Calculus MA1002-B Midterm 3

National Central University, Jun. 09, 2020

Problem 1. (10%) True or False (是非題): 每題兩分,答對得兩分,答錯倒扣兩分(倒扣至本大題零分為止)

In the following, R is always an open region in the plane, (a,b) is always a point in R, and $f: R \to \mathbb{R}$ is a function of two variables.

- F 1. If $\lim_{r\to 0} f(a+r\cos\theta,b+r\sin\theta)$ exists for all $\theta\in\mathbb{R}$, then $\lim_{(x,y)\to(a,b)} f(x,y)$ exists.
- T 2. If f is differentiable at (a,b), then f_x and f_y both exist (a,b).
- T 3. If f_x and f_y are continuous on R, then f is continuous on R.
- $\boxed{\mathbf{F}}$ 4. If f_x and f_y the directional derivative of f at (a,b) exists in all directions, then f is differentiable at (a,b).
- $\lceil F \rceil$ 5. If f_{xy} and f_{yx} both exist on R, then $f_{xy} = f_{yx}$ on R.

Problem 2. Complete the following.

- (1) (5%) Let R be an open region in the plane, $f: R \to \mathbb{R}$ be a function, and $(a,b) \in R$. Define the differentiability of f at (a,b). (定義 f 在 (a,b) 的可微性)
- (2) (5%) Let R be an open region in the plane, $f, g: R \to \mathbb{R}$ be differentiable functions of two variables. State the Lagrange Multiplier Theorem (for finding extrema of f subject to constraint g=0). (敘述雙變數函數在一個限制式下的拉格朗日乘子定理)

Problem 3. Assume that f is a continuous function of two variable satisfying that

$$\lim_{(x,y)\to(\pi,1)} \frac{f(x,y) - y\cos x}{(x-\pi)^2 + (y-1)^2} = 0.$$

- 1. (10%) Find $f_x(\pi, 1)$ and $f_y(\pi, 1)$.
- 2. (5%) Prove or disprove that f is differentiable at $(\pi, 1)$.

Solution. Note that since $\lim_{(x,y)\to(\pi,1)}\frac{f(x,y)-y\cos x}{(x-\pi)^2+(y-1)^2}=0$, we must have

$$\lim_{(x,y)\to(\pi,1)} \frac{f(x,y) - y\cos x}{\sqrt{(x-\pi)^2 + (y-1)^2}} = 0 \quad \text{and} \quad \lim_{(x,y)\to(\pi,1)} \left[f(x,y) - y\cos x \right] = 0.$$

Therefore, $\lim_{(x,y)\to(\pi,1)} f(x,y) = -1$. By the continuity of f, $f(\pi,1) = -1$. For $(x,y) \neq (\pi,1)$,

$$\frac{f(x,y) - y\cos x}{\sqrt{(x-\pi)^2 + (y-1)^2}} = \frac{f(x,y) - f(\pi,1) + (y-1)}{\sqrt{(x-\pi)^2 + (y-1)^2}} - \frac{y + y\cos x}{\sqrt{(x-\pi)^2 + (y-1)^2}}.$$

By Taylor's Theorem, for each x there exists ξ between x and π such that

$$\cos x = \cos \pi - \frac{\cos \xi}{2} (x - \pi)^2 = -1 - \frac{\cos \xi}{2} (x - \pi)^2;$$

thus

$$\left| \frac{y + y \cos x}{\sqrt{(x - \pi)^2 + (y - 1)^2}} \right| = \frac{|y||1 + \cos x|}{\sqrt{(x - \pi)^2 + (y - 1)^2}} \leqslant \frac{|y|}{2} \frac{|x - \pi|^2}{\sqrt{(x - \pi)^2 + (y - 1)^2}} \leqslant \frac{1}{2} |y||x - \pi|^{\frac{3}{2}}$$

and the right-hand side approaches zero as $(x,y) \to (\pi,1)$. By the Squeeze Theorem,

$$\lim_{(x,y)\to(\pi,1)} \frac{y+y\cos x}{\sqrt{(x-\pi)^2+(y-1)^2}} = 0;$$

thus

$$\lim_{(x,y)\to(\pi,1)} \frac{\left| f(x,y) - f(\pi,1) + (y-1) \right|}{\sqrt{(x-\pi)^2 + (y-1)^2}} = 0.$$

The equality above implies that f is differentiable at $(\pi, 1)$ and $f_x(\pi, 1) = 0$, $f_y(\pi, 1) = -1$.

Problem 4. (12%) Suppose that $c_1, c_2 \in \mathbb{R}$ are constants, and u = u(x, y, t) is a twice differentiable function of x, y, t satisfying $u_{xy} = u_{yx}$ and

$$\frac{\partial u}{\partial t} + c_1 \frac{\partial u}{\partial x} + c_2 \frac{\partial u}{\partial y} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}.$$

Let $v(r, \theta, t) = u(r\cos\theta + c_1t, r\sin\theta + c_2t, t)$. Show that v satisfies that

$$\frac{\partial v}{\partial t} = \frac{\partial^2 v}{\partial r^2} + \frac{1}{r} \frac{\partial v}{\partial r} + \frac{1}{r^2} \frac{\partial^2 v}{\partial \theta^2}.$$

Proof. Since $v(r, \theta, t) = u(r\cos\theta + c_1t, r\sin\theta + c_2t, t)$, by the chain rule

$$v_t = u_x c_1 + u_y c_2 + u_t ,$$

$$v_r = u_x \cos \theta + u_y \sin \theta ,$$

$$v_\theta = u_x r(-\sin \theta) + u_y r \cos \theta = -u_x r \sin \theta + u_y r \cos \theta ;$$

thus by the fact that $u_{xy} = u_{yx}$ we have

$$v_{rr} = u_{xx}\cos^2\theta + u_{xy}\cos\theta\sin\theta + u_{yx}\sin\theta\cos\theta + u_{yy}\sin^2\theta$$
$$= u_{xx}\cos^2\theta + 2u_{xy}\sin\theta\cos\theta + u_{yy}\sin^2\theta,$$

and

$$v_{\theta\theta} = u_{xx}r^2 \sin^2 \theta - u_{xy}r^2 \sin \theta \cos \theta - u_x r \cos \theta - u_y r^2 \sin \theta \cos \theta + u_{yy}r^2 \cos^2 \theta - u_y r \sin \theta$$
$$= u_{xx}r^2 \sin^2 \theta - 2u_{xy}r^2 \sin \theta \cos \theta + u_{yy}r^2 \cos^2 \theta - u_x r \cos \theta - u_y r \sin \theta.$$

Therefore,

$$\frac{\partial v}{\partial t} - \frac{\partial^2 v}{\partial r^2} - \frac{1}{r} \frac{\partial v}{\partial r} - \frac{1}{r^2} \frac{\partial^2 v}{\partial \theta^2}$$

$$= u_t + c_1 u_x + c_2 u_y - u_{xx} \cos^2 \theta - 2u_{xy} \sin \theta \cos \theta - u_{yy} \sin^2 \theta - \frac{1}{r} (u_x \cos \theta + u_y \sin \theta)$$

$$- \frac{1}{r^2} (u_{xx} r^2 \sin^2 \theta - 2u_{xy} r^2 \sin \theta \cos \theta + u_{yy} r^2 \cos^2 \theta - u_x r \cos \theta - u_y r \sin \theta)$$

$$= u_t + c_1 u_x + c_2 u_y - u_{xx} - u_{yy} = 0$$

which shows $\frac{\partial v}{\partial t} = \frac{\partial^2 v}{\partial r^2} + \frac{1}{r} \frac{\partial v}{\partial r} + \frac{1}{r^2} \frac{\partial^2 v}{\partial \theta^2}$.

Problem 5. (8%) Let $f, g : \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} \frac{y^4(3x+4y)}{x^6+5y^4} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Find the direction along which the value of the function f at (0,0) increases most rapidly. (找出在 (0,0) 點 f 的函數值上升最快的方向)

Proof. Let $\mathbf{u} = (\cos \theta, \sin \theta)$. Then

$$(D_{u}f)(0,0) = \lim_{t \to 0} \frac{f(t\cos\theta, t\sin\theta) - f(0,0)}{t} = \lim_{t \to 0} \frac{t^{4}\sin^{4}\theta(3t\cos\theta + 4t\sin\theta)}{t(t^{6}\cos^{6}\theta + 5t^{4}\sin^{4}\theta)}$$
$$= \begin{cases} 0 & \text{if } \sin\theta = 0, \\ \frac{3\cos\theta + 4\sin\theta}{5} & \text{if } \sin\theta \neq 0. \end{cases}$$

The direction along which the value of f at (0,0) increases most rapidly is the direction which maximize $(D_{\boldsymbol{u}}f)(0,0)$. Since the maximum of $(D_{\boldsymbol{u}}f)(0,0)$ occurs at $\cos\theta=\frac{3}{5}$ and $\sin\theta=\frac{4}{5}$, the direction along which the value of f at (0,0) increases most rapidly is $(\frac{3}{5},\frac{4}{5})$.

Problem 6. (12%) Find the second Taylor polynomial of the function $f(x,y) = \arctan(y \tan x)$ at $(\frac{3\pi}{4}, 1)$.

Solution. By the chain rule implies that

$$f_x(x,y) = \frac{y \sec^2 x}{1 + y^2 \tan^2 x}, \qquad f_y(x,y) = \frac{\tan x}{1 + y^2 \tan^2 x},$$

$$f_{xx}(x,y) = \frac{2y \sec^2 x \tan x \cdot (1 + y^2 \tan^2 x) - 2y^2 \sec^2 x \tan x \cdot y \sec^2 x}{(1 + y^2 \tan^2 x)^2},$$

$$f_{xy}(x,y) = \frac{\sec^2 x \cdot (1 + y^2 \tan^2 x) - 2y \tan^2 x \cdot y \sec^2 x}{(1 + y^2 \tan^2 x)^2}, \qquad f_{yy}(x,y) = \frac{-2y \tan^2 x \cdot \tan x}{(1 + y^2 \tan^2 x)^2};$$

thus using that $\tan \frac{3\pi}{4} = -1$ and $\sec \frac{3\pi}{4} = -\sqrt{2}$, we find that

$$f_x\left(\frac{3\pi}{4},1\right) = 1$$
, $f_y\left(\frac{3\pi}{4},1\right) = -\frac{1}{2}$, $f_{xx}\left(\frac{3\pi}{4},1\right) = \frac{-8+8}{4} = 0$, $f_{xy}\left(\frac{3\pi}{4},1\right) = \frac{4-4}{4} = 0$, $f_{yy}\left(\frac{3\pi}{4},1\right) = \frac{2}{4} = \frac{1}{2}$.

Since $f(\frac{3\pi}{4}, 1) = \arctan(\tan \frac{3\pi}{4}) = \arctan(-1) = -\frac{\pi}{4}$, we find that the second Taylor polynomial of f at $(\frac{3\pi}{4}, 1)$ is

$$\underline{P_2(x,y)} = f\left(\frac{3\pi}{4},1\right) + f_x\left(\frac{3\pi}{4},1\right)\left(x - \frac{3\pi}{4}\right) + f_y\left(\frac{3\pi}{4},1\right)(y-1)
+ \frac{1}{2!} \left[f_{xx}\left(\frac{3\pi}{4},1\right)\left(x - \frac{3\pi}{4}\right)^2 + 2f_{xy}\left(\frac{3\pi}{4},1\right)\left(x - \frac{3\pi}{4}\right)(y-1) + f_{yy}\left(\frac{3\pi}{4},1\right)(y-1)^2\right]
= -\frac{\pi}{4} + \left(x - \frac{3\pi}{4}\right) - \frac{1}{2}(y-1) + \frac{1}{4}(y-1)^2.$$

Problem 7. (13%) Let k > 1 be a real number. Find all relative extrema and saddle points of $f(x,y) = (x^2 + ky^2)e^{-x^2-y^2}$ using the second derivative test. When a relative extremum is found, determine if it is a relative maximum or a relative minimum.

Solution. We first compute the first and second partial derivatives of f and find that

$$f_x(x,y) = 2xe^{-x^2-y^2} + (x^2 + ky^2)(-2x)e^{-x^2-y^2} = 2x(1 - x^2 - ky^2)e^{-x^2-y^2},$$

$$f_y(x,y) = 2kye^{-x^2-y^2} + (x^2 + ky^2)(-2y)e^{y^2-x^2} = 2y(k - x^2 - ky^2)e^{-x^2-y^2},$$

$$f_{xx}(x,y) = \left[2 - 6x^2 - 2ky^2 - 4x^2(1 - x^2 - ky^2)\right]e^{-x^2-y^2},$$

$$f_{xy}(x,y) = \left[2x(-2ky) - 4xy(1 - x^2 - ky^2)\right]e^{-x^2-y^2},$$

$$f_{yy}(x,y) = \left[2k - 2x^2 - 6ky^2 - 4y^2(k - x^2 - ky^2)\right]e^{-x^2-y^2}.$$

Therefore, critical points of f are (0,0), $(\pm 1,0)$ and $(0,\pm 1)$.

1. Since $f_{xx}(0,0) = 2$, $f_{yy}(0,0) = 2k$, $f_{xy}(0,0) = 0$, we find that

$$f_{xx}(0,0)f_{yy}(0,0) - f_{xy}(0,0)^2 = 4k > 0;$$

thus the fact that $f_{xx}(0,0) > 0$ implies that f(0,0) is a relative minimum of f.

2. Since $f_{xx}(\pm 1,0) = -4e^{-1}$, $f_{yy}(1,0) = 2(k-1)e^{-1}$ and $f_{xy}(1,0) = 0$, we find that

$$f_{xx}(\pm 1,0)f_{yy}(\pm 1,0) - f_{xy}(\pm 1,0)^2 = -8(k-1)e^{-2} < 0;$$

thus $(\pm 1, 0)$ is a saddle point of f.

3. Since $f_{xx}(0,\pm 1) = 2(1-k)e^{-1}$, $f_{yy}(0,\pm 1) = -4ke^{-1}$ and $f_{xy}(0,\pm 1) = 0$, we find that

$$f_{xx}(0,\pm 1)f_{yy}(0,\pm 1) - f_{xy}(0,\pm 1)^2 = 8k(k-1)e^{-2} > 0;$$

thus the fact that $f_{xx}(0,\pm) < 0$ implies that $f(0,\pm 1)$ is a relative maximum of f.

Problem 8. (20%) Find the extreme value of the function $f(x, y, z) = 2x^2 + 2y^2 + 2z^2 - z$ on the set

$$R = \{(x, y, z) \mid (2x^2 + y^2 - 1)^2 \le z^2 \le 4\}.$$

Solution. Suppose that f attains its maximum at $(x_0, y_0, z_0) \in R$.

1. If (x_0, y_0, z_0) is an interior point of R, then

$$(\nabla f)(x_0, y_0, z_0) = (4x_0, 4y_0, 4z_0 - 1) = \mathbf{0}$$

which implies that $(x_0, y_0, z_0) = (0, 0, \frac{1}{4})$. This point does not belong to R; thus f does not attain its extreme value in the interior of R.

2. Suppose that (x_0, y_0, z_0) on the boundary $z^2 = 4$. Then $z_0 = \pm 2$, and $f(x_0, y_0, 2) = 2x^2 + 2y^2 + 6$, $f(x_0, y_0, -2) = 2x^2 + 2y^2 + 10$ whose minimum is 6.

3. Suppose that (x_0, y_0, z_0) on the boundary $(2x^2+y^2-1)^2=z^2$. Let $g(x, y, z)=(2x^2+y^2-1)^2-z^2$. Then

$$(\nabla g)(x, y, z) = (8x(2x^2 + y^2 - 1), 4y(2x^2 + y^2 - 1), -2z).$$

- (a) If $(\nabla g)(x_0, y_0, z_0) = \mathbf{0}$, then $z_0 = 0$ and $2x_0^2 + y_0^2 = 1$. Subject to the constraint $2x_0^2 + y_0^2 = 1$, $f(x_0, y_0, z_0) = 2x_0^2 + 2y_0^2$ attains its maximum at $(x_0, y_0) = (0, \pm 1)$ with value 2 and attains its minimum at $(x_0, y_0) = (\pm \frac{1}{\sqrt{2}}, 0)$ with value 1.
- (b) If $(\nabla g)(x_0, y_0, z_0) \neq \mathbf{0}$, then there exists $\lambda \in \mathbb{R}$ such that

$$(4x_0, 4y_0, 4z_0 - 1) = \lambda (8x_0(2x_0^2 + y_0^2 - 1), 4y_0(2x_0^2 + y_0^2 - 1), -2z_0)$$

which implies that

$$x_0 = 2\lambda x_0 (2x_0^2 + y_0^2 - 1), \qquad (0.1a)$$

$$y_0 = \lambda y_0 (2x_0^2 + y_0^2 - 1),$$
 (0.1b)

$$4z_0 - 1 = -2\lambda z_0, (0.1c)$$

$$z_0^2 = (2x_0^2 + y_0^2 - 1)^2. (0.1d)$$

Note that (0.1c) implies that $z_0 \neq 0$ and (0.1d) implies that $\lambda \neq 0$ (for otherwise we must have $x_0 = y_0 = 0$ and $z_0 = \frac{1}{4}$ that do not satisfy (0.1d)).

- i. If $(x_0, y_0) = (0, 0)$, then $z_0 = \pm 1$ and we have f(0, 0, 1) = 1 and f(0, 0, -1) = 3.
- ii. If $x_0 \neq 0$, then $2x_0^2 + y_0^2 1 = \frac{1}{2\lambda}$; thus (0.1b) implies that $y_0 = 0$. Therefore, $2x_0^2 1 = \frac{1}{2\lambda}$ and (0.1c) shows that $z_0 = \frac{1}{2\lambda + 4}$. Therefore, using (0.1d) we find that

$$\frac{1}{4\lambda^2} = \frac{1}{(2\lambda + 4)^4} = \frac{1}{4(\lambda + 2)^2};$$

thus $\lambda^2 = (\lambda + 2)^2$ which shows that $\lambda = -1$. Therefore, $x_0^2 = \frac{1}{4}$ and $z_0 = \frac{1}{2}$ so that

$$f(x_0, y_0, z_0) = 2 \cdot \frac{1}{4} + 2 \cdot 0 + 2 \cdot \frac{1}{4} - \frac{1}{2} = \frac{1}{2}.$$

iii. If $y_0 \neq 0$, then $2x_0^2 + y_0^2 - 1 = \frac{1}{\lambda}$ so that (0.1a) implies that $x_0 = 0$. Therefore, $y_0^2 = 1 + \frac{1}{\lambda}$. Together with the fact that $z_0 = \frac{1}{2\lambda + 4}$, we find that

$$\frac{1}{\lambda^2} = \frac{1}{(2\lambda + 4)^2} = \frac{1}{4(\lambda + 2)^2}$$

Therefore, $\lambda = -4$ or $\lambda = -\frac{4}{3}$.

A. If $\lambda = -4$, then $y_0^2 = \frac{3}{4}$ and $z_0 = -\frac{1}{4}$. In this case,

$$f(x_0, y_0, z_0) = 2 \cdot 0 + 2 \cdot \frac{3}{4} + 2 \cdot \frac{1}{16} + \frac{1}{4} = \frac{15}{8}$$
.

B. If $\lambda = -\frac{4}{3}$, then $y_0^2 = \frac{1}{4}$ and $z_0 = \frac{3}{4}$. In this case,

$$f(x_0, y_0, z_0) = 2 \cdot 0 + 2 \cdot \frac{1}{4} + 2 \cdot \frac{9}{16} - \frac{3}{4} = \frac{7}{8}.$$

- iv. If $x_0, y_0 \neq 0$, then (0.1a,b) implies that $2x_0^2 + y_0^2 1 = 0$ which further implies that $z_0 = 0$, a contradiction.
- 4. Suppose that (x_0, y_0, z_0) satisfies both $z^2 = 4$ and $(2x^2 + y^2 1)^2 = z^2$. Then $2x_0^2 + y_0^2 1 = 2$; thus $2x_0^2 + y_0^2 = 3$. In this case, $f(x_0, y_0, 2)$ attaints its maximum at $(0, \pm \sqrt{3}, 2)$ with value 12, while $f(x_0, y_0, -2)$ attains its maximum at $(0, \pm \sqrt{3}, -2)$ with value 16.

Comparing all the possible extrema, we find that the minimum of f on R is $\frac{1}{2}$ and the maximum of f on R is 16.