Calculus MA1002-A Midterm 1
National Central University, Mar. 17, 2019

Problem 1. (15%) Find the volume of the solid whose base is the region between the curve y = zsinz
and the interval [0, 7] on the z-axis and the cross-sections perpendicular to the z-axis are equilateral

triangles ( £ = % 35) with bases running from the z-axis to the curve.
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Solution. Using the method of cross section, the volume of the solid given above is
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Integrating by parts,
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Therefore, the volume of the given solid is \f (% — g) =

Problem 2. (30%) Find the volume of the solid formed by revolving the shaded region about the

y-axis shown in the following figure using at least two different methods.
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Solution. Using the shell method, the volume of the given solid is
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On the other hand, since the given solid is the complement of a cylinder and a bullet head like

solid, the volume of the given solid can be computed by
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where V' is the volume of the bullet head like solid. Using the disk method,
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where f(x) = — Let y = f(z). Then
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thus the substitution of variable implies that
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Therefore, the volume of the given solid is
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Problem 3. Let G be the graph of the function y = v/& — 22 + arcsin /z on [0, 1].
1. (15%) Find the arc-length of G.
2. (15%) Find the area of the surface formed by revolving G' about the z-axis.

Solution. First we compute y’ as follows: by the chain rule we obtain that

1 d 1—2x 1 1 V1—x

1 d ot A . ~
|- 7 dx 2w — a2 A1—x2yx v

N

(z —2%) +

Therefore, the arc length of the graph is given by
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Let S be the surface formed by revolving G about the x-axis. Then the area of S is given by
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Let /= = sinu. Then z = sin?u which shows that dz = 2sinucosu du; thus the substitution of

variables implies that
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Therefore, the area of the surface of revolution is
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Problem 4. (25%) A rectangle % with sides a and b is divided into two parts %, and %, by an arc
of a parabola that has its vertex at one corner of # and passes through the opposite corner. Find

the centroids of both %, and %s.
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Solution. The parabola with vertex at (0,0) and passing through (a,b) is y = f(x) = a%xz. Then

the centroid of #; is given by
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and the centroid of %, is given by
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Note that (x1, ;) and (x2,y9) satisfy that

503 b
=G

ab (3a 3b 2ab /3a 3b
Area of %, - (w1,y1) + Area of Zy - (x1,11) 3 (Z> 10) + 7( )

Area of #; + Area of % N ab




