e Differentiation of determinant functions

For an n x n matrix A, let Cof(A) denote the cofactor matrix of A; that is, the (i, j)-th
entry of Cof(A) is the determinant of the matrix obtained by deleting the i-th row and j-th
column of A or
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Then the determinant of A, using the reductive algorithm, can be computed by
det(A) = > ay[Cof(A)],  VI<i<n. (0.1)
k=1

On the other hand, the determinant of an n x n matrix A = [a;j]1<j<n can be viewed as a
real-valued function of n? variable:
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Since for each 1 < i < n the (i, k)-th entry of the cofactor matrix Cof(A);; is independent

of a;; for all 1 < j,k < n, we have aaa{j = [Cof(A)Lj; thus if a;; = a;;(t) is a function of ¢

for all 1 <4,j < n, with A = A(t) = [a;(t)] in mind the chain rule implies that
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Let Adj(A) be the transpose of the cofactor matrix, called the adjoint matrix, of A, then
(0.2) implies that
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where tr(M) denotes the trace of a square matrix M and — [ } . In particular,
dt dt li<ij<n

if A is invertible, then A~ =

Adj(A); thus for invertible matrix A = [a;;(t)], we have

= dot (A)
—det (det 1dA> = det(A)tr (A_1%> (0.4)
or
dil [det(4)] = tr(47192)

Example 0.1. Let A(t) = [ Eg % g ] Then
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