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Problem 1. (5pts) Use the second partials test to determine the relative extrema and saddle points
of the function f(x, y) = (x2 + y2)e´x.

Solution. First we look for critical points (x, y) satisfying

fx(x, y) = 2xe´x ´ (x2 + y2)e´x = 0 and fy(x, y) = 2ye´x .

Therefore, there are only two critical points (0, 0) and (2, 0). Note that

fxx(x, y) = 2e´x ´ 4xe´x + (x2 + y2)e´x ,

fxy(x, y) = ´2ye´x , fyy(x, y) = 2e´x .

1. At the point (0, 0), fxx(0, 0) = 2 and fxx(0, 0)fyy(0, 0) ´ fxy(0, 0)
2 = 4 ą 0; thus the second

partials test implies that f(0, 0) is a relative minimum of f .

2. At the point (2, 0), fxx(2, 0) = ´2e´2 and fxx(2, 0)fyy(2, 0) ´ fxy(2, 0)
2 = ´4e´4 ă 0; thus the

second partials test implies that (2, 0, f(2, 0)) is a saddle point of f . ˝

Problem 2. (5pts) Find the absolute extrema of the function f(x, y) = 3x2 + 2y2 ´ 4y over the
region R in the xy-plane bounded by the graphs of y = x2 and y = 4.

Solution. First we look for local extrema in the interior of the region. In this case, we look for the
critical points of f that satisfy

fx(x, y) = 6x = 0 and fy(x, y) = 4y ´ 4 = 0 .

Therefore, there is only one critical point (0, 1) (which is inside R) of f and f(0, 1) = ´2.
Next we look for the extrema on the boundary of R. On the lower part of the boundary y = x2,

f(x, y) = f(x, x2) = 3x2 + 2x4 ´ 4x2 = 2x4 ´ x2

which, on the interval [´2, 2], has critical points at x = 0 and x = ˘
1

2
. Therefore, f(x, x2) attains

its maximum at x = ˘2 (with value f(˘2, 4) = 28) and attains its minimum at x = ˘
1
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. On the upper part of the boundary y = 4,

f(x, y) = f(x, 4) = 3x2 + 16

which, on the interval [´2, 2], attains its maximum at x = ˘2 (with value f(˘2, 4) = 28) and attains
its minimum at x = 0 (with value f(0, 0) = 0).

Comparing the values computed above, we find that the absolute maximum of f over R occurs at
(˘2, 4) with value f(˘2, 4) = 28 and the absolute minimum of f over R occurs at (0, 1) with value
f(0, 1) = ´2. ˝


