Calculus MA1002-B Quiz 09
National Central University, May. 19 2020
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Problem 1. (3pts) Use the chain rule of functions of several variables to compute %7 where w =

2ye® — arcsin z, ¥ = In(t*> + 1), y = arctant, z = sint.

Solution. By the chain rule,
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Problem 2. (4pts) Suppose that we substitute spherical coordinates z = pcosfsin ¢, y = psin 6 sin ¢

and z = pcos ¢ in a differentiable function w = f(x,y, z). Show that

;?g:—fxsinésingb—l—fycosé’sinqb and ;Zz:fxc089cos¢+fysinécos¢—fzsingb.

Proof. By the chain rule,
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The desired results are obtained by dividing both sides through by p. D

Problem 3. (3pts) Let f(z,) = ¢/xy. Show that f, and f, exist at the origin but that the directional

derivatives at the origin in all other directions do not exist.

Proof. By the definition of partial derivatives,
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thus f, and f,, both exist at the origin. Let u = cosfi + sin@j be a unit vector. Then
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which does not exist unless § = nm or § = nw + g Therefore, the directional derivative at the origin

does not exist in all other directions. o



