
Calculus MA1002-B Midterm 2
National Central University, Apr. 14, 2019

Problem 1. Complete the following.

1. (5%) State the limit comparison test for the convergence or divergence of infinite series.

2. (15%) State and prove the Taylor Theorem (you can directly apply the Cauchy Mean Value
Theorem without stating it).

Solution. 1. Let tanu8
n=1, tbnu8

n=1 be sequences of real numbers, an, bn ą 0 for all n P N, and

lim
nÑ8

an
bn

= L ,

where L is a non-zero real number. Then
8
ř

k=1

ak converges if and only if
8
ř

k=1

bk converges.

2. Let f : (a, b) Ñ R be (n+ 1)-times differentiable, and c P (a, b). Then for each x P (a, b), there
exists ξ between x and c such that

f(x) = f(c) + f 1(c)(x ´ c) +
f 11(c)

2
(x ´ c)2 + ¨ ¨ ¨ +

f (n)(c)

n!
(x ´ c)n +

f (n+1)(ξ)

(n+ 1)!
(x ´ c)n+1 . (‹)

Proof. We first show that if h : (a, b) Ñ R is m-times differentiable, and c P (a, b). Then for
all d P (a, b) and d ‰ c there exists ξ between c and d such that

h(d) ´
m
ř

k=0

h(k)(c)

k!
(d ´ c)k

(d ´ c)m+1
=

1

m+ 1

h 1(ξ) ´
m´1
ř

k=0

(h 1)(k)(c)

k!
(ξ ´ c)k

(ξ ´ c)m
. (˝)

Let F (x) = h(x) ´
m
ř

k=0

h(k)(c)

k!
(x ´ c)k and G(x) = (x ´ c)m. Then F,G are continuous on [c, d]

(or [d, c]) and differentiable on (c, d) (or (d, c)), and G 1(x) ‰ 0 for all x ‰ c. Therefore, the
Cauchy Mean Value Theorem implies that there exists ξ between c and d such that

F (d) ´ F (c)

G(d) ´ G(c)
=

F 1(ξ)

G 1(ξ)
,

and (˝) is exactly the explicit form of the equality above.

Now we apply (˝) successfully for h = f , f 1, f 11, ¨ ¨ ¨ and f (n) and find that

f(d) ´
n
ř

k=0

f (k)(c)

k!
(d ´ c)k

(d ´ c)n+1
=

1

n+ 1

f 1(d1) ´
n´1
ř

k=0

(f 1)(k)(c)

k!
(d1 ´ c)k

(d1 ´ c)n

=
1

n+ 1
¨
1

n

f 11(d2) ´
n´2
ř

k=0

(f 11)(k)(c)

k!
(d2 ´ c)k

(d2 ´ c)n´1

= ¨ ¨ ¨ ¨ ¨ ¨

=
1

(n+ 1)!

f (n)(dn) ´ f (n)(c)

dn ´ c
=

1

(n+ 1)!
f (n+1)(ξ) ;



thus
f(d) ´

n
ÿ

k=0

f (k)(c)

k!
(d ´ c)k =

1

(n+ 1)!
f (n+1)(ξ)(d ´ c)n+1 .

(‹) then follows from the equality above since d P (a, b) is given arbitrary. ˝̋

Problem 2. (10%) Use the ratio test to determine the whether the series
8
ř

n=0

n!nn

(2n+ 1)!
converges or

not.

Solution. Let an =
n!nn

(2n+ 1)!
. Then

|an+1|

|an|
=

(n+ 1)! (n+ 1)n+1

(2(n+ 1) + 1)!

n!nn

(2n+ 1)!

=
(n+ 1)(n+ 1)n+1

(2n+ 3)(2n+ 2)nn
=

n+ 1

2(2n+ 3)

(
1 +

1

n

)n
;

thus
lim
nÑ8

|an+1|

|an|
= lim

nÑ8

[ n+ 1

2(2n+ 3)

(
1 +

1

n

)n]
=

e

4
.

Since e

4
ă 1, the ratio test implies that the series

8
ř

n=0

n!nn

(2n+ 1)!
converges (absolutely). ˝

Problem 3. (15%) Find all p P R such that
8
ř

k=2

exp
(1
k

)
´ 1

(ln k)p
converges. Note that you need to provide

the reason for the convergence or divergence of the power series for each p.

Proof. Let ak =
exp

(1
k

)
´ 1

(ln k)p
and bk =

1

k(ln k)p
. Then ak, bk ą 0 for all k P N and

lim
kÑ8

ak
bk

= lim
kÑ8

e
1
k ´ 1
1

k

= 1

since lim
xÑ0

ex ´ 1

x
= 1. By the limit comparison test,

8
ř

k=1

ak converges if and only if
8
ř

k=1

bk converges.

Since
8
ř

k=2

1

k(ln k)p
converges if and only if p ą 1, we find that

8
ř

k=2

exp
(1
k

)
´ 1

(ln k)p
converges if and only

p ą 1. ˝

Problem 4. (15%) Show that
8
ř

k=1

(´1)k sin(kx)
k

converges for all x P R.

Proof. First we note that since the function f(x) =
8
ř

k=1

(´1)k sin kx

k
, when convergent, is 2π periodic;

thus we only need to show that the series converges for x P [´π, π]. Since f(π) = f(´π) = 0, it
suffices to show that the series converges for all x P (´π, π). Note that (´1)k sin kx = sin(kx+kπ) =



sin k(x+ π); thus

2 sin x+ π

2

n
ÿ

k=1

(´1)k sin kx =
n

ÿ

k=1

2 sin x+ π

2
sin k(x+ π)

=
n

ÿ

k=1

cos
[(
k ´

1

2

)
(x+ π)

]
´ cos

[
(k +

1

2

)
(x+ π)

]
= cos x+ π

2
´ cos 3(x+ π)

2
+ cos 3(x+ π)

2
´ cos 5(x+ π)

2
+ ¨ ¨ ¨ + cos (2n ´ 1)(x+ π)

2

´ cos (2n+ 1)(x+ π)

2

= cos x+ π

2
´ cos (2n+ 1)(x+ π)

2
.

Therefore, by the fact that sin x+ π

2
‰ 0 if x P (´π, π), we find that

n
ÿ

k=1

(´1)k sin kx =
1

2 sin x+ π

2

[
cos x+ π

2
´ cos (2n+ 1)(x+ π)

2

]
;

thus
ˇ

ˇ

ˇ

n
ÿ

k=1

(´1)k sin kx
ˇ

ˇ

ˇ
ď

1

sin x+ π

2

@x P (´π, π) .

Since the right-hand side is independent of n, by the Dirichlet test we find that
8
ÿ

k=1

(´1)k sin kx

k
converges for all x P (´π, π).

By the argument above, we conclude that the series
8
ř

k=1

(´1)k sin kx

k
converges for all x P R. ˝

Problem 5. (10%) Let k be a natural number. Find the interval of convergence of the power series
8
ÿ

n=0

(n!)k

(kn)!
x2n .

If you are not able to complete this question with general natural number k, try to complete the case
k = 3.

Solution. Let k P N be given, and an =
(n!)k

(kn)!
. Then an ą 0 and

an
an+1

=

(n!)k

(kn)![
(n+ 1)!

]k
(kn+ k)!

=
(kn+ k)(kn+ k ´ 1) ¨ ¨ ¨ (kn+ 1)

(n+ 1)k
.

Therefore,
lim
nÑ8

an
an+1

= kk ;



thus the radius of convergence of the given series is k k
2 . Now we check the convergence or divergence

of the series at the end-points ˘k
k
2 :

8
ř

n=0

(n!)kkkn

(kn)!
. Using the Stirling formula and the limit comparison

test, it suffices to consider the convergence or divergence of the series
8
ÿ

n=1

(
?
2πnnne´n)kkkn

?
2πkn(kn)kne´kn

=
8
ÿ

n=1

?
2πn

k
nkne´knkkn

?
2πkn(kn)kne´kn

=
8
ÿ

n=1

?
2π

k´1
n

k´1
2 .

If k P N, lim
nÑ8

n
k´1
2 ‰ 0; thus the n-th term’s test implies that the series does not converge at the

end-points. Therefore, the interval of convergence is (´k
k
2 , k

k
2 ). ˝

Problem 6. (10%) Find the power series solution y(x) =
8
ř

n=0

anx
n of the differential equation

x2y 11(x) + xy 1(x) + x2y(x) = 0 , y(0) = 1 , y 1(0) = 0 .

You need to show all the computations instead of just providing the answer.

Solution. First we note that y(0) = 1 implies that a0 = 1 and y 1(0) = 0 implies that a1 = 0. By the
differentiation of power series, we find that

8
ÿ

n=2

n(n ´ 1)anx
n +

8
ÿ

n=1

nanx
n +

8
ÿ

n=2

an´2x
n = 0

Therefore, by the fact that a1 = 0, we have
8
ÿ

n=2

[
n(n ´ 1)an + nan + an´2

]
xn = 0

which implies that n2an + an´2 = 0 for all n ě 2, or equivalently,

an =
´1

n2
an´2 @n ě 2 .

Since a1 = 0, we must have a1 = a3 = a5 = ¨ ¨ ¨ = a2n+1 = ¨ ¨ ¨ = 0. Moreover, since a0 = 1, we find
that

a2n =
´1

(2n)2
a2n´2 =

(´1)2

(2n)2(2n ´ 2)2
a2n´4 = ¨ ¨ ¨ =

(´1)n

(2n)2(2n ´ 2)2 ¨ ¨ ¨ 22
a0 =

(´1)n

22n(n!)2
.

Therefore, the power series solution of the differential equation is given by

y(x) =
8
ÿ

n=0

(´1)n

22n(n!)2
x2n . ˝

Problem 7. (10%) Find the fourth Maclaurin polynomial of the function f(x) = ln cos x.

Solution. By the chain rule and the product rule,

f 1(x) =
´ sinx

cosx = ´ tanx , f 11(x) = ´ sec2 x ,

f 12(x) = ´2 secx d

dx
secx = ´2 sec2 x tanx ,

f (4)(x) = ´2
(

d

dx
sec2 x

)
tanx ´ 2 sec2 x d

dx
tanx = ´4 sec2 x tan2 x ´ 2 sec4 x .



Therefore,
f(0) = 0 , f 1(0) = 0 , f 11(0) = ´1 , f (3)(0) = 0 , f (4)(0) = ´2 ,

and the fourth Maclaurin series of f is P4(x) = ´
1

2
x2 ´

1

12
x4. ˝

Problem 8. (10%) Find a natural number n such that

ˇ

ˇ

ˇ
ln 1.1 ´

n
ÿ

k=1

(´1)k´1

k ¨ 10k

ˇ

ˇ

ˇ
ă 2 ˆ 10´8 .

Explain your answer.

Solution. Since
dk

dxk
ln(1 + x) = (´1)k´1(k ´ 1)!(1 + x)´k @ k P N ,

the Taylor Theorem implies that for each x there exists ξ between x and 0 such that

ln(1 + x) =
n

ÿ

k=1

1

k!

[ dk

dxk

ˇ

ˇ

ˇ

x=0
ln(1 + x)

]
xk +

(´1)nn!(1 + ξ)´(n+1)

(n+ 1)!
xn+1

=
n

ÿ

k=1

(´1)k´1

k
xk +

(´1)n

n+ 1

xn

(1 + ξ)n
.

In particular, there exists ξ between 0 and 1

10
such that

ln 1.1 =
n

ÿ

k=1

(´1)k´1

k10k
+

(´1)n

n+ 1

1

(1 + ξ)n
10´(n+1) .

Therefore, if n = 7,
ˇ

ˇ

ˇ
ln 1.1 ´

7
ÿ

k=1

(´1)k´1

k10k

ˇ

ˇ

ˇ
ď

1

8(1 + ξ)8
10´8 ă 1.25 ˆ 10´9 ă 2 ˆ 10´8 . ˝


