R be a real-valued function of two variables, and
(a,b) e U.

1. (2pts) State the definition of that f is differentiable at (a,b).
2. (3pts) Show that if f is differentiable at (a,b), then f is continuous at (a,b).
Solution. 1. f is said to be differentiable at (a,b) if there exist A, B € R such that
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2. Suppose that f is differentiable at (a,b). By the definition of differentiability,
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Then by the fact that lim A(x —a)= lim B(y —b) =0, we find that
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Therefore, lim  f(x,y) = f(a,b). !
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Problem 2. (5pts) Show that the function f(z,y) =< vz2+¥? (@) # (0,0) is not differ-
0 if (z,y) = (0,0),

entiable at (0,0) but f,(0,0) and f,(0,0) both exist.
Proof. First we compute f,(0,0) and f,(0,0). By definition,
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Therefore, f,(0,0) = f,(0,0) = 0 both exist. However, f is not differentiable at (0,0) since the
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along the line y = max, then
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which has different values for different m. o



