
Calculus 微積分

Ching-hsiao Arthur Cheng 鄭經斅



Chapter 0

Preliminary

0.1 Functions and Their Graphs
Definition 0.1: Real-Valued Functions of a Real Variable

Let X,Y Ď R be subsets of real numbers. A real-valued function f of a real variable
x from X to Y is a correspondence that assigns to each element x in X exactly one
number y in Y . Here X is called the domain of f and is usually denoted by Dom(f),
Y is called “the” co-domain of f , the number y is called the image of x under f and is
usually denoted by f(x), which is called the value of f at x. The range of f , denoted
by Ran(f), is a subset of Y consisting of all images of numbers in X. In other words,

Ran(f) ” the range of f ”
␣

f(x)
ˇ

ˇx P X
(

.

Remark 0.2. Given a way of assignment x ÞÑ f(x) without specifying where x is chosen
from, we still treat f as a function and Dom(f) is considered as the collection of all x P R

such that f(x) is well-defined. For example, f(x) = x + 1 and g(x) =
x2 ´ 1

x´ 1
are both

considered as functions with

Dom(f) = R and Dom(g) = Rzt1u .

Since Dom(f) ‰ Dom(g), f and g are considered as different functions even though f(x) =
g(x) for all x ‰ 1.

Terminologies:

1. Explicit form of a function: y = f(x);
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2. Implicit form of a function: F (x, y) = 0.（參考影片）

Definition 0.3
A function f is a polynomial function if f takes the form

f(x) = anx
n + an´1x

n´1 + ¨ ¨ ¨ + a1x+ a0 ,

where a0, a1, a2, ¨ ¨ ¨ , an are real numbers, called coefficients of the polynomial, and
n is a non-negative integer. If an ‰ 0, then an is called the leading coefficient, and
n is called the degree of the polynomial. A rational function is the quotient of two
polynomials.

Definition 0.4
The graph of the function y = f(x) consists of all points

(
x, f(x)

)
, where x is in the

domain of f . In other words,

G(f) ” the graph of f ”

!(
x, f(x)

) ˇ
ˇ

ˇ
x P Dom(f)

)

.

Definition 0.5: Composite Functions
Let f and g be functions. The function f ˝ g, read f circle g, is the function defined
by (f ˝ g)(x) = f

(
g(x)

)
. The domain of f ˝ g is the set of all x in the domain of g

such that g(x) is in the domain of f . In other words,

Dom(f ˝ g) =
␣

x P Dom(g)
ˇ

ˇ g(x) P Dom(f)
(

.

0.2 Trigonometric Functions
Definition 0.6

An angle consists of an initial ray, a terminal ray and a vertex where two rays inter-
sects. An angle is in standard position when its initial ray coincides with the positive
x-axis and its vertex is at the origin. Positive angles are measured counterclockwise,
and negative angles are measured clockwise.
Let θ be a central angle of a circle of radius 1. The radian measure of θ is defined to
be the length of the arc of the sector.



Remark 0.7. Using radian measure of θ, the length s of a circular arc of radius r is given
by s = rθ.

Figure 1: The radian measure of the central angle A1CB1 is the number u = s/r. For a unit
circle of radius r = 1, u is the length of arc AB that central angle ACB cuts from the unit
circle.

Remark 0.8. For a point P on the plane with Cartesian coordinate (x, y), let r =
a

x2 + y2

and θ be the angle in standard position with ÝÑ
OP as the terminal ray. The ordered pair (r, θ)

is called the polar coordinate of the point P .

Figure 2: Polar coordinate

Definition 0.9
Let θ be an angle in standard position, and the terminal ray intersects the circle
centered at the origin of radius r at point (x, y). The trigonometric functions sine,
cosine, tangent, cotangent, secant and cosecant, abbreviated as sin, cos, tan, cot, sec
and csc, respectively, of angle θ are defined by

sin θ = y

r
, cos θ = x

r
, tan θ = y

x
, cot θ = x

y
, sec θ = r

x
and csc θ = r

y
,

provided that the quotients make sense.

Remark 0.10. Suppose that a point P has polar coordinate (r, θ). Then the Cartesian
coordinate of P is (r cos θ, r sin θ).



Proposition 0.11: Properties of Trigonometric Functions
1. For all real numbers θ,

sin2 θ + cos2 θ = 1 , 1 + tan2 θ = sec2 θ , 1 + cot2 θ = csc2 θ .

2. For all real numbers θ,

sin(´θ) = ´ sin θ , cos(´θ) = cos θ , tan(´θ) = ´ tan θ ,
cot(´θ) = ´ cot θ , sec(´θ) = sec θ , csc(´θ) = ´ csc θ .

3. For all real numbers θ,

sin
(
θ +

π

2

)
= cos θ , cos

(
θ +

π

2

)
= ´ sin θ , tan

(
θ +

π

2

)
= ´ cot θ ,

sin(θ + π) = ´ sin θ , cos(θ + π) = ´ cos θ , tan(θ + π) = tan θ .

4. (Law of Cosines): Let a, b, c be the length of sides of a triangle, and θ be the
angle opposite to the side with length c. Then c2 = a2 + b2 ´ 2ab cos θ.

5. (Sum and Difference Formulas): Let θ, ϕ be real numbers. Then

sin(θ ˘ ϕ) = sin θ cosϕ ˘ sinϕ cos θ , cos(θ ˘ ϕ) = cos θ cosϕ ¯ sin θ sinϕ .

6. (Double-Angle Formulas): For all real numbers θ,

sin(2θ) = 2 sin θ cos θ , cos(2θ) = 2 cos2 θ ´ 1 = 1 ´ 2 sin2 θ .

7. (Half-Angle Formulas): For all real numbers θ,

cos2 θ
2
=

1 + cos θ
2

, sin2 θ

2
=

1 ´ cos θ
2

, tan θ
2
=

sin θ
1 + cos θ .

8. (Triple-Angle Formulas): For all real numbers θ,

cos(3θ) = 4 cos3 θ ´ 3 cos θ , sin(3θ) = 3 sin θ ´ 4 sin3 θ .

9. (Sum-to-Product Formulas): For all real numbers θ and ϕ,

sin θ + sinϕ = 2 sin θ + ϕ

2
cos θ ´ ϕ

2
, sin θ ´ sinϕ = 2 sin θ ´ ϕ

2
cos θ + ϕ

2
,

cos θ + cosϕ = 2 cos θ + ϕ

2
cos θ ´ ϕ

2
, cos θ ´ cosϕ = 2 sin θ + ϕ

2
sin ϕ´ θ

2
.



Theorem 0.12: de Moivre (棣美弗)
For each real number θ and natural number n,

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ) . (0.2.1)

Proof. Clearly (0.2.1) holds for n = 1. Suppose that (0.2.1) holds for n = k for some natural
number k. Then by the sum and difference formulas,

(cos θ + i sin θ)k+1 = (cos θ + i sin θ)k ¨ (cos θ + i sin θ)
=

[
cos(kθ) + i sin(kθ)

]
¨ (cos θ + i sin θ)

= cos(kθ) cos θ ´ sin(kθ) sin θ + i
[

sin(kθ) cos θ + cos(kθ) sin θ
]

= cos[(k + 1)θ] + i sin[(k + 1)θ]

which shows that (0.2.1) holds for n = k + 1. By induction, we find that (0.2.1) holds for
all natural number n.

Theorem 0.13

Let θ be a real number and 0 ď θ ă
π

2
. Then

sin θ ď θ ď tan θ . (0.2.2)

Proof. Inequality (0.2.2) follows from the following figure

1

1

θ

sin θ

1

1

θ

tan θ

Figure 3: The area of the sector is larger than the area of the blue triangle
but is smaller than the green triangle

which shows 1

2
sin θ ď

1

2
θ ď

1

2
tan θ.



0.3 Exercise
Problem 0.1. Let θ be a real number such that t = tan θ

2
also be a real number. Show

that
sin θ = 2t

1 + t2
and cos θ = 1 ´ t2

1 + t2
.



Chapter 1

Limits and Continuity

1.1 Limits of Functions
Goal: Given a function f defined “near c”, find the value of f at x when x is “arbitrarily
close” to c.（給定一函數 f，我們想知道「當除 c 之外的點到 c 的距離愈來愈近時，其函

數值是否向某數集中」)

Notation: When there exists such a value, the value is denoted by lim
xÑc

f(x).

Example 1.1. Consider the function g(x) =
x2 ´ 1

x´ 1
given in Remark 0.2, and

h(x) =

$

&

%

x2 ´ 1

x´ 1
if x ‰ 1 ,

0 if x = 1 .

Then the limit of g at 1 should be the same as the limit of h at 1. Therefore, to consider
the limit of a function at a point c, the value of the function at c is not important at all.

Example 1.2. Let g(x) =
x2 ´ 1

x´ 1
. Then Dom(g) = Rzt1u and g(x) = x + 1 if x ‰ 1.

Therefore, the graph of g is given by

x

y

˝

1

Figure 1.1: The graph of function g(x) =
x2 ´ 1

x´ 1
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Then (by looking at the graph of g we find that) lim
xÑ1

g(x) = 2.

Example 1.3. Let f(x) =
"

1 if x ‰ 2 ,
0 if x = 2 .

The graph of f is given by

x

y

˝

2

Figure 1.2: The graph of function f(x)

Then (by looking at the graph of f we find that) lim
xÑ2

f(x) = 1.

Next we give some examples in which the limit of functions (at certain points) do not
exist.

Example 1.4. （詳見影片）Let f(x) = sin 1

x
. Then Dom(f) = Rzt0u. For the graph of f ,

we note that if x P In ”
[ 1

2nπ + 2π
,

1

2nπ

]
for some n P N, the graph of f on In must touch

x = 1 and x = ´1 once. Therefore, the graph of f looks like

x

y

Figure 1.3: The graph of function f(x) = sin 1

x

In any interval containing 0, there are infinitely many points whose image under f is
1, and there are always infinitely many points whose image under f is ´1. In fact, in any
interval containing 0 and L P [´1, 1] there are infinitely many points whose image under f
is L. Therefore, lim

xÑ0
f(x) D.N.E. (does not exist).

Example 1.5. Let f(x) = |x|

x
. Then f(x) = 1 if x ą 0, f(x) = ´1 if x ă 0, and the graph

of f is given by



x

y

˝

˝

Figure 1.4: The graph of function f(x) =
|x|

x

By observation (that is, looking at the graph of f), lim
xÑ0

f(x) D.N.E.

Example 1.6. （詳見影片）Consider the Dirichlet function

f(x) =

"

0 if x P Q ,

1 if x R Q ,

where Q denotes the collection of rational numbers（有理數）. Then lim
xÑc

f(x) D.N.E. for
all c.

Example 1.7. （詳見影片）Let f : (0,8) Ñ R be given by

f(x) =

$

&

%

1

p
if x =

q

p
, where p, q P N and (p, q) = 1 ,

0 if x is irrational（無理數） .

Then lim
xÑc

f(x) = 0 for all c P (0,8).

Definition 1.8
Let f be a function defined on an open interval containing c (except possibly at c),
and L be a real number. The statement

lim
xÑc

f(x) = L , read “the limit of f at c is L”,

means that for every ε ą 0 there exists a δ ą 0 such that
ˇ

ˇf(x) ´ L
ˇ

ˇ ă ε whenever0 ă |x ´ c| ă δ .

Explanation:（詳見影片）因為 |f(x) ´L| ă ε 等價於 f(x) P (L´ ε, L+ ε)，所以定義敘

述中的 ε 可視為用來度量 f(x) 向 L 這個數集中的程度。定義所述是指對於任意給定的集

中程度 ε ą 0，一定可以找到在 c 附近的一個範圍（以到 c 的距離小於 δ 來表示），滿足



此範圍中的點之函數值落入想要其落入的集中區域 (L ´ ε, L + ε) 之內。此即「當除 c 之

外的點到 c 的距離愈來愈近時，其函數值向 L 集中」的意思。

Example 1.9. In this example we show that lim
xÑ1

(x+ 1) = 2 using Definition 1.8.
Let ε ą 0 be given. Define δ = ε. Then δ ą 0 and if 0 ă |x ´ 1| ă δ, we have

|(x+ 1) ´ 2| = |x ´ 1| ă δ = ε .

One could also pick δ = ε

2
so that if 0 ă |x ´ 1| ă δ,

|(x+ 1) ´ 2| = |x ´ 1| ă δ =
ε

2
ă ε .

Example 1.10. Show that lim
xÑ2

x2 = 4. If ε = 1, we can choose δ = min
␣?

5 ´ 2, 2 ´
?
3
(

so that δ ą 0 and if 0 ă |x ´ 2| ă δ we must have |x2 ´ 4| ă 1.
For general ε, we can choose δ = min

␣?
4 + ε ´ 2, 2 ´

?
4 ´ ε

(

so that δ ą 0 and if
0 ă |x ´ 2| ă δ we must have |x2 ´ 4| ă ε.

Example 1.11 (Proof of Example 1.7). Let ε ą 0 be given. Then there exists a prime
number p such that 1

p
ă ε. Let q1, q2, ¨ ¨ ¨ , qn be rational numbers in

( c
2
,
3c

2

)
satisfying

qj =
s

r
, (r, s) = 1, 1 ď r ď p ,

and define δ = 1

2
min

(
␣

|c ´ q1|, |c ´ q2|, ¨ ¨ ¨ , |c ´ qn|
(

´ t0u

)
. Then δ ą 0. Suppose that x

satisfies that 0 ă |x ´ c| ă δ.

1. If x P QA, then f(x) = 0 which shows that |f(x)| ă ε.

2. If x P Q, then x =
s

r
for some natural numbers r, s satisfying (r, s) = 1. By the choice

of δ, we find that r ą p; thus
ˇ

ˇf(x)
ˇ

ˇ =
1

r
ă

1

p
ă ε .

In either case,
ˇ

ˇf(x)
ˇ

ˇ ă ε; thus we establish that
ˇ

ˇf(x) ´ 0
ˇ

ˇ ă ε whenever 0 ă |x ´ c| ă δ .

Therefore, lim
xÑc

f(x) = 0.



Proposition 1.12
Let f, g be functions defined on an open interval containing c (except possibly at c),
and f(x) = g(x) if x ‰ c. If lim

xÑc
g(x) = L, then lim

xÑc
f(x) = L.

Proof. Let ε ą 0 be given. Since lim
xÑc

g(x) = L, there exists δ ą 0 such that

|g(x) ´ L| ă ε if 0 ă |x ´ c| ă δ.

Since f(x) = g(x) if x ‰ c, we must have if 0 ă |x ´ c| ă δ,

|f(x) ´ L| = |g(x) ´ L| ă ε .

Example 1.13. Let f(x) = x + 1 and g(x) =
x2 ´ 1

x´ 1
. Since f(x) = g(x) if x ‰ 1, the

proposition above implies that

lim
xÑ1

g(x) = lim
xÑ1

f(x) = 2 .

1.2 Properties of Limits
Theorem 1.14

Let b, c be real numbers, f, g be functions defined on an open interval containing c

(except possibly at c) with lim
xÑc

f(x) = L and lim
xÑc

g(x) = K.

1. lim
xÑc

b = b, lim
xÑc

x = c, lim
xÑc

|x| = |c|;

2. lim
xÑc

[
f(x) ˘ g(x)

]
= L+K;（和或差的極限等於極限的和或差）

3. lim
xÑc

[
f(x)g(x)

]
= LK;（乘積的極限等於極限的乘積）

4. lim
xÑc

f(x)

g(x)
=

L

K
if K ‰ 0.（若分母極限不為零，則商的極限等於極限的商）

Proof. 1. Let ε ą 0 be given.

(a) Define δ = 1. Then δ ą 0 and if 0 ă |x ´ c| ă δ, we have |b ´ b| = 0 ă ε .

(b) Define δ = ε. Then δ ą 0 and if 0 ă |x ´ c| ă δ, we have |x ´ c| ă δ = ε .



(c) Define δ = ε. Then δ ą 0 and if 0 ă |x ´ c| ă δ, by the triangle inequality we
have

ˇ

ˇ|x| ´ |c|
ˇ

ˇ ď |x ´ c| ă δ = ε .

2. Let ε ą 0 be given. Since lim
xÑc

f(x) = L and lim
xÑc

g(x) = K, there exist δ1, δ2 ą 0 such
that

ˇ

ˇf(x) ´ L
ˇ

ˇ ă
ε

2
whenever 0 ă |x ´ c| ă δ1

and
ˇ

ˇg(x) ´ K
ˇ

ˇ ă
ε

2
whenever 0 ă |x ´ c| ă δ2 .

Define δ = mintδ1, δ2u. Then δ ą 0 and if 0 ă |x ´ c| ă δ, we have
ˇ

ˇf(x) + g(x) ´ (L+K)
ˇ

ˇ ď
ˇ

ˇf(x) ´ L
ˇ

ˇ+
ˇ

ˇg(x) ´ K
ˇ

ˇ ă
ε

2
+
ε

2
= ε .

3. Let ε ą 0 be given. Since lim
xÑc

f(x) = L, there exist δ1, δ2 ą 0 such that

ˇ

ˇf(x) ´ L
ˇ

ˇ ă 1 whenever 0 ă |x ´ c| ă δ1

and
ˇ

ˇf(x) ´ L
ˇ

ˇ ă
ε

2(|K| + 1)
whenever 0 ă |x ´ c| ă δ2 .

Moreover, since lim
xÑc

g(x) = K, there exists δ3 ą 0 such that

ˇ

ˇg(x) ´ K
ˇ

ˇ ă
ε

2(|L| + 1)
whenever 0 ă |x ´ c| ă δ3 .

Define δ = mintδ1, δ2, δ3u. Then δ ą 0 and if 0 ă |x ´ c| ă δ, we have
ˇ

ˇf(x)g(x) ´ LK
ˇ

ˇ =
ˇ

ˇf(x)g(x) ´ f(x)K + f(x)K ´ LK
ˇ

ˇ

ď
ˇ

ˇf(x)
ˇ

ˇ

ˇ

ˇg(x) ´ K
ˇ

ˇ+ |K|
ˇ

ˇf(x) ´ L
ˇ

ˇ

ă (|L| + 1)
ε

2(|L| + 1)
+ |K|

ε

2(|K| + 1)
ă
ε

2
+
ε

2
= ε .

4. W.L.O.G. (Without loss of generality), we can assume that K ą 0 for otherwise we
have lim

xÑc
(´g)(x) = ´K ą 0 and

lim
xÑc

(f
g

)
(x) = lim

xÑc

(´f

´g

)
(x) =

lim
xÑc

(´f)(x)

´K
=

´L

´K
=
L

K
.



Let ε ą 0 be given. Since lim
xÑc

g(x) = K, there exist δ1, δ2 ą 0 such that

|g(x) ´ K| ă
K

2
whenever 0 ă |x ´ c| ă δ1

and

|g(x) ´ K| ă
K2ε

4(|L| + 1)
whenever 0 ă |x ´ c| ă δ2 .

Moreover, since lim
xÑc

f(x) = L, there exists δ3 ą 0 such that

|f(x) ´ L| ă
Kε

4
whenever 0 ă |x ´ c| ă δ3 .

Define δ = mintδ1, δ2, δ3u. Then δ ą 0 and if 0 ă |x ´ c| ă δ, we have

ˇ

ˇ

ˇ

f(x)

g(x)
´
L

K

ˇ

ˇ

ˇ
=

|Kf(x) ´ Lg(x)|

K|g(x)|
ď

1

|g(x)|

|Kf(x) ´ KL| + |KL ´ Lg(x)|

K

ď
2

K

(
|f(x) ´ L| +

|L|

K
|g(x) ´ K|

)
ă

2

K

(Kε
4

+
|L|

K

K2ε

4(|L| + 1)

)
ď
ε

2
+
ε

2
= ε ,

where we have used 2

K
ď

1

|g(x)|
if 0 ă |x´c| ă δ to conclude the inequality. Therefore,

we conclude that lim
xÑc

f(x)

g(x)
=

L

K
if K ą 0.

Example 1.15. Find lim
xÑ3

x2. By 1 of Theorem 1.14 lim
xÑ3

x = 3; thus 3 of Theorem 1.14
implies that

lim
xÑ3

x2 =
(

lim
xÑ3

x
)(

lim
xÑ3

x
)
= 9 .

The above equality further shows that

lim
xÑ3

x3 =
(

lim
xÑ3

x2
)(

lim
xÑ3

x
)
= 27 .

In particular, if n is a positive integer, then (by induction) lim
xÑc

xn = cn.



Corollary 1.16
Assume the assumptions in Theorem 1.14, and let n be a positive integer.

1. lim
xÑc

[
f(x)n

]
= Ln.

2. If p is a polynomial function, then lim
xÑc

p(x) = p(c).

3. If r is a rational function given by r(x) =
p(x)

q(x)
for some polynomials p and q,

and q(c) ‰ 0, then lim
xÑc

r(x) = r(c).

An illustration of why 2 in Corollary 1.16 is correct: Suppose that p(x) = 3x2 +

5x ´ 10. Then applying 1-3 in Theorem 1.14, we obtain that

lim
xÑc

p(x) = lim
xÑc

(3x2 + 5x) ´ lim
xÑc

(10) = lim
xÑc

(3x2 + 5x) ´ 10

=
(

lim
xÑc

(3)
)(

lim
xÑc

x2
)
+
(

lim
xÑc

(5)
)(

lim
xÑc

x
)

´ 10

= 3c2 + 5c ´ 10 = p(c) .

Theorem 1.17

If c ą 0 and n is a positive integer, then lim
xÑc

x
1
n = c

1
n .

Proof. Let ε ą 0 be given. Define δ = min
!

c

2
,
nc

n´1
n ε

2

)

. Then δ ą 0 and if 0 ă |x ´ c| ă δ,
we must have

x
n´1
n + x

n´2
n c

1
n + x

n´3
n c

2
n + ¨ ¨ ¨ + x

1
n c

n´2
n + c

n´1
n ě

n

2
c

n´1
n .

Therefore, if 0 ă |x ´ c| ă δ,

ˇ

ˇx
1
n ´ c

1
n

ˇ

ˇ =

ˇ

ˇ

ˇ

ˇ

x ´ c

x
n´1
n + x

n´2
n c

1
n + x

n´3
n c

2
n + ¨ ¨ ¨ + x

1
n c

n´2
n + c

n´1
n

ˇ

ˇ

ˇ

ˇ

ď
2

n
c´n´1

n |x ´ c| ă
2

n
c´n´1

n δ ď
2

n
c´n´1

n
nc

n´1
n ε

2
= ε

which implies that lim
xÑc

x
1
n = c

1
n .



Theorem 1.18
If f and g are functions (defined on open intervals) such that lim

xÑc
g(x) = K,

lim
xÑK

f(x) = L and L = f(K), then

lim
xÑc

(f ˝ g)(x) = L .

Proof. Let ε ą 0 be given. Since lim
xÑL

f(x) = L, there exists δ1 ą 0 such that

|f(x) ´ L| ă ε whenever 0 ă |x ´ K| ă δ1 .

Since L = f(K), the statement above implies that

|f(x) ´ L| ă ε whenever |x ´ K| ă δ1 .

Fix such δ1. Since lim
xÑc

g(x) = K, there exists δ ą 0 such that

|g(x) ´ K| ă δ1 whenever 0 ă |x ´ c| ă δ .

Therefore, if 0 ă |x ´ c| ă δ, |(f ˝ g)(x) ´ L| = |f(g(x)) ´ L| ă ε which concludes the
theorem.

Example 1.19. Find lim
xÑ0

?
x+ 1 ´ 1

x
.

Let f(x) =
?
x+ 1 ´ 1

x
. If x ‰ 0,

f(x) =
(
?
x+ 1 ´ 1)(

?
x+ 1 + 1)

x(
?
x+ 1 + 1)

=
1

?
x+ 1 + 1

” g(x) .

To see the limit of g, note that

lim
xÑ0

?
x+ 1 = 1 (by Theorem 1.18);

thus by Theorem 1.14 lim
xÑ0

g(x) =
1

2
.

Remark 1.20. In Theorem 1.18, the condition L = f(K) is important, even though intu-
itively if g(x) Ñ K as x Ñ c and f(x) Ñ L as x Ñ K then (f ˝ g)(x) should approach
L as x approaches c. A counter-example is given by the following two functions: f is the
function given in Example 1.3 and g is a constant function with value 2. This example/
theorem demonstrates an important fact: intuition could be wrong ! That is the reason why
mathematicians develop the ε-δ language in order to explain ideas of limits rigorously.



Theorem 1.21: Squeeze Theorem（夾擠定理）
Let f, g, h be functions defined on an open interval containing c (except possibly at
c), and h(x) ď f(x) ď g(x) if x ‰ c. If lim

xÑc
h(x) = lim

xÑc
g(x) = L, then lim

xÑc
f(x) exists

and is equal to L.

Proof. Let ε ą 0. Since lim
xÑc

h(x) = lim
xÑc

g(x) = L, there exist δ1, δ2 ą 0 such that

|h(x) ´ L| ă ε whenever 0 ă |x ´ c| ă δ1

and
|g(x) ´ L| ă ε whenever 0 ă |x ´ c| ă δ2 .

Define δ = mintδ1, δ2u. Then δ ą 0 and if 0 ă |x ´ c| ă δ,

L ´ ε ă h(x) ď f(x) ď g(x) ă L+ ε

which implies that |f(x) ´ L| ă ε whenever 0 ă |x ´ c| ă δ.

Example 1.22. Let f : R Ñ R be defined by

f(x) =

"

x if x is rational ,
´x if x is irrational .

Then lim
xÑc

f(x) D.N.E. if c ‰ 0 and lim
xÑ0

f(x) = 0.

1. If c ‰ 0, then as x ‰ c approaches c and x P Q, f(x) approaches c, while as x ‰ c

approaches c and x R Q, f(x) approaches ´c. This implies that as x approaches c,
f(x) does not approaches a fixed number; thus lim

xÑc
f(x) D.N.E.

2. Note that
ˇ

ˇf(x)
ˇ

ˇ = |x|; thus ´|x| ď f(x) ď |x| for all x P R. Since lim
xÑ0

|x| = 0, the
Squeeze theorem implies that lim

xÑ0
f(x) = 0.

Example 1.23. In this example we consider the limit of the sine function at a real number
c. Before proceeding, let us first establish a fundamental inequality

| sinx| ď |x| for all real numbers x (in radian unit). (1.2.1)

Recall (0.2.2) that
sinx ď x ď tanx @ 0 ď x ď

π

2
. (0.2.2)

To see (1.2.1), it suffices to consider the case when x R
[
0,
π

2

]
. Nevertheless,



1. it trivially holds that | sinx| ď x if x ě
π

2
;

2. if x ă 0, then | sinx| = | sin(´x)| ď | ´ x| = |x|.

Having establish (1.2.1), now note the sum-to-product formula implies that

| sinx ´ sin c| = 2
ˇ

ˇ

ˇ
sin x´c

2
cos x+c

2

ˇ

ˇ

ˇ
ď 2

ˇ

ˇ

ˇ
sin x´c

2

ˇ

ˇ

ˇ
ď |x ´ c| for all real number x.

Therefore, sin c ´ |x ´ c| ď sinx ď sin c + |x ´ c| for all real number x, and the Squeeze
Theorem then implies that lim

xÑc
sinx = sin c since lim

xÑc
|x ´ c| = 0.

Similarly, using the sum-to-product formula

cosx ´ cos c = ´2 sin x+ c

2
sin x ´ c

2
,

we can also conclude that lim
xÑc

cosx = cos c. The detail is left as an exercise.

By Theorem 1.14, Example 1.23 shows the following
Theorem 1.24

Let c be a real number in the domain of the given trigonometric functions.

1. lim
xÑc

sinx = sin c; 2. lim
xÑc

cosx = sin c; 3. lim
xÑc

tanx = tan c;

4. lim
xÑc

cotx = cot c; 5. lim
xÑc

secx = sec c; 6. lim
xÑc

cscx = csc c.

Example 1.25. In this example we compute lim
xÑ0

x sin 1

x
if it exists. Note that if the limit

exists, we cannot apply 3 of Theorem 1.14 to find the limit since lim
xÑ0

sin 1

x
does not exist.

On the other hand, since
ˇ

ˇx sin 1

x

ˇ

ˇ ď |x| if x ‰ 0, ´|x| ď x sin 1

x
ď |x| if x ‰ 0. By the fact

that lim
xÑ0

|x| = lim
xÑ0

(´|x|) = 0, the Squeeze Theorem implies that lim
xÑ0

x sin 1

x
= 0.

x

y

y = ´x

y = x

y = x sin 1

x

Figure 1.5: The graph of function y = x sin 1

x



1.2.1 One-sided limits and limits as x Ñ ˘8

Suppose that f is a function defined (only) on one side of a point c, it is also possible to
consider the one-sided limit lim

xÑc+
f(x) or lim

xÑc´
f(x), where the notation x Ñ c+ and x Ñ c´

means that x is taken from the right-hand side and left-hand side of c, respectively, and
becomes arbitrarily close to c. In other words, lim

xÑc+
f(x) means the value to which f(x)

approaches as x approaches to c from the right, while lim
xÑc´

f(x) means the value to which
f(x) approaches as x approaches to c from the left.
Definition 1.26: One-sided limits

Let f be a function defined on an interval with c as the left/right end-point (except
possibly at c), and L be a real number. The statement

lim
xÑc+

f(x) = L
/

lim
xÑc´

f(x) = L ,

read “the right/left(-hand) limit of f at c is L” or “the limit of f at c from the right/
left is L”, means that for each ε ą 0 there exists a δ ą 0 such that

ˇ

ˇf(x) ´ L
ˇ

ˇ ă ε whenever 0 ă x ´ c ă δ
/

´ δ ă x ´ c ă 0 .

Example 1.27. In this example we show that lim
xÑ0+

x
1
n = 0. Let ε ą 0 be given. Define

δ = εn. Then δ ą 0 and if 0 ă x ă δ, we have

|x
1
n ´ 0| = x

1
n ă δ

1
n = ϵ .

We note that Theorem 1.14, Theorem 1.17 and 1.21 are also valid when the limits are
replaced by one-sided limits, and the precise statements are provided below.
Theorem 1.28

Let b, c be real numbers, f, g be functions with lim
xÑc+

f(x) = L and lim
xÑc+

g(x) = K.

1. lim
xÑc+

b = b, lim
xÑc+

x = c, lim
xÑc+

|x| = |c|; 2. lim
xÑc+

[
f(x) ˘ g(x)

]
= L+K;

3. lim
xÑc+

[
f(x)g(x)

]
= LK; 4. lim

xÑc+

f(x)

g(x)
=

L

K
if K ‰ 0.

The conclusions above also hold for the case of left limits (that is, with x Ñ c+

replaced by x Ñ c´).



Theorem 1.29

If c ą 0 and n is a positive integer, then lim
xÑc+

x
1
n = c

1
n and lim

xÑc´
x

1
n = c

1
n

Theorem 1.30
If f and g are functions such that lim

xÑc+
g(x) = K, lim

xÑK
f(x) = L and L = f(K), then

lim
xÑc+

(f ˝ g)(x) = L .

The conclusions above also hold for the case of left limits (that is, with x Ñ c+

replaced by x Ñ c´).

Remark 1.31. Theorem 1.30 is not true if one only has the one-sided limit lim
xÑK+

f(x) = L

instead of the full limit lim
xÑK

f(x) = L. For example, consider g(x) = ´x and f(x) be the
function

f(x) =

"

1 if x ě 0 ,

0 if x ă 0 .

Then lim
xÑ0+

g(x) = 0 and lim
xÑ0+

f(x) = f(0); however,

(f ˝ g)(x) =

"

0 if x ą 0 ,

1 if x ď 0 ,

which implies that lim
xÑ0+

(f ˝ g)(x) = 0 ‰ f(0).

Theorem 1.32: Squeeze Theorem（夾擠定理）

1. Let f, g, h be functions defined on an interval with c as the left end-point (except
possible at c), and h(x) ď f(x) ď g(x) if x ą c. If lim

xÑc+
h(x) = lim

xÑc+
g(x) = L,

then lim
xÑc+

f(x) exists and is equal to L.

2. Let f, g, h be functions defined on an interval with c as the right end-point (ex-
cept possible at c), and h(x) ď f(x) ď g(x) if x ă c. If lim

xÑc´
h(x) = lim

xÑc´
g(x) =

L, then lim
xÑc´

f(x) exists and is equal to L.

The following theorem shows the relation between the limit and one-sided limits of
functions.



Theorem 1.33
Let f be a function defined on an open interval containing c (except possibly at c).
The limit lim

xÑc
f(x) exists if and only if lim

xÑc+
f(x) and lim

xÑc´
f(x) both exist and are

identical. In either case,

lim
xÑc

f(x) = lim
xÑc+

f(x) = lim
xÑc´

f(x) .

Explanation on “A if and only if B” in Theorem 1.33: It should be clear that “A if B”
means “A happens when B happens” (which is the same as “B implies A”). The statement
“A only if B” means that “A happens only when B happens”; thus “A only if B” means that
“A implies B”.

Proof of Theorem 1.33. (ñ) - the “only if” part: Suppose that lim
xÑc

f(x) = L, and let ε ą 0

be given. Then there exists δ ą 0 such that

|f(x) ´ L| ă ε whenever 0 ă |x ´ c| ă δ .

Therefore, there exists δ ą 0 such that

|f(x) ´ L| ă ε whenever 0 ă x ´ c ă δ ;

thus lim
xÑc+

f(x) = L. Similarly, lim
xÑc´

f(x) = L.

(ð) - the “if” part: Suppose that lim
xÑc+

f(x) = lim
xÑc´

f(x) = L. Let ε ą 0. Then there exist
δ1, δ2 ą 0 such that

|f(x) ´ L| ă ε whenever 0 ă x ´ c ă δ1

and
|f(x) ´ L| ă ε whenever ´ δ2 ă x ´ c ă 0 .

Define δ = mintδ1, δ2u. Then δ ą 0 and if 0 ă |x´c| ă δ, we must have 0 ă x´c ă δ1

and ´δ2 ă x ´ c ă 0; thus if 0 ă |x ´ c| ă δ, we must have |f(x) ´ L| ă ε.

Example 1.34. In this example we compute a very important limit

lim
xÑ0

sinx
x

= 1 . (1.2.2)

To see this, we recall (0.2.2) that

sinx ď x ď tanx for all 0 ď x ď
π

2
. (0.2.2)



Now using (0.2.2), we find that

cosx ď
sinx
x

ď 1 for all 0 ă x ă
π

2
.

The Squeeze Theorem (Theorem 1.32) then implies that lim
xÑ0+

sinx
x

= 1. On the other hand,

lim
xÑ0´

sinx
x

= lim
xÑ0´

sin(´x)
´x

= lim
xÑ0+

sinx
x

= 1 ;

thus Theorem 1.33 implies that lim
xÑ0

sinx
x

= 1.

Remark 1.35. The function sinx
x

is the famous (unnormalized) sinc function; that is,

sinc(x) = sinx
x

and sinc(0) = 1. The example above shows that lim
xÑ0

sinc(x) = sinc(0).

Example 1.36. In this example we compute the limit lim
xÑ0

1 ´ cosx
x2

. By the half-angle

formula, 1 ´ cosx = 2 sin2 x

2
; thus

1 ´ cosx
x2

=
2 sin2 x

2

x2
=

1

2

sin2 x
2(

x
2

)2 =
1

2
sinc2

(x
2

)
.

Therefore, Theorem 1.18 implies that lim
xÑ0

1 ´ cosx
x2

=
1

2
.

An open interval in the real number system can be unbounded. When the open interval
on which f is defined is not bounded from above (which means there is no real number
which is larger than all the numbers in this interval), we can also consider the behavior of
f(x) as x becomes increasingly large and eventually outgrow all finite bounds.

Definition 1.37: Limits as x Ñ ˘8

Let f be a function defined on an infinite interval bounded from below/above, and L
be a real number. The statement

lim
xÑ8

f(x) = L
/

lim
xÑ´8

f(x) = L ,

read “the right/left(-hand) limit of f at c is L” or “the limit of f at c from the right/
left is L”, means that for each ε ą 0 there exists a real number M ą 0 such that

ˇ

ˇf(x) ´ L
ˇ

ˇ ă ε whenever x ą M
/
x ă ´M .

Similar to the case of one-sided limit, Theorem 1.28, Theorem 1.30 and 1.32 are also
valid when the notation x Ñ c˘ are replaced by x Ñ ˘8.



Example 1.38. In this example we show that lim
xÑ8

1

|x|
= 0 and lim

xÑ´8

1

|x|
= 0.

Let ε ą 0 be given. Define M =
1

ε
. Then if x ą M or x ă ´M , we must have |x| ą M ;

thus if x ą M or x ă ´M ,
ˇ

ˇ

ˇ

1

x
´ 0

ˇ

ˇ

ˇ
=

1

|x|
ă

1

M
ă ε .

Example 1.39. Recall that the sinc function is defined by

sinc(x) =
# sinx

x
if x ‰ 0 ,

1 if x = 0 .

Then
ˇ

ˇ

ˇ

sinx
x

ˇ

ˇ

ˇ
ď

1

|x|
for all x ‰ 0 and this provides the inequality ´

1

|x|
ď

sinx
x

ď
1

|x|
for all

x ‰ 0. By the Squeeze Theorem and the previous example, we find that

lim
xÑ8

sinc(x) = lim
xÑ´8

sinc(x) = 0 .

Theorem 1.40

Let f be a function defined on an open interval, and g(x) = f
(1
x

)
if x ‰ 0.

1. Suppose that the open interval is not bounded from above. Then lim
xÑ8

f(x) exists
if and only if lim

xÑ0+
g(x) exists. In either case,

lim
xÑ8

f(x) = lim
xÑ0+

g(x) .

2. Suppose that the open interval is not bounded from below. Then lim
xÑ´8

f(x)

exists if and only if lim
yÑ0´

g(x) exists. In either case,

lim
xÑ´8

f(x) = lim
xÑ0´

g(x) .

The theorem above should be very intuitive, and the proof is left as an exercise.

Example 1.41. Find the limit lim
xÑ8

x+ sinx
x+ 1

.
By Theorem 1.40, we have

lim
xÑ8

x+ sinx
x+ 1

= lim
xÑ0+

1

x
+ sin 1

x
1

x
+ 1

= lim
xÑ0+

1 + x sin 1

x

1 + x

= lim
xÑ0+

1

1 + x
+
(

lim
xÑ0+

1

x+ 1

)(
lim
xÑ0+

x sin 1

x

)
= 1 + 1 ¨ 0 = 1 .



Here we note that in the process of computing the limit we have used results analogous to
Theorem 1.28. We can also apply the Squeeze theorem to the inequality x´ 1

x+ 1
ď

x+ sinx
x+ 1

ď 1

for all x ą 0 and obtain the same limit.
Corollary 1.42

Let p and q be polynomial functions.

1. If the degree of p is smaller than the degree of q, then

lim
xÑ8

p(x)

q(x)
= lim

xÑ´8

p(x)

q(x)
= 0 .

2. If the degree of p is the same as the degree of q, then

lim
xÑ8

p(x)

q(x)
= lim

xÑ´8

p(x)

q(x)
=

the leading coefficient of p
the leading coefficient of q .

1.3 Continuity of Functions
Definition 1.43

Let f be a function defined on an interval I, and c P I.

1. f is said to be right-continuous at c (or continuous from the right at c) if
lim
xÑc+

f(x) = f(c) .

2. f is said to be left-continuous at c (or continuous from the left at c) if
lim
xÑc´

f(x) = f(c) .

3. If c is the left end-point of I, f is said to be continuous at c if f is right-continuous
at c.

4. If c is the right end-point of I, f is said to be continuous at c if f is left-continuous
at c.

5. If c is an interior point of I; that is, c is neither the left end-point nor the right
end-point of I, then f is said to be continuous at c if lim

xÑc
f(x) = f(c).

f is said to be discontinuous at c if f is not continuous at c, and in this case c is called
a point of discontinuity (or simply a discontinuity) of f . f is said to be continuous
(or a continuous function) on I if f is continuous at each point of I.



Example 1.44. Consider the the greatest integer function (also known as the Gauss func-
tion or the floor function) [[¨]] : R Ñ R defined by

[[x]] = the greatest integer which is not greater than x.

Figure 1.6: The greatest integer function y = [[x]]

For example, [[2.5]] = 2 and [[´2.5]] = ´3. If c is not an integer, lim
xÑc

[[x]] = c, while if c is
an integer, we have

lim
xÑc+

[[x]] = c and lim
xÑc´

[[x]] = c ´ 1 .

Let f : [0, 2] Ñ R be given by f(x) = [[x]]. Then the conclusion above shows that f is
continuous at every non-integer number, while f is not continuous at 1 (since lim

xÑ1
f(x) does

not exist) and 2 (since lim
xÑ2´

f(x) ‰ f(2)). On the other hand, lim
xÑ0+

f(x) = f(0), so f is
continuous at 0.

Therefore, f is continuous at c if c is not an integer, and f is right-continuous at c if c
is an integer.

Example 1.45. Let f(x) = xn, where n is a positive integer. We have shown that

lim
xÑc

xn = cn

for all real numbers c; thus f is continuous on R. In general, polynomial functions are
continuous on R (because of Corollary 1.16).

Example 1.46. Let n be a positive integer, and f : [0,8) Ñ R be defined by f(x) = x
1
n .

By Theorem 1.17 and Example 1.27,

lim
xÑc

x
1
n = c

1
n if c ą 0 and lim

xÑ0+
x

1
n = 0 ;

thus f is continuous on [0,8).



Example 1.47. Recall the Dirichlet function f : R Ñ R in Example 1.6 given by

f(x) =

"

0 if x P Q ,

1 if x R Q ,

We have explained (but not proven) that the limit lim
xÑc

f(x) does not exist for all c P (0,8);
thus f is discontinuous at all real numbers.

Example 1.48. Recall the function f : R Ñ R given by

f(x) =

"

x if x P Q ,

´x if x R Q .

in Example 1.22. We have shown that lim
xÑ0

f(x) = 0; thus f is continuous at 0.

Example 1.49. Recall the function f : (0,8) Ñ R in Example 1.7 given by

f(x) =

$

&

%

1

p
if x =

q

p
, where p, q P N and (p, q) = 1 ,

0 if x is irrational .

We have shown that lim
xÑc

f(x) = 0 for all c P (0,8). Therefore, f is continuous at all
irrational numbers but is discontinuous at all rational numbers.

Example 1.50. Let f : R Ñ R be continuous, and f(x) = 2 if x P Q. Then intuitively
f(x) = 2 for all x P R. We now prove this using the definition of continuity.

Suppose the contrary that there exists c P R such that f(c) ‰ 2. Define ε =
ˇ

ˇf(c) ´ 2
ˇ

ˇ.
Then ε ą 0. Since f is continuous at c, there exists δ ą 0 such that

ˇ

ˇf(x) ´ f(c)
ˇ

ˇ ă ε whenever |x ´ c| ă δ .

Choose x P Q such that |x ´ c| ă δ. Then the triangle inequality implies that

ε =
ˇ

ˇf(c) ´ 2
ˇ

ˇ ď
ˇ

ˇf(c) ´ f(x)
ˇ

ˇ+
ˇ

ˇf(x) ´ 2
ˇ

ˇ ă ε

which is a contradiction.

Remark 1.51. Let I be an interval, c P I, and f : I Ñ R be a function. The continuity of
f at c is equivalent to that for every ε ą 0, there exists δ ą 0 such that

|f(x) ´ f(c)| ă ε whenever |x ´ c| ă δ and x P I .



To see this, we first consider the case that c is an interior point of I. Then by the definition,
f is continuous at c if for every ε ą 0 there exists δ ą 0 such that

|f(x) ´ f(c)| ă ε whenever 0 ă |x ´ c| ă δ .

Since |f(x) ´ f(c)| ă ε automatically holds if |x´ c| = 0, the statement above is equivalent
to that

|f(x) ´ f(c)| ă ε whenever |x ´ c| ă δ .

Now let us look at the case when c is the left end-point of I (so in this case c P I). Then by
definition, f is continuous at c if for every ε ą 0 there exists δ ą 0 such that

|f(x) ´ f(c)| ă ε whenever 0 ă x ´ c ă δ .

Again |f(x) ´ f(c)| ă ε automatically holds if x ´ c = 0, the statement above is equivalent
to that

|f(x) ´ f(c)| ă ε whenever c ď x ă c+ δ .

Note that since c is the left end-point, the set
␣

x
ˇ

ˇ c ď x ă c+δ
(

is the same as
␣

x
ˇ

ˇ |x´ c| ă

δ, x P I
(

; thus the statement above is equivalent to that

|f(x) ´ f(c)| ă ε whenever |x ´ c| ă δ and x P I .

Similar argument can be applied to the case when c is the right end-point of I.

Remark 1.52. Discontinuities of functions can be classified into different categories: re-
movable discontinuities and non-removable discontinuities. Let c be a discontinuity of a
function f . Then either (1) lim

xÑc
f(x) exists but lim

xÑc
f(x) ‰ f(c) or (2) lim

xÑc
f(x) does not

exist. If it is the first case, then c is called a removable discontinuity and that means
we can adjust/re-define the value of f at c to make it continuous at c. For the second case,
no matter what f(c) is, f cannot be continuous at c.

If lim
xÑc+

f(x) and lim
xÑc´

f(x) both exist but are not identical, c is also called a jump
discontinuity.

Proposition 1.53
Let f, g be defined on an interval I, c P I, and f, g be continuous at c. Then

1. f ˘ g is continuous at c.

2. fg is continuous at c.

3. f

g
is continuous at c if g(c) ‰ 0.



Corollary 1.54
Let f, g be continuous functions on an interval I. Then

1. f ˘ g is continuous on I.

2. fg is continuous on I

3. f

g
is continuous (on its domain).

Theorem 1.55
Let I, J be ���open intervals,, g : I Ñ R, f : J Ñ R be functions, and J contains the
range of g. If g is continuous at c, then f ˝ g is continuous at c.

Proof. Let ε ą 0 be given. Since f is continuous at g(c), there exists δ1 ą 0 such that
ˇ

ˇf(y) ´ f
(
g(c)

)ˇ
ˇ ă ε whenever

ˇ

ˇy ´ g(c)
ˇ

ˇ ă δ1 and y P J .

For such a δ1, by the continuity of g at c there exists δ ą 0 such that
ˇ

ˇg(x) ´ g(c)
ˇ

ˇ ă δ1 whenever |x ´ c| ă δ and x P I .

Suppose that |x ´ c| ă δ and x P I. Let y = g(x). By the condition that J contains the
range of g,

ˇ

ˇy ´ g(c)
ˇ

ˇ ă δ1 and y P J .

Therefore, if |x ´ c| ă δ and x P I,
ˇ

ˇf(g(x)) ´ f(g(c))
ˇ

ˇ ă ε

which shows the continuity of f ˝ g at c.

Corollary 1.56
Let I, J be ���open intervals, and g : I Ñ R, f : J Ñ R be continuous functions. If J
contains the range of g, then f ˝ g is continuous on I.

Example 1.57. Let g be continuous on an interval I, and n be a positive integer. We
show that gn and |g|

1
n are also continuous on I. Note that gn is the function given by

gn(x) = g(x)n and |g|
1
n is the function given by |g|

1
n = |g(x)|

1
n .



1. Let f(x) = xn. Then Theorem 1.14 (or Corollary 1.16) implies that f is continuous
on R. Since R contains the range of g, by the corollary above we find tat f ˝ g (” gn)

is continuous on I.

2. Let h(x) = |x|. Then Theorem 1.14 implies that h is continuous on R. Since R
contains the range of g, by the corollary above we find that h ˝ g (” |g|) is continuous
on I.

Let f(x) = x
1
n . Then Theorem 1.17 and Example 1.27 imply that f is continuous on

the non-negative real axis [0,8). Since [0,8) contains the range of |g|, the corollary
above shows that f ˝ |g|(” |g|

1
n ) is continuous on I.

Theorem 1.58: Intermediate Value Theorem - 中間值定理
If f is continuous on the closed interval [a, b], f(a) ‰ f(b), and k is any number
between f(a) and f(b), then there is at least one number c in [a, b] such that f(c) = k.

Example 1.59 (Bisection method of finding zeros of continuous functions). Let f be a
function and f(a)f(b) ă 0. Then the intermediate value theorem implies that there exists
a zero c of f between a and b. How do we “find” (one of) this c? Consider the middle point
a+ b

2
of a and b. If f

(a+ b

2

)
= 0, then we find this zero, or otherwise we either have

f(a)f
(a+ b

2

)
ă 0 or f(b)f

(a+ b

2

)
ă 0

and only one of them can happen. In either case we can consider the middle point of the two
points at which the value of f have different sign. Continuing this process, we can locate
one zero as accurate as possible.

Example 1.60. Let f : [0, 1] Ñ [0, 1] be a continuous function. In the following we prove
that there exists c P [0, 1] such that f(c) = c. To see this, W.L.O.G. we assume that f(0) ‰ 0

and f(1) ‰ 1 for otherwise we find c (which is 0 or 1) such that f(c) = c.
Define g(x) = f(x) ´ x. Then g is continuous (by Proposition 1.53). Since f : [0, 1] Ñ

[0, 1], f(0) ‰ 0 and f(1) ‰ 1, we must have g(0) ą 0 and g(1) ă 0. By the intermediate
value theorem, there exists c P (0, 1) such that g(c) = 0, and this implies that there exists
c P (0, 1) such that f(c) = c. So either (1) f(0) = 0, (2) f(1) = 1, or (3) there ia c P (0, 1)

such that f(c) = c.



1.4 Infinite Limits and Asymptotes
Definition 1.61

Let f be defined on an open interval containing c (except possible at c). The statement

lim
xÑc

f(x) = 8 ,

read “f(x) approaches infinity as x approaches c”, means that for every N ą 0 there
exists δ ą 0 such that

f(x) ą N whenever 0 ă |x ´ c| ă δ .

The statement
lim
xÑc

f(x) = 8 ,

read “f(x) approaches minus infinity as x approaches c”, means that for every N ą 0

there exists δ ą 0 such that

f(x) ă ´N whenever 0 ă |x ´ c| ă δ .

To define the infinite limit from the left/right, replace 0 ă |x ´ c| ă δ by c ă x ă

c + δ/c ´ δ ă x ă c. To define the infinite limit as x Ñ 8/x Ñ ´8, replace
0 ă |x ´ c| ă δ by x ą δ/x ă ´δ.

Note that the statement lim
xÑc

f(x) = 8 does not mean that the limit exists. It is a simple
notation for saying that the value of f becomes unbounded as x approaches c and the limit
fail to exist.

Example 1.62. lim
xÑ1

1

(x´ 1)2
= 8, lim

xÑ1+

1

x´ 1
= 8, and lim

xÑ1´

1

x´ 1
= ´8.

Example 1.63. Later we will talk about the exponential function in detail. In the mean
time, assume that you know the graph of y = 2x. Then lim

xÑ8
2x = 8 and lim

xÑ´8
2x = 0.

‚ Asymptotes（漸近線）: If the distance between the graph of a function and some fixed
straight line approaches zero as a point on the graph moves increasingly far from the origin,
we say that the graph approaches the line asymptotically and that the line is an asymptote
of the graph.
Definition 1.64: Vertical Asymptotes - 垂直漸近線

If f approaches infinity (or minus infinity) as x approaches c from the left or from the

right, then the line x = c is called a vertical asymptote of the graph of f .



Definition 1.65: Horizontal and Slant (Oblique) Asymptotes - 水平與斜漸近線

The straight line y = mx+ k is an asymptote of the graph of the function y = f(x) if

lim
xÑ8

[
f(x) ´ mx ´ k

]
= 0 or lim

xÑ´8

[
f(x) ´ mx ´ k

]
= 0 .

The straight line y = mx + k is called a horizontal asymptote of the graph of f if
m = 0, and is called a slant (oblique) asymptote of the graph of f if m ‰ 0.

By the definition of horizontal asymptotes, it is clear that if lim
xÑ8

f(x) = k or lim
xÑ´8

f(x) =

k, then y = k is a horizontal asymptote of the graph of f .

Example 1.66. Let f(x) = x2 + 3

3x2 ´ 4x+ 5
. Then lim

xÑ8
f(x) = lim

xÑ´8
f(x) =

1

3
; thus y =

1

3
is

a horizontal asymptote of the graph of f .

Example 1.67. Let f(x) = x3 + 3

3x2 ´ 4x+ 5
. Then lim

xÑ8
f(x) = 8 and lim

xÑ´8
f(x) = ´8; thus

the graph of f has no horizontal asymptote. However,

lim
xÑ8

[
f(x) ´

x

3

]
= lim

xÑ8

[
3x3 + 9

3(3x2 ´ 4x+ 5)
´
x(3x2 ´ 4x+ 5)

3(3x2 ´ 4x+ 5)

]
= lim

xÑ8

4x2 ´ 5x+ 9

3(3x2 ´ 4x+ 5)
=

4

9
;

thus lim
xÑ8

[
f(x) ´

x

3
´

4

9

]
= 0. Therefore, y =

x

3
+

4

9
is a slant asymptote of the graph of f .

Theorem 1.68
Let f and g be continuous on an open interval containing c. If f(c) ‰ 0, g(c) = 0,
and there exists an open interval containing c such that g(x) ‰ 0 for all x ‰ c in
the interval, then the graph of the function h(x) =

f(x)

g(x)
has a vertical asymptote at

x = c.

Example 1.69. Let f(x) = tanx. Note that tan x =
sinx
cosx . For n P Z, sin

(
nπ+

π

2

)
‰ 0 and

cos
(
nπ +

π

2

)
= 0. Moreover, cos x ‰ 0 for every x in the open interval

(
nπ +

π

4
, nπ +

3π

4

)
except nπ +

π

2
. Therefore, by the theorem above we find that x = nπ +

π

2
is a vertical

asymptote of the graph of the tangent function for all n P Z.



Theorem 1.70
If y = mx+ k is a slant asymptote of the graph of the function y = f(x), then

m = lim
xÑ8

f(x)

x
or m = lim

xÑ´8

f(x)

x

and
k = lim

xÑ8

[
f(x) ´ mx

]
of k = lim

xÑ´8

[
f(x) ´ mx

]
.

Proof. It suffices to shows that m = lim
xÑ8

f(x)

x
or m = lim

xÑ´8

f(x)

x
. W.L.O.G., we assume

that lim
xÑ8

[
f(x) ´ mx ´ k

]
= 0. Then

lim
xÑ8

f(x) ´mx´ k

x
= 0 .

On the other hand, lim
xÑ8

mx+ k

x
= m. By the fact that f(x)

x
=
f(x) ´mx´ k

x
+
mx+ k

x
, we

find that lim
xÑ8

f(x)

x
exists and

lim
xÑ8

f(x)

x
= lim

xÑ8

[
f(x) ´mx´ k

x

]
+ lim

xÑ8

mx+ k

x
= m.

Example 1.71. In this example, we find all asymptotes of the graph of the function

f(x) =
3x3(x ´

3
?
x3 ´ x2 + x)

x2 ´ 1
.

Since the denominator vanishes at x = ˘1, there are two possible vertical asymptotes
x = 1 or x = ´1. Since the denominator also vanishes at x = 1, we need to check further
the behavior of f(x) as x approaches 1. Note that for x ‰ ˘1,

x´
3
?
x3 ´ x2 + x

x2 ´ 1
=

x

(x+ 1)
[
x2 + x 3

?
x3 ´ x2 + x+ (x3 ´ x2 + x)

2
3

] ;
thus for x ‰ ˘1,

f(x) =
3x4

(x+ 1)
[
x2 + x 3

?
x3 ´ x2 + x+ (x3 ´ x2 + x)

2
3

] .
Therefore, lim

xÑ1
f(x) = 0 exists which shows that x = 1 is not a vertical asymptote of the

graph of f . On the other hand,

lim
xÑ´1+

f(x) = 8 and lim
xÑ´1´

f(x) = ´8 ,



we find that x = ´1 is the only vertical asymptote of the graph of f .
For slant or horizontal asymptotes, we note that for x ‰ ˘1, 0,

f(x)

x
=

3

(1 + 1
x
)
[
1 +

(
1 ´ 1

x
+ 1

x2

) 1
3 +

(
1 ´ 1

x
+ 1

x2

) 2
3
] . (1.4.1)

Since lim
xÑ˘8

1

x
= 0, we find that lim

xÑ8

f(x)

x
= 1 and lim

xÑ´8

f(x)

x
= 1. It remains to find the

limit lim
xÑ8

[
f(x) ´ x

]
and lim

xÑ´8

[
f(x) ´ x

]
. Using (1.4.1),

f(x) ´ x =
3x´ (x+ 1)

[
1 +

(
1 ´ 1

x + 1
x2

) 1
3 +

(
1 ´ 1

x + 1
x2

) 2
3
](

1 + 1
x

)[
1 +

(
1 ´ 1

x + 1
x2

) 1
3 +

(
1 ´ 1

x + 1
x2

) 2
3
] .

Noting that the denominator approaches 3 as x approaches ˘8, we only focus on the limit
of the numerator. Since

3x ´ (x+ 1)
[
1 +

(
1´

1

x
+

1

x2
) 1

3 +
(
1´

1

x
+

1

x2
) 2

3

]
= 3x ´ (x+ 1)

[
3 +

((
1´

1

x
+

1

x2
) 1

3 ´ 1
)
+
((

1´
1

x
+

1

x2
) 2

3 ´ 1
)]

= ´3 ´

[(
1´

1

x
+

1

x2
) 1

3 ´ 1
][(

1´
1

x
+

1

x2
) 1

3 + 2
]

´ x
[(
1´

1

x
+

1

x2
) 1

3 ´ 1
][(

1´
1

x
+

1

x2
) 1

3 + 2
]
,

to find the limit of the numerator as x Ñ ˘8 it suffices to find the limit

lim
xÑ8

x
[(
1´

1

x
+

1

x2
) 1

3 ´ 1
]

and lim
xÑ´8

x
[(
1´

1

x
+

1

x2
) 1

3 ´ 1
]
.

Now, by Theorem 1.40,

lim
xÑ8

x
[(
1´

1

x
+

1

x2
) 1

3 ´ 1
]
= lim

xÑ0+

(
1´x+x2

) 1
3 ´ 1

x

= lim
xÑ0+

x ´ 1(
1´x+x2

) 2
3 +

(
1´x+x2

) 1
3 + 1

= ´
1

3

and similarly, lim
xÑ´8

x
[(
1´ 1

x
+ 1

x2

) 1
3 ´ 1

]
= ´

1

3
. Therefore,

lim
xÑ˘8

[
3x ´ (x+ 1)

[
1´

1

x
+

1

x2
) 1

3 +
(
1´

1

x
+

1

x2
) 2

3
]]

= ´3 +
1

3
¨ 3 = ´2 ;

thus lim
xÑ˘8

[
f(x)´ x

]
= ´

2

3
which implies that y = x´

2

3
is the only slant asymptote of the

graph of f .



1.5 Exercise
Problem 1.1. Let f be given in Example 1.7 and g : R Ñ R be defined by

g(x) =

$

’

&

’

%

f(x) if x ą 0 ,

f(´x) if x ă 0 ,

1 if x = 0 .

Find lim
xÑ0

g(x).

Problem 1.2. Let f be a function defined on an open interval containing c (except possibly
at c).

1. Prove that if lim
xÑc

f(x) = L, then lim
xÑc

ˇ

ˇf(x)
ˇ

ˇ = |L|.

2. Prove that lim
xÑc

f(x) = L if and only if lim
xÑc

ˇ

ˇf(x) ´ L
ˇ

ˇ = 0.

Problem 1.3. Let f be a function defined on an open interval containing c and lim
xÑc

f(x)

exists. Show that there exist δ ą 0 and M ą 0 such that
ˇ

ˇf(x)
ˇ

ˇ ď M whenever |x ´ c| ă δ .

Problem 1.4. Let f, g be a function defined on an open interval containing c (except
possibly at c), and f(x) ď g(x) for all x ‰ c. Prove that if lim

xÑc
f(x) = L and lim

xÑc
g(x) = K

both exist, then L ď K.

Problem 1.5. 1. Suppose that lim
xÑ2

f(x) ´ 5

x´ 2
= 3. Find lim

xÑ2
f(x).

2. Suppose that lim
xÑ2

f(x) ´ 5

x´ 2
= 4. Find lim

xÑ2
f(x).

3. Suppose that lim
xÑc

f(x) ´ p(x)

x´ c
= L exists, where p is a polynomial function. Find

lim
xÑc

f(x).

Problem 1.6. Suppose that you are given lim
xÑ0

sinx
x

= 1. Compute the following limits:

1. lim
xÑ0

sin(x2)
x

. 2. lim
xÑ0

x sinx
1 ´ cosx . 3. lim

xÑ0

sin(sin(sinx))
x

.

4. lim
xÑ0

sin(x+ c) ´ sin c
x

, where c is a real number.



Problem 1.7. Show that lim
xÑ0+

x
3
4 cos 1

x2
= 0 using (1) ε-δ definition and (2) the Squeeze

theorem.

Problem 1.8. 1. Find the limits lim
xÑ2+

x2 + x´ 6

|x´ 2|
and lim

xÑ2´

x2 + x´ 6

|x´ 2|
. Determine whether

the limit lim
xÑ2

x2 + x´ 6

|x´ 2|
exists or not.

2. Let f : R Ñ R be defined by

f(x) =

"

a+ sin(x ´ 2) if x ą 2 ,

x2 ´ 3x+ b if x ď 2 .

Find the relation between a and b so that the limit lim
xÑ2

f(x) exists.

3. Let g : R Ñ R be defined by

g(x) =

"

1 + sin(x ´ 2) if x ą 2 ,

x2 ´ 3x+ 3 if x ď 2 .

Find the limit lim
xÑ2

g(x) ´ 1

x´ 2
using the left limit and right limit criteria.

Problem 1.9. Let I be an open interval in R, c P I, and f : I Ñ R be a function. Show
that f is continuous at c if and only if lim

hÑ0
f(c+ h) = f(c).

Problem 1.10. Let f : R Ñ R be a function satisfying f(a+ b) = f(a)f(b) for all a, b P R.

1. Show that f(x) ě 0 for all x P R.

2. Show that if f is continuous at 0, then f is continuous on R (that is, f is continuous
at every point of R).

Problem 1.11. Let I be an interval in R and f, g : I Ñ R be continuous functions. Show
that if f(x) = g(x) for all x P Q X I, then f(x) = g(x) for all x P I.

Problem 1.12. Let I be an interval, c P I, and f : I Ñ R be a continuous function. Show
that if f(c) ‰ 0, there exists δ ą 0 such that f(x)f(c) ą 0 whenever |x ´ c| ă δ and x P I.

Problem 1.13. Construct a function f : R Ñ R so that f is continuous at all integers but
nowhere else.

Problem 1.14. Find the following limits:



1. lim
xÑ´8

(2x+
?
4x2 + 3x ´ 2).

2. lim
xÑ8

(
x ´

3
?
x3 + 2x ´ 3

)
.

3. lim
xÑ8

[[x]]

x
, where [[¨]] is the floor function.

Problem 1.15. Show that the equation x3 ´ 15x+1 = 0 has three solutions in the interval
[´4, 4].

Problem 1.16. Suppose that a and b are positive constants. Show that the equation

a

x3 + 2x2 ´ 1
+

b

x3 + x ´ 2
= 0

has at least one solution in the interval (´1, 1).

Problem 1.17. True or False: Determine whether the following statements are true or
false. If it is true, prove it. Otherwise, give a counter-example.

1. If f and g are functions such that lim
xÑc+

g(x) = K, lim
yÑK+

f(y) = f(K), then

lim
xÑc+

(f ˝ g)(x) = f(K) .

How about if x Ñ c+ and y Ñ K+ are replaced by x Ñ c´ and y Ñ K´, respectively?

2. Let f, g be a function defined on an open interval containing c (except possibly at c),
and f(x) ă g(x) for all x ‰ c. If lim

xÑc
f(x) = L and lim

xÑc
g(x) = K both exist, then

L ă K.

3. If |f | is continuous at c, so is f .

4. Let I be an interval and f : I Ñ R be a continuous function. If f(x) ‰ 0 for all x P I,
then f never change signs; that is, either f(x) ą 0 for all x P I or f(x) ă 0 for all
x P I.

5. If lim
xÑc

f(x) = 8 and lim
xÑc

[
f(x) ´ g(x)

]
= 0, then lim

xÑc
g(x) = 8.



Chapter 2

Differentiation

2.1 The Derivatives of Functions

Definition 2.1
Let f be a function defined on an open interval containing c. If the limit

lim
∆xÑ0

f(c+∆x) ´ f(c)

∆x
= m exists, then the line passing through

(
c, f(c)

)
with slope

m is the tangent line to the graph of f at point
(
(c, f(c)

)
.

Definition 2.2
Let f be a function defined on an open interval I containing c. f is said to be
differentiable at c if the limit

lim
∆xÑ0

f(c+∆x) ´ f(c)

∆x

exists. If the limit above exists, the limit is denoted by f 1(c) and called the derivative
of f at c. When the derivative of f at each point of I exists, f is said to be differentiable
on I and the derivative of f is a function denoted by f 1.

‚ Notation: The prime notation 1 is associated with a function (of one variable) and is
used to denote the derivative of that function. For a given function f defined on an open
interval I and x being the name of the variable, the limit operation

lim
∆xÑ0

f(x+∆x) ´ f(x)

∆x

36



is denoted by d

dx
f(x)

(
or df(x)

dx
or even dy

dx
if y = f(x)

)
, and the limit

lim
∆xÑ0

f(c+∆) ´ f(c)

∆x

is denoted by d

dx

ˇ

ˇ

ˇ

x=c
f(x) but not d

dx
f(c)

( d
dx
f(c) is in fact 0

)
. The operator d

dx
is a

differential operator called the differentiation and is applied to functions of variable x.
However, for historical (and convenient) reason, d

dx
f(x) is sometimes denoted by (f(x)) 1

(so that 1 is treated as the differential operator d

dx
) and f 1 is sometimes denoted by df

dx
(so

that f is always treated as a function of variable x).

Remark 2.3. Letting x = c+∆x in the definition of the derivatives, then

f 1(c) = lim
xÑc

f(x) ´ f(c)

x ´ c

if the limit exists.

Example 2.4. Let f be a constant function. Then f 1 is the zero function.

Example 2.5. Let f(x) = xn, where n is a positive integer. Then

f(x+∆x) = xn + Cn
1 x

n´1∆x+ Cn
2 x

n´2(∆x)2 + ¨ ¨ ¨ + Cn
n´1x(∆x)

n´1 + (∆x)n ;

thus if ∆x ‰ 0,
f(x+∆x) ´ f(x)

∆x
= nxn´1 + Cn

2 x
n´2∆x+ ¨ ¨ ¨ + Cn

n´1x(∆x)
n´2 + (∆x)n´1 .

The limit on the right-hand side is clearly nxn´1, so we establish that
d

dx
xn = nxn´1 .

Example 2.6. Now suppose that f(x) = x´n, where n is a positive integer. Then if
x+∆x ‰ 0,

f(x+∆x) =
1

xn + Cn
1 x

n´1∆x+ Cn
2 x

n´2(∆x)2 + ¨ ¨ ¨ + Cn
n´1x(∆x)

n´1 + (∆x)n
;

thus if x ‰ 0, ∆x ‰ 0, and x+∆x ‰ 0 (which can be achieved if |∆x| ! 1),

f(x+∆x) ´ f(x)

∆x
=

´
[
Cn

1 x
n´1 + Cn

2 x
n´2∆x+ ¨ ¨ ¨ + Cn

n´1x(∆x)
n´2 + (∆x)n´1

]
xn

[
xn + Cn

1 x
n´1∆x+ Cn

2 x
n´2(∆x)2 + ¨ ¨ ¨ + Cn

n´1x(∆x)
n´1 + (∆x)n

] .



Therefore, if x ‰ 0,

lim
∆xÑ0

f(x+∆x) ´ f(x)

∆x
=

´nxn´1

x2n
= ´nx´n´1

which shows d

dx
x´n = ´nx´n´1.

Combining the previous three examples, we conclude that

d

dx
xn =

"

nxn´1 @x P R if n P N Y t0u ,

nxn´1 @x ‰ 0 if n P Z and n ă 0 .
(2.1.1)

Combining Example 2.4-2.6, we conclude that

d

dx
xn =

"

nxn´1 @x P R if n P N Y t0u ,

nxn´1 @x ‰ 0 if n P Z and n ă 0 .
(2.1.2)

我們注意到當 n 是負整數時，在計算
d

dx

ˇ

ˇ

ˇ

x=c
xn 時，已經必須先假設 c ‰ 0 才能計算導

數，並非最後算出來
d

dx

ˇ

ˇ

ˇ

x=c
xn = ncn´1 時發現 c 不可為零所以不能代入。這是一個非常

重要的觀念！不能搞錯順序！

Example 2.7. Let f(x) = sinx. By the sum and difference formula,

f(x+∆x) ´ f(x) = sin(x+∆x) ´ sinx = sinx cos∆x+ sin∆x cosx ´ sinx
= sinx(cos∆x ´ 1) + sin∆x cosx ;

thus by the fact that lim
xÑ0

sinx
x

= 1 and lim
xÑ0

cosx´ 1

x
= 0, we find that

lim
∆xÑ0

f(x+∆x) ´ f(x)

∆x
= lim

∆xÑ0

[
sinxcos∆x´ 1

∆x
+

sin∆x

∆x
cosx

]
= cosx . (2.1.3)

In other words, the derivative of the sine function is cosine.
On the other hand, let g(x) = cosx. Then g(x) = ´f

(
x ´

π

2

)
. Then if ∆x ‰ 0,

g(x+∆x) ´ g(x)

∆x
= ´

f
(
x´

π

2
+∆x

)
´ f

(
x´

π

2

)
∆x

;

thus
lim

∆xÑ0

g(x+∆x) ´ g(x)

∆x
= ´ cos

(
x ´

π

2

)
= ´ sinx .

In other words, the derivative of the cosine function is minus sine. To summarize,
d

dx
sinx = cosx and d

dx
cosx = ´ sinx . (2.1.4)



Example 2.8. Consider the function g : R Ñ R defined by

g(x) =

"

x2 if x is rational ,
´x2 if x is irrational .

Then g(x) = xf(x), where f is given in Example 1.22. By the fact that lim
xÑ0

f(x) = 0,

lim
∆xÑ0

g(∆x) ´ g(0)

∆x
= lim

∆xÑ0
f(∆x) = 0 .

In other words, g is differentiable at 0. Moreover, similar argument used to explain that the
function f in Example 1.22 is only continuous at 0 can be used to show that the function g
is only continuous at 0. Therefore, we obtain a function which is differentiable at one point
but discontinuous elsewhere.

Remark 2.9. If f is a function defined on a interval I, and c is one of the end-point. Then
it is possible to define the one-sided derivative. For example, if c is the left end-point of I,
then we can consider the limit

lim
∆xÑ0+

f(c+∆x) ´ f(c)

∆x
= lim

xÑc+

f(x) ´ f(c)

x ´ c

if it exists. The limit above, if exists, is called the derivatives of f at c from the right.

Theorem 2.10: 可微必連續
Let f be a function defined on an open interval I, and c P I. If f is differentiable at
c, then f is continuous at c.

Proof. If x ‰ c, f(x) ´ f(c) =
f(x) ´ f(c)

x´ c
(x´ c). Since the limit lim

xÑc

f(x) ´ f(c)

x´ c
exists and

lim
xÑc

(x ´ c) = 0, by Theorem 1.14 we conclude that

lim
xÑc

[
f(x) ´ f(c)

]
=

(
lim
xÑc

f(x) ´ f(c)

x´ c

)(
lim
xÑc

(x ´ c)
)
= 0 .

Therefore, lim
xÑc

f(x) = f(c) which shows that f is continuous at c.

Remark 2.11. When f is continuous on an open interval I, f is not necessary differentiable
on I. For example, consider f(x) = |x|. Then Theorem 1.14 implies that f is continuous

on I, but lim
∆xÑ0

f(∆x) ´ f(0)

∆x
= lim

∆xÑ0

|∆x|

∆x
D.N.E.



2.2 Rules of Differentiation
Theorem 2.12

We have the following differentiation rules:

1. If k is a constant, then d

dx
k = 0.

2. If n is a non-zero integer, then d

dx
xn = nxn´1 (whenever xn´1 makes sense).

3. d

dx
sinx = cosx, d

dx
cosx = ´ sinx.

4. If k is a constant and f : (a, b) Ñ R is differentiable at c P (a, b), then kf is
differentiable at c and

d

dx

ˇ

ˇ

ˇ

x=c

[
kf(x)

]
= kf 1(c) .

5. If f, g : (a, b) Ñ R are differentiable at c P (a, b), then f ˘ g is differentiable at
c and

d

dx

ˇ

ˇ

ˇ

x=c

[
f(x) ˘ g(x)

]
= f 1(c) ˘ g 1(c) .

Proof of 5. Let h(x) = f(x) + g(x). Then if ∆x ‰ 0,

h(c+∆x) ´ h(c)

∆x
=
f(c+∆x) ´ f(c)

∆x
+
g(c+∆x) ´ g(c)

∆x
.

Since f, g are differentiable at c,

lim
∆xÑ0

f(c+∆x) ´ f(c)

∆x
= f 1(c) and lim

∆xÑ0

g(c+∆x) ´ g(c)

∆x

exist. Therefore, by Theorem 1.14,

h 1(c) = f 1(c) + g 1(c) .

The conclusion for the difference can be proved in the same way.

Example 2.13. Let f(x) = 3x2 ´ 5x+ 7. Then

d

dx
f(x) =

d

dx
(3x2 ´ 5x) +

d

dx
7 =

d

dx
(3x2) ´

d

dx
(5x)

= 3
d

dx
x2 ´ 5

d

dx
x = 3 ¨ (2x) ´ 5 = 6x ´ 5 .



In general, for a polynomial function

p(x) = anx
n + an´1x

n´1 + ¨ ¨ ¨ + a1x+ a0 ”

n
ÿ

k=0

akx
k ,

where a0, a1, ¨ ¨ ¨ , an P R, by induction we can show that

d

dx
p(x) = nanx

n´1 + (n ´ 1)an´1x
n´2 + ¨ ¨ ¨ + a1 =

n
ÿ

k=1

kakx
k´1 .

Theorem 2.14: Product Rule
Let f, g : (a, b) Ñ R be real-valued functions, and c P (a, b). If f and g are differen-
tiable at c, then fg is differentiable at c and

d

dx

ˇ

ˇ

ˇ

x=c
(fg)(x) = f 1(c)g(c) + f(c)g 1(c) .

Proof. Let h(x) = f(x)g(x). Then

h(c+∆x) ´ h(c) = f(c+∆x)g(c+∆x) ´ f(c)g(c)

= f(c+∆x)g(c+∆x) ´ f(c)g(c+∆x) + f(c)g(c+∆x) ´ f(c)g(c)

=
[
f(c+∆x) ´ f(c)

]
g(c+∆x) + f(c)

[
g(c+∆x) ´ g(c)

]
.

Therefore, if ∆x ‰ 0,

h(c+∆x) ´ h(c)

∆x
=
f(c+∆x) ´ f(c)

∆x
g(c+∆x) + f(c)

g(c+∆x) ´ g(c)

∆x
.

Since f, g are differentiable at c,

lim
∆xÑ0

f(c+∆x) ´ f(c)

∆x
= f 1(c) , lim

∆xÑ0

g(c+∆x) ´ g(c)

∆x
, and lim

∆xÑ0
g(c+∆x) = g(c)

exist. By Theorem 1.14,
h 1(c) = f 1(c)g(c) + f(c)g 1(c)

which concludes the product rule.

Example 2.15. Let f(x) = x3 sinx. Then the product rule implies that

f 1(x) = 3x2 sinx+ x3 cosx .



Theorem 2.16: Quotient Rule
Let f, g : (a, b) Ñ R be real-valued functions, and c P (a, b). If f and g are differen-

tiable at c and g(c) ‰ 0, then f

g
is differentiable at c and

d

dx

ˇ

ˇ

ˇ

x=c

f

g
(x) =

f 1(c)g(c) ´ f(c)g 1(c)

g(c)2
.

Proof. Let h(x) = f(x)

g(x)
. Then

h(c+∆x) ´ h(c) =
f(c+∆x)

g(c+∆x)
´
f(c)

g(c)
=
f(c+∆x)g(c) ´ f(c)g(c+∆x)

g(c)g(c+∆x)

=
f(c+∆x)g(c) ´ f(c)g(c) + f(c)g(c) ´ f(c)g(c+∆x)

g(c)g(c+∆x)

=

[
f(c+∆x) ´ f(c)

]
g(c) ´ f(c)

[
g(c+∆x) ´ g(c)

]
g(c)g(c+∆x)

.

Therefore, if ∆x ‰ 0,

h(c+∆x) ´ h(c)

∆x
=

1

g(c)g(c+∆x)

[f(c+∆x) ´ f(c)

∆x
g(c) ´ f(c)

g(c+∆x) ´ g(c)

∆x

]
.

Since f, g are differentiable at c,

lim
∆xÑ0

f(c+∆x) ´ f(c)

∆x
= f 1(c) , lim

∆xÑ0

g(c+∆x) ´ g(c)

∆x
, and lim

∆xÑ0
g(c+∆x) = g(c)

exist. By Theorem 1.14,

h 1(c) =
1

g(c)2

[
f 1(c)g(c) ´ f(c)g 1(c)

]
which concludes the quotient rule.

Remark 2.17. Suppose that in addition to the assumption in Theorem 2.16 one has already
known that h = f/g is differentiable at c, then applying the product rule to f = gh one
finds that

f 1(c) = g 1(c)h(c) + g(c)h 1(c) = g 1(c)
f(c)

g(c)
+ g(c)h 1(c)

which, after rearranging terms, shows the quotient rule. The proof of Theorem 2.16 indeed
is based on the fact that we do not know the differentiability of h at c yet.



Example 2.18. Let n be a positive integer and f(x) = x´n. We have shown by definition
that f 1(x) = ´nx´n´1 if x ‰ 0. Now we use Theorem 2.16 to compute the derivative of f :
if x ‰ 0,

d

dx
x´n =

d

dx

1

xn
= ´

d

dx
xn

x2n
= ´

nxn´1

x2n
= ´nx´n´1 .

Example 2.19. Since tanx =
sinx
cosx , by Theorem 2.16 we have

d

dx
tanx =

cos2 x+ sin2 x

cos2 x =
1

cos2 x = sec2 x .

Similarly, we also have
d

dx
cotx =

´ sin2 x ´ cos2 x
sin2 x

= ´ csc2 x ,
d

dx
secx = ´

´ sinx
cos2 x = secx tanx ,

d

dx
cscx = ´

cosx
sin2 x

= ´ cscx cotx .

We note that without using the quotient rule, the derivative of the tangent function can be
found using the sum-and-difference formula

tan(x ´ y) =
tanx ´ tan y
1 + tanx tan y . (2.2.1)

Using (2.2.1), we find that

tan(x+∆x) ´ tanx = tan∆x
[
1 + tan(x+∆x) tanx

]
;

thus if ∆x ‰ 0,

tan(x+∆x) ´ tanx
∆x

=
sin∆x

∆x
¨
1 + tan(x+∆x) tanx

cos∆x
which, using (1.2.2), shows that

lim
∆xÑ0

tan(x+∆x) ´ tanx
∆x

=
(

lim
∆xÑ0

sin∆x

∆x

)(
lim

∆xÑ0

1 + tan(x+∆x) tanx
cos∆x

)
= sec2 x .

‚ Higher-order derivatives:
Let f be defined on an open interval I = (a, b). If f 1 exists on I and possesses derivatives

at every point in I, by definition we use f 11 to denote the derivative of f 1.In other words,

f 11(x) =
d

dx
f 1(x) =

d

dx

d

dx
f(x) ”

d2

dx2
f(x) =

d2f(x)

dx2

(
=
d2y

dx2
if y = f(x)

)
.



The function f 11 is called the second derivative of f . Similar as the “first” derivative case,

f 11(c) =
d2

dx2

ˇ

ˇ

ˇ

x=c
f(x).

The third derivatives and even higher-order derivatives are denoted by the following: if
y = f(x),

Third derivative: y 12 f 12(x)
d3

dx3
f(x)

d3f(x)

dx3

Fourth derivative: y(4) f (4)(x)
d4

dx4
f(x)

d4f(x)

dx4

...

n-th derivative: y(n) f (n)(x)
dn

dxn
f(x)

dnf(x)

dxn
.

2.3 The Chain Rule
The chain rule is used to study the derivative of composite functions.
Theorem 2.20: Chain Rule - 連鎖律

Let I, J be open intervals, f : J Ñ R, g : I Ñ R be real-valued functions, and the
range of g is contained in J . If g is differentiable at c P I and f is differentiable at
g(c), then f ˝ g is differentiable at c and

d

dx

ˇ

ˇ

ˇ

x=c
(f ˝ g)(x) = f 1(g(c))g 1(c) .

Proof. To simplify the notation, we set d = g(c).
Let ε ą 0 be given. Since f is differentiable at d and g is differentiable at c, there exist

δ1, δ2 ą 0 such that
ˇ

ˇ

ˇ

f(d+ k) ´ f(d)

k
´ f 1(d)

ˇ

ˇ

ˇ
ă

ε

2(1 + |g 1(c)|)
whenever 0 ă |k| ă δ1 ,

ˇ

ˇ

ˇ

g(c+ h) ´ g(c)

h
´ g 1(c)

ˇ

ˇ

ˇ
ă min

!

1,
ε

2(1 + |f 1(d)|)

)

whenever 0 ă |h| ă δ2 .

Therefore,
ˇ

ˇf(d+ k) ´ f(d) ´ f 1(d)k
ˇ

ˇ ď
ε

2(1 + |g 1(c)|)
|k| whenever |k| ă δ1 ,

ˇ

ˇg(c+ h) ´ g(c) ´ g 1(c)h
ˇ

ˇ ď min
!

1,
ε

2(1 + |f 1(d)|)

)

|h| whenever |h| ă δ2 .



By Theorem 2.10, g is continuous at c; thus lim
hÑ0

g(c + h) = g(c). This fact provides δ3 ą 0

such that
ˇ

ˇg(c+ h) ´ g(c)
ˇ

ˇ ă δ1 whenever |h| ă δ3 .

Define δ = mintδ2, δ3u. Then δ ą 0. Moreover, if |h| ă δ, the number k ” g(c+h)´ g(c)

satisfies |k| ă δ1. As a consequence, if |h| ă δ,
ˇ

ˇ(f ˝ g)(c+ h) ´ (f ˝ g)(c) ´ f 1(d)g 1(c)h
ˇ

ˇ =
ˇ

ˇf(g(c+ h)) ´ f(d) ´ f 1(d)g 1(c)h
ˇ

ˇ

=
ˇ

ˇf(d+ k) ´ f(d) ´ f 1(d)g 1(c)h
ˇ

ˇ

=
ˇ

ˇf(d+ k) ´ f(d) ´ f 1(d)k + f 1(d)k ´ f 1(d)g 1(c)h
ˇ

ˇ

ď
ˇ

ˇf(d+ k) ´ f(d) ´ f 1(d)k
ˇ

ˇ+
ˇ

ˇf 1(d)
ˇ

ˇ

ˇ

ˇk ´ g 1(c)h
ˇ

ˇ

ď
ε

2(1 + |g 1(c)|)
|k| +

ˇ

ˇf 1(d)
ˇ

ˇ

ˇ

ˇg(c+ h) ´ g(c) ´ g 1(c)h
ˇ

ˇ

ď
ε

2(1 + |g 1(c)|)

(
|k ´ g 1(c)h| + |g 1(c)||h|

)
+
ˇ

ˇf 1(d)
ˇ

ˇ

ε

2(1 + |f 1(d)|)

ď
ε

2(1 + |g 1(c)|)

(
|h| + |g 1(c)||h|

)
+
ˇ

ˇf 1(d)
ˇ

ˇ

ε|h|

2(1 + |f 1(d)|)

=
ε

2
|h| +

ˇ

ˇf 1(d)
ˇ

ˇ

2(1 + |f 1(d)|)
ε|h| .

The inequality above implies that if 0 ă |h| ă δ,

ˇ

ˇ

ˇ

(f ˝ g)(c+ h) ´ (f ˝ g)(c)

h
´ f 1(d)g 1(c)

ˇ

ˇ

ˇ
ď
ε

2
+

ˇ

ˇf 1(d)
ˇ

ˇ

2(1 + |f 1(d)|)
ε ă ε

which concludes the chain rule.

How to memorize the chain rule? Let y = g(x) and u = f(y). Then the derivative

u = (f ˝ g)(x) is du
dx

=
du

dy

dy

dx
.

Example 2.21. Let f(x) = (3x ´ 2x2)3. Then f 1(x) = 3(3x ´ 2x2)2(3 ´ 4x).

Example 2.22. Let f(x) =
(
3x´ 1

x2 + 3

)2

. Then

f 1(x) = 2
(3x ´ 1

x2 + 3

)2´1 d

dx

3x ´ 1

x2 + 3
=

2(3x ´ 1)

x2 + 3
¨
3(x2 + 3) ´ 2x(3x ´ 1)

(x2 + 3)2

=
2(3x ´ 1)(´3x2 + 2x+ 9)

(x2 + 3)3
.



Example 2.23. Let f(x) = tan3
[
(x2 ´ 1)2

]
. Then

f 1(x) =
!

3 tan2
[
(x2 ´ 1)2

]
sec2

[
(x2 ´ 1)2

])
ˆ
[
2(x2 ´ 1) ¨ (2x)

]
= 12x(x2 ´ 1) tan2

[
(x2 ´ 1)2

]
sec2

[
(x2 ´ 1)2

]
.

Example 2.24. Let f : R Ñ R be defined by

f(x) =

#

x2 sin 1

x
if x ‰ 0

0 if x = 0 .

Then if x ‰ 0, by the chain rule we have

f 1(x) =
(
d

dx
x2
)

sin 1

x
+ x2

(
d

dx
sin 1

x

)
= 2x sin 1

x
+ x2 cos 1

x

(
d

dx

1

x

)
= 2x sin 1

x
+ x2 cos 1

x

(
´

1

x2

)
= 2x sin 1

x
´ cos 1

x
.

Next we compute f 1(0). If ∆x ‰ 0, we have

ˇ

ˇ

ˇ

f(∆x) ´ f(0)

∆x

ˇ

ˇ

ˇ
=
ˇ

ˇ

ˇ
∆x sin 1

∆x

ˇ

ˇ

ˇ
ď |∆x| ;

thus ´|∆x| ď
f(∆x) ´ f(0)

∆x
ď |∆x| for all ∆x ‰ 0 and the Squeeze Theorem implies that

f 1(0) = lim
∆xÑ0

f(∆x) ´ f(0)

∆x
= 0 .

Therefore, we conclude that

f 1(x) =

$

&

%

2x sin 1

x
´ cos 1

x
if x ‰ 0 ,

0 if x = 0 .

Definition 2.25
Let f be a function defined on an open interval I. f is said to be continuously
differentiable on I if f is differentiable on I and f 1 is continuous on I.

The function f given in Example 2.24 is differentiable on R but not continuously differ-
entiable since lim

xÑ0
f 1(x) D.N.E.



2.4 Implicit Differentiation
An implicit function is a function that is defined implicitly by an equation that x and y

satisfy, by associating one of the variables (the value y) with the others (the arguments x).
For example, x2 + y2 = 1 and x = cos y are implicit functions. Sometimes we know how
to express y in terms of x from the equation (such as the first case above y =

?
1 ´ x2

or y = ´
?
1 ´ x2), while in most cases there is no way to know what the function y of x

exactly is.
Given an implicit function (without solving for y in terms of x from the equation),

can we find the derivative of y? This is the main topic of this section. We first focus on
implicit functions of the form f(x) = g(y). If f(a) = g(b), we are interested in how the set
␣

(x, y)
ˇ

ˇ f(x) = g(y)
(

looks like “mathematically” near (a, b).
Theorem 2.26: Implicit Function Theorem - 隱函數定理簡單版

Let f, g be continuously differentiable functions defined on some open intervals, and
f(a) = g(b). If g 1(b) ‰ 0, then there exists a unique continuously differentiable
function y = h(x), defined in an open interval containing a, satisfying that b = h(a)

and f(x) = g(h(x)).

Example 2.27. Let us compute the derivative of h(x) = xr, where r = p

q
for some p, q P N

and (p, q) = 1. Write y = h(x). Then yq = xp. Since d

dy
yq = qyq´1 ‰ 0 if y ‰ 0, by the

Implicit Function Theorem we find that h is differentiable at every x satisfying x ‰ 0. Since
h(x)q = xp, by the chain rule we find that

qh(x)q´1h 1(x) = pxp´1 @x ‰ 0 ;

thus
h 1(x) =

p

q
h(x)1´qxp´1 =

p

q
x

p
q
(1´q)+p´1 = rxr´1 @x ‰ 0 .

If r is a negative rational number, we can apply the quotient and find that

d

dx
xr =

d

dx

1

x´r
=
rx´r´1

x´2r
= rxr´1 @x ‰ 0 .

Therefore, we conclude that

d

dx
xr = rxr´1 @x ‰ 0 . (2.4.1)



Remark 2.28. The derivative of xr can also be computed by first finding the derivative of

x
1
p
(
that is, find the limit lim

∆xÑ0

(x+∆x)
1
p ´ x

1
p

∆x

)
and then apply the chain rule.

Example 2.29. Suppose that y is an implicit function of x given that y3+y2´5y´x2 = ´4.

1. Find dy

dx
.

2. Find the tangent line passing through the point (3,´1).

Let f(x) = x2 ´ 4 and g(y) = y3 + y2 ´ 5y. Then g 1(y) = 3y2 + 2y ´ 5; thus if y ‰ 1 or

y ‰ ´
5

3

(
or equivalently, x ‰ ˘1 or x ‰ ˘

c

283

27

)
,

dy

dx
=

2x

3y2 + 2y ´ 5
.

Since (1,´3) satisfies the relation y3 + y2 ´ 5y ´ x2 = ´4, the slope of the tangent line
passing through (3,´1) is 2 ¨ 3

3(´1)2 + 2(´1) ´ 5
= ´

3

2
; thus the desired tangent line is

y = ´
3

2
(x ´ 3) ´ 1 .

Example 2.30. Find dy

dx
implicitly for the equation sin y = x.

Let f(x) = x and g(y) = sin y. Then g 1(y) = cos y; thus if y ‰ nπ +
π

2
(or equivalently,

x ‰ ˘1),
dy

dx
=

1

cos y . (2.4.2)

Similarly, for function y defined implicitly by cos y = x, we find that if y ‰ nπ (or equiva-
lently, x ‰ ˘1),

dy

dx
= ´

1

sin y . (2.4.3)

Remark 2.31. The curve consisting of points (x, y) satisfying the relation sin y = x cannot
be the graph of a function since one x may corresponds to several y; however, the curve
consisting of points (x, y) satisfying the relation sin y = x as well as ´

π

2
ă y ă

π

2
is the

graph of a function called arcsin. In other words, for each x P (´1, 1), there exists a unique
y P

(
´
π

2
,
π

2

)
satisfying sin y = x, and such y is denoted by arcsin x. Since for y P

(
´
π

2
,
π

2

)
we must have cos y ą 0, by the fact that sin2 y + cos2 y = 1, using (2.4.2) we find that

d

dx
arcsinx =

1
?
1 ´ x2

@x P (´1, 1) . (2.4.4)



Similarly, the curve consisting of points (x, y) satisfying the relation cos y = x as well as
0 ă y ă π is the graph of a function called arccos, and (2.4.3) implies that

d

dx
arccosx = ´

1
?
1 ´ x2

@x P (´1, 1) . (2.4.5)

x

y

y = arcsinx

sin y = x

sin y = x

sin y = x

x

y

y = arccosx

cos y = x

cos y = x

cos y = x

cos y = x

Figure 2.1: The graph of functions y = arcsinx and y = arccosx

There are, unfortunately, many implicit functions that are not given by the equation
of the form f(x) = g(y). Nevertheless, there is a more powerful version of the Implicit
Function Theorem that guarantees the continuous differentiability of the implicit functions
defined through complicated relations between x and y (written in the form f(x, y) = 0).
In the following, we always assume that the implicit function given by the equation that x
and y satisfy is differentiable.

Example 2.32. Find the second derivative of the implicit function given by the equation
y = cos(5x ´ 3y).

Differentiate in x once, we find that dy

dx
= ´ sin(5x ´ 3y) ¨

(
5 ´ 3

dy

dx

)
; thus

dy

dx
=

´5 sin(5x ´ 3y)

1 ´ 3 sin(5x ´ 3y)
=

5

3

[
1 ´

1

1 ´ 3 sin(5x ´ 3y)

]
. (2.4.6)

Differentiate the equation above in x, we obtain that
d2y

dx2
= ´

5

3
¨
3 cos(5x ´ 3y)(5 ´ 3y 1)[
1 ´ 3 sin(5x ´ 3y)

]2 = ´
5 cos(5x ´ 3y)(5 ´ 3y 1)[
1 ´ 3 sin(5x ´ 3y)

]2
and (2.4.6) further implies that d

2y

dx2
= ´

25 cos(5x´ 3y)[
1 ´ 3 sin(5x´ 3y)

]3 .



Example 2.33. Show that if it is possible to draw three normals from the point (a, 0) to
the parabola x = y2, then a ą

1

2
.

Suppose that the line L connecting (a, 0) and (b2, b), where b ‰ 0, is normal to the
parabola x = y2. The derivative of the function defined implicitly by x = y2 satisfies that

1 = 2y
dy

dx
;

thus the slope of the tangent line passing through (b2, b) is 1

2b
. Since line L is perpendicular

to the tangent line passing through (b2, b), we must have

1

2b
¨
b ´ 0

b2 ´ a
= ´1 .

Therefore, a =
1

2
+ b2. Since b ‰ 0, a ą

1

2
.

2.5 Exercise
Problem 2.1. Let f be a function defined on an open interval containing c. Show that f is
differentiable at c if and only if there exists a real number L satisfying that for every ε ą 0,
there exists δ ą 0 such that

ˇ

ˇf(c+ h) ´ f(c) ´ Lh
ˇ

ˇ ď ε|h| whenever |h| ă δ .

Hint: See the (first part of the) proof of the chain rule for reference.

Problem 2.2. Let f, g be functions defined on an open interval, and n P N. Show that if
the n-th derivatives of f and g exist on I, then

dn

dxn
(fg)(x) = f (n)(x)g(x) + Cn

1 f
(n´1)(x)g 1(x) + Cn

2 g
(n´2)(x)g 11(x) + ¨ ¨ ¨

+ Cn
n´2f

11(x)g(n´2)(x) + Cn
n´1f

1(x)g(n´1)(x) + f(x)g(n)(x)

=
n
ÿ

k=0

Cn
k f

(n´k)(x)g(k)(x) ,

where Cn
k =

n!

k!(n´ k)!
is “n choose k”.

Hint: Prove by induction.



Problem 2.3. Let I be an open interval and c P I. The left-hand and right-hand derivative
of f at c, denoted by f 1(c+) and f 1(c´), respectively, are defined by

f 1(c+) = lim
hÑ0+

f(c+ h) ´ f(c)

h
and f 1(c´) = lim

hÑ0´

f(c+ h) ´ f(c)

h

provides the limits exist.

1. Show that if f is differentiable at c if and only if f 1(c+) = f 1(c´), and in either case
we have f 1(c) = f 1(c+) = f 1(c´).

2. Let f(x) =
"

x2 if x ď 2 ,

mx+ k if x ą 2 .
Find the value of m and k such that f is differen-

tiable at 2.

3. Is there a value of b that will make

g(x) =

"

x+ b if x ă 0 ,

cosx if x ě 0 .

continuous at 0? Differentiable at 0? Give reasons for your answers.

Problem 2.4. 1. Let n P N. Show that
n´1
ř

k=1

kxk´1 =
(n´ 1)xn ´ nxn´1 + 1

(x´ 1)2
if x ‰ 1.

2. Show that
n
ř

k=1

k cos(kx) = ´1 + (2n+ 1) sin x
2 sin(n+ 1

2)x+ cos x
2 cos(n+ 1

2)x

4 sin2 x
2

if x P (´π, π).

Hint 1. Find the sum
n´1
ř

k=1

xk first and then observe that
n´1
ř

k=1

kxk´1 =
n´1
ř

k=1

d

dx
xk.

2. Find the sum
n
ř

k=1

sin(kx) first and then observe that
n
ř

k=1

k cos(kx) =
n
ř

k=1

d

dx
sin(kx).

Problem 2.5. For a fixed constant a ą 1, consider the function f(x) = loga x. Suppose
that you are given the fact that the limit

lim
hÑ0

log10(1 + h)

h
« 0.43429

exists.

1. Show that f is differentiable on (0,8) for all a ą 1.

2. Show that there exists a ą 1 such that f 1(x) =
1

x
for all x P (0,8).



Hint: 1. Use the “change of base formula”（換底公式）for logarithm.

2. Define g(a) = d

dx

ˇ

ˇ

ˇ

x=1
loga x. Apply the intermediate value theorem to g.

Problem 2.6. Let f(x) = a1 sinx+a2 sin(2x)+a3 sin(3x)+¨ ¨ ¨+an sin(nx), where a1, a2, ¨ ¨ ¨ , an

are real numbers and n P N. Show that if
ˇ

ˇf(x)
ˇ

ˇ ď
ˇ

ˇ sinx
ˇ

ˇ for all x P R, then
ˇ

ˇa1 + 2a2 + 3a3 + ¨ ¨ ¨ + nan
ˇ

ˇ ď 1 .

Problem 2.7. Let k P N. Suppose that dn

dxn
1

xk ´ 1
=

pn(x)

(xk ´ 1)n+1
. Find the degree of pn

and pn(1).

Problem 2.8. Let f1, f2, ¨ ¨ ¨ , fn : R Ñ R be differentiable functions (that is, fj is differen-
tiable on R for all 1 ď j ď n), and

h(x) = (fn ˝ fn´1 ˝ ¨ ¨ ¨ ˝ f2 ˝ f1)(x) .

Show that
h 1(x) = f 1

n

(
gn´1(x)

)
¨ f 1

n´2

(
gn´2(x)

)
¨ ¨ ¨ ¨ ¨ f 1

2

(
g1(x)

)
¨ f 1

1(x) .

where gk = fk ˝ fk´1 ˝ ¨ ¨ ¨ ˝ f2 ˝ f1.
Hint: Prove by induction.

Problem 2.9. 1. Let r P Q, and f : (0,8) Ñ R be defined by f(x) = xr. Find the
derivative of f .

2. Find the derivatives of y = x
1
4 and y = x

3
4 by the fact that x 1

4 =
a?

x and x
3
4 =

a

x
?
x.

3. Let g : (a, b) Ñ R be differentiable. Find the derivative of y =
ˇ

ˇg(x)
ˇ

ˇ.

Problem 2.10. Let f : R Ñ R be differentiable and satisfy f
(x2 ´ 1

x2 + 1

)
= x for all x ą 0.

Find f 1(0).

Problem 2.11. 1. Let n P N. Show that d

dx

[
sinn x cos(nx)

]
= n sinn´1 x cos(n+ 1)x .

2. Find a similar formula for the derivative of cosn x cos(nx).

Problem 2.12. Find the derivative of the following functions:



1. y = cos
a

sin(tan(πx)). 2. y =
[
x+ (x+ sin2 x)3

]4.
Problem 2.13. Note that in class we have introduced two new functions “arcsin” and
“arccos” whose graphs are (the blue and green) part of the curve consisting of points (x, y)

satisfying sin y = x and cos y = x, respectively, given below

x

y

y = arcsinx

sin y = x

sin y = x

sin y = x

x

y

y = arccosx

cos y = x

cos y = x

cos y = x

cos y = x

Figure 2.2: The graph of functions y = arcsinx and y = arccosx

1. Find the domain and the range of the two functions arcsin and arccos.

2. Show that sin(arcsinx) = x for all x in the domain of arcsin and cos(arccosx) = x

whenever x in the domain of arccos.

3. Is it true that arcsin(sinx) = x or arccos(cosx) = x?

4. Find sin(arccosx) and cos(arcsinx).

5. Show that d

dx

ˇ

ˇ

ˇ

x=c

(
arcsinx+ arccosx) = 0 for all c in both domains.

6. Find d

dx
arcsin 1

x
and d

dx
(arccosx)2.

Problem 2.14. The function arctan is defined similarly to functions arcsin and arccos:
consider the collection of all points (x, y) satisfying tan y = x (see the figure below), and
the blue part is the graph of a function called “arctan”.



x

y

x = tan y

y = arctanxx = tan y

x = tan y

Figure 2.3: The graph of function y = arctanx

1. Find the domain and the range of the function arctan.

2. Show that tan(arctanx) = x for all x in the domain of arctan.

3. Is is true that arctan(tanx) = x for all x in the domain of tan?

4. Find d

dx
arctanx.

Problem 2.15. Find dy

dx
and d2y

dx2
if sin(x+ y) = y2 cosx.

Problem 2.16. The line that is normal to the curve x2 + 2xy ´ 3y2 = 0 at (1, 1) intersects
the curve at what other point?

Problem 2.17. Show that the sum of the x- and y-intercepts of any tangent line to the
curve

?
x+

?
y =

?
c is equal to c.

Problem 2.18. The Bessel function of order 0, denoted by y = J0(x), satisfies the differ-
ential equation

xy 11 + y 1 + xy = 0

for all values of x and its value at 0 is J0(0) = 1.

1. Find J 1
0(0).

2. Use implicit differentiation to find J 11
0 (0).



Chapter 3

Applications of Differentiation

3.1 Extrema on an Interval

Definition 3.1
Let f be defined on an interval I containing c.

1. f(c) is the minimum of f on I when f(c) ď f(x) for all x in I.

2. f(c) is the maximum of f on I when f(c) ě f(x) for all x in I.

The minimum and maximum of a function on an interval are the extreme values, or
extrema (the singular form of extrema is extremum), of the function on the interval.
The minimum and maximum of a function on an interval are also called the absolute
minimum and absolute maximum, or the global minimum and global maximum, on the
interval. Extrema can occur at interior points or end-points of an interval. Extrema
that occur at the end-points are called end-point extrema.

Theorem 3.2: Extreme Value Theorem - 極值定理
If f is continuous on a closed interval [a, b], then f has both a minimum and a
maximum on the interval.（連續函數在閉區間上必有最大最小值）

When f is continuous on an open interval (a, b) (or a half-open half-closed interval), it is
still possibly that f attains its maximum or minimum but there is no guarantee. Moreover,
it is also possible that f does not attain its extrema when f is continuous on an interval
which is not closed.
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Definition 3.3
Let f be defined on an interval I containing c.

1. If there is an open interval containing c on which f(c) is a maximum, then f(c)
is called a relative maximum of f , or you can say that f has a relative maximum
at

(
c, f(c)

)
.

2. If there is an open interval containing c on which f(c) is a minimum, then f(c)

is called a relative minimum of f , or you can say that f has a relative minimum
at

(
c, f(c)

)
.

The plural of relative maximum is relative maxima, and the plural of relative minimum
is relative minima. Relative maximum and relative minimum are sometimes called
local maximum and local minimum, respectively.

Definition 3.4
Let f be defined on an open interval containing c. The number/point c is called a
critical number or critical point of f if f 1(c) = 0 or if f is not differentiable at c.

Theorem 3.5
If f has a relative minimum or relative maximum at x = c, then c is a critical point
of f .

Proof. W.L.O.G., we assume that f is differentiable at c. If f 1(c) ą 0, then there exists
δ1 ą 0 such that

ˇ

ˇ

ˇ

f(x) ´ f(c)

x ´ c
´ f 1(c)

ˇ

ˇ

ˇ
ă
f 1(c)

2
if 0 ă |x ´ c| ă δ1 ;

thus
f 1(c)

2
ă
f(x) ´ f(c)

x ´ c
ă

3f 1(c)

2
if 0 ă |x ´ c| ă δ1 .

1. If 0 ă x ´ c ă δ1,

f(c) +
f 1(c)

2
(x ´ c) ă f(x) ă f(c) +

3f 1(c)

2
(x ´ c)

which implies that f cannot attain a relative maximum at x = c since f(x) ą f(c) on
the right-hand side of c.



2. if ´δ ă x ´ c ă 0,

f(c) +
f 1(c)

2
(x ´ c) ą f(x) ą f(c) +

3f 1(c)

2
(x ´ c)

which implies that f cannot attain a relative minimum at x = c since f(c) ą f(x) on
the left-hand side of c.

Therefore, we conclude that if f 1(c) ą 0, then f cannot attain either a relative maximum
or minimum at x = c. Similar conclusion can be drawn for the case f 1(c) ă 0; thus if f
attains a relative extremum at x = c, then f 1(c) = 0.

Remark 3.6. A more strict version of Theorem 3.5 is called Fermat’s Theorem which
is stated as follows:

If f has a local maximum or minimum at c, and if f 1(c) exists, then f 1(c) = 0.

The way to find extrema of a continuous function f on a closed interval [a, b]:

1. Find the critical points of f in (a, b).

2. Evaluate f at each critical points in (a, b).

3. Evaluate f at the end-points of [a, b].

4. The least of these values is the minimum, and the greatest is the maximum.

Example 3.7. Find the extrema of f(x) = 2 sinx ´ cos 2x on the interval [0, 2π].
Since f is differentiable on (0, 2π), a critical point c satisfies

0 = f 1(c) = 2 cos c+ 2 sin 2c = 2 cos c(1 + 2 sin c) .

Therefore, c = π

2
, c = 3π

2
, c = 7π

6
or c = 11π

6
, and the values of f at these critical points

are

f
(π
2

)
= 2 ¨ 1 ´ (´1) = 3 , f

(3π
2

)
= 2 ¨ (´1) ´ (´1) = ´1 ,

f
(7π
6

)
= 2 ¨

(
´

1

2

)
´

1

2
= ´

3

2
, f

(11π
6

)
= 2 ¨

(
´

1

2

)
´

1

2
= ´

3

2
.

On the other hand, the values of f at the end-points are

f(0) = 2 ¨ 0 ´ 1 = ´1 and f(2π) = 2 ¨ 0 ´ 1 = ´1 .

Therefore, f
(π
2
) = 3 is the maximum of f on [0, 2π], while the minimum of f on [0, 2π]

occurs at c = 7π

6
and c =

11π

6
and the minimum is ´

3

2
.



3.2 Rolle’s Theorem and the Mean Value Theorem
Theorem 3.8: Rolle’s Theorem

Let f : [a, b] Ñ R be a continuous function and f is differentiable on (a, b). If
f(a) = f(b), then there is at least one point c P (a, b) such that f 1(c) = 0.

Proof. If f is a constant function, then f 1(x) = 0 for all x P (a, b). Now suppose that f
is not a constant function on [a, b], by the Extreme Value Theorem implies that f has a
maximum and a minimum on [a, b], and the maximum and the minimum of f on [a, b] are
different. Therefore, there must be a point c P (a, b) at which f attains its extreme value.
By Theorem 3.5, f 1(c) = 0.

Theorem 3.9: Mean Value Theorem
If f : [a, b] Ñ R is continuous and f is differentiable on (a, b), then there exists a point
c P (a, b) such that

f 1(c) =
f(b) ´ f(a)

b ´ a
.

Proof. Define g : [a, b] Ñ R by g(x) =
[
f(x) ´ f(a)

]
(b ´ a) ´

[
f(b) ´ f(a)

]
(x ´ a). Then

g : [a, b] Ñ R is continuous and g is differentiable on (a, b). Moreover, g(a) = g(b) = 0; thus
the Rolle Theorem implies that there exists c P (a, b) such that g 1(c) = 0. On the other
hand,

0 = g 1(c) = (b ´ a)f 1(c) ´
[
f(b) ´ f(a)

]
;

thus there exists c P (a, b) satisfying f 1(c) =
f(b) ´ f(a)

b´ a
.

Remark 3.10. In fact, by modifying the proof of the mean value theorem a little bit, we
can show the following: Let f, g : [a, b] Ñ R be continuous on [a, b] and differentiable on
(a, b). If g 1(x) ‰ 0 for all x P (a, b), then there exists c P (a, b) such that

f 1(c)

g 1(c)
=
f(b) ´ f(a)

g(b) ´ g(a)
.

The statement above is a generalization of the mean value theorem and is called the Cauchy
mean value theorem (see Theorem 5.45).



Example 3.11. Note that the sine function is continuous on any closed interval [a, b] and is
differentiable on (a, b). Therefore, the mean value theorem implies that there exists c P (a, b)

such that
cos c = d

dx

ˇ

ˇ

ˇ

x=c
sinx =

sin b ´ sin a
b ´ a

which implies that | sin a ´ sin b| = | cos c||a ´ b| ď |a ´ b|. Therefore,

| sinx ´ sin y| ď |x ´ y| @ x, y P R .

Similarly,
| cosx ´ cos y| ď |x ´ y| @ x, y P R .

3.3 Monotone Functions and the First Derivative Test
Definition 3.12

Let f be defined on an interval I.
1. f is said to be increasing on I if

f(x1) ď f(x2) @x1, x2 P I and x1 ă x2 .

2. f is said to be decreasing on I if

f(x1) ě f(x2) @x1, x2 P I and x1 ă x2 .

3. f is said to be strictly increasing on I if

f(x1) ă f(x2) @x1, x2 P I and x1 ă x2 .

4. f is said to be strictly decreasing on I if

f(x1) ą f(x2) @x1, x2 P I and x1 ă x2 .

When f is either increasing on I or decreasing on I, then f is said to be monotone.
When f is either strictly increasing on I or strictly decreasing on I, then f is said to
be strictly monotone on I.

Remark 3.13. Note that f is increasing on I if

f(x1) ´ f(x2)

x1 ´ x2
ě 0 @x1, x2 P I and x1 ‰ x2 .

Therefore, f is increasing on I if the slope of each secant line of the graph of f is non-
negative. Similar conclusions hold for the other cases.



Example 3.14. The function f(x) = x3 is strictly increasing on R, and f(x) = ´x3 is
strictly decreasing on R.

Example 3.15. The sine function is strictly increasing on
[
2nπ ´

π

2
, 2nπ +

π

2

]
for all

n P Z, but decreasing on
[
2nπ ´

π

2
, 2nπ +

3π

2

]
for all n P Z. However, the sine function

is not strictly increasing on
8
Ť

n=´8

[
2nπ ´

π

2
, 2nπ +

π

2

]
and is not strictly decreasing on

8
Ť

n=´8

[
2nπ ´

π

2
, 2nπ +

3π

2

]
.

Theorem 3.16
Let f : [a, b] Ñ R be continuous and f is differentiable on (a, b).

1. If f 1(x) ě 0 for all x P (a, b), then f is increasing on [a, b].

2. If f 1(x) ď 0 for all x P (a, b), then f is decreasing on [a, b].

3. If f 1(x) ą 0 for all x P (a, b), then f is strictly increasing on [a, b].

4. If f 1(x) ă 0 for all x P (a, b), then f is strictly decreasing on [a, b].

Proof. We only prove 1 since all the other conclusion can be proved in a similar fashion.
Suppose that f 1(x) ě 0, and x1 ă x2. By the Mean Value Theorem, there exists

c P (x1, x2) such that
f(x1) ´ f(x2)

x1 ´ x2
= f 1(c) ě 0 ;

thus f(x1) ď f(x2) if x1 ă x2.

Remark 3.17. The condition f 1(x) ą 0 is just a sufficient condition for that f is strictly
increasing, but not a necessary condition. For example, f(x) = x3 is strictly increasing on
R, but f 1(0) = 0.

Example 3.18. Show that

cosx ě 1 ´
x2

2
@x ě 0 . (3.3.1)

Let f(x) = cosx ´ 1 +
x2

2
. In order to show (3.3.1), we need to show that f(x) ě 0 for

all x ě 0. Since f 1(x) = ´ sinx + x, by Theorem 0.13 we find that f 1 is non-negative on
[0,8). Therefore, Theorem 3.16 implies that f is increasing on [0,8) which further shows
that f(x) ě f(0) = 0 for all x ě 0.



Example 3.19. Using (3.3.1), we can show that

sinx ě x ´
x3

6
@x ě 0 .

In fact, by defining g(x) = sinx ´ x+
x3

6
, using (3.3.1) we find that

g 1(x) = cosx ´ 1 +
x2

2
ě 0 @x ě 0 ;

thus g is increasing on [0,8) which shows that g(x) ě g(0) = 0 for all x ě 0. Similar
argument then shows that

cosx ď 1 ´
x2

2
+
x4

24
@x ě 0

and the inequality above in turn implies that

sinx ď x ´
x3

6
+

x5

120
@x ě 0 .

By induction, we can show that for all k P N Y t0u,

x ´
x3

3!
+ ¨ ¨ ¨ +

x4k+1

(4k + 1)!
´

x4k+3

(4k + 3)!
ď sinx ď x ´

x3

3!
+ ¨ ¨ ¨ +

x4k+1

(4k + 1)!
@x ě 0 ,

1 ´
x2

2!
+ ¨ ¨ ¨ +

x4k

(4k)!
´

x4k+2

(4k + 2)!
ď cosx ď 1 ´

x2

2
+ ¨ ¨ ¨ +

x4k

(4k)!
@x ě 0 .

Theorem 3.20: The First Derivative Test
Let f be a continuous function defined on an open interval I containing c. If f is
differentiable on I, except possibly at c, then

1. If f 1 changes from negative to positive at c, then f(c) is a local minimum of f .

2. If f 1 changes from positive to negative at c, then f(c) is a local maximum of f .

3. If f 1 is sign definite on Iztcu, then f(c) is neither a relative minimum or relative
maximum of f .

Proof. We only prove 1. Assume that f 1 changes from negative to positive at c. Then there
exists a and b in I such that

f 1(x) ă 0 for all x P (a, c) and f 1(x) ą 0 for all x P (c, b) .

By Theorem 3.16, f is decreasing on (a, c) and is increasing on (c, b). Therefore, f(c) is a
minimum on an open interval (a, b); thus is a relative minimum on I.



Example 3.21. Find the relative extrema of f(x) = 1

2
x ´ sinx in the interval (0, 2π).

By Theorem 3.5 the relative extrema occurs at critical points. Since f is differentiable
on (0, 2π), a critical point x satisfies

0 = f 1(x) =
1

2
´ cosx

which implies that c = π

3
and c =

5π

3
are the only critical points. To determine if f

(π
3

)
or

f
(5π
3

)
is a relative minimum, we apply Theorem 3.20 and found that, since f 1 changes from

negative to positive at π

3
and changes from positive to negative at 5π

3
, f

(π
3

)
is a relative

minimum of f on (0, 2π).

Remark 3.22. When a differentiable function f attains a local minimum at an interior
point c, it is not necessary that f 1 changes from positive to negative. For example, consider
the function f : R Ñ R defined by

f(x) =

#

x2
(
1 + sin 1

x

)
if x ‰ 0 ,

0 if x = 0 .

Then

f 1(x) =

$

&

%

2x
(
1 + sin 1

x

)
´ cos 1

x
if x ‰ 0 ,

0 if x = 0 .

Therefore,

1. 0 is a critical point of f .

2. f attains a (global) minimum at 0 since obviously f(x) ě 0 = f(0) for all x P R.

3. It is impossible to determine if f 1 changes “from negative to positive” or “from positive
to negative” at 0.

3.4 Concavity（凹性）and the Second Derivative Test
Definition 3.23

Let f be differentiable on an open interval I. The graph of f is concave upward（凹
向上）on I if f 1 is strictly increasing on the interval and concave downward（凹向
下）on I if f 1 is strictly decreasing on the interval.



Remark 3.24. It does not really matter if f 1 has to be strictly monotone, instead of just
monotone, in order to define the concavity of the graph of f . Here we define the concavity
by the strict monotonicity.

‚ Graphical interpretation of concavity: Let f be differentiable on an open interval I.

1. If the graph of f is concave upward on I, then the graph of f lies above all of its
tangent lines on I.

2. If the graph of f is concave downward on I, then the graph of f lies below all of its
tangent lines on I.

The following theorem is a direct consequence of Theorem 3.16.

Theorem 3.25: Test for Concavity
Let f be a twice differentiable function on an open interval I.

1. If f 11(x) ą 0 for all x in I, then the graph of f is concave upward on I.

2. If f 11(x) ă 0 for all x in I, then the graph of f is concave downward on I.

Example 3.26. Determine the open intervals on which the graph of f(x) =
6

x2 + 3
is

concave upward or concave downward.
First we compute the second derivative of f :

f 1(x) =
´12x

(x2 + 3)2
ñ f 11(x) = ´12

(x2 + 3)2 ´ 2(x2 + 3)(2x)x

(x2 + 3)4
=

36(x2 ´ 1)

(x2 + 3)3
.

Therefore, the graph of f is concave upward if x ą 1 and is concave downward if x ă 1.

Definition 3.27: Point of inflection（反曲點）

Let f be a differentiable function on an open interval containing c. The point
(
c, f(c)

)
is called a point of inflection (or simply an inflection point) of the graph of f if the
concavity of f changes from upward to downward or downward to upward at this
point.

Example 3.28. Recall Example 3.26
(
f(x) =

6

x2 + 3
with f 11(x) =

36(x2 ´ 1)

(x2 + 3)3

)
. Since f 11

changes sign at x = ˘1,
(

˘1,
3

2

)
are both points of inflection of the graph of f .



Theorem 3.29
Let f be a differentiable function on an open interval containing c. If

(
c, f(c)

)
is a

point of inflection of the graph of f , then either f 11(c) = 0 or f 11(c) does not exist.

Remark 3.30. A point
(
c, f(c)

)
may not be an inflection point of the graph of f even

if f 11(c) = 0. For example, the point (0, 0) is not an inflection point of f(x) = x4 since
f 11(x) ą 0 for all x ‰ 0 which implies that the concavity of f does not change at c = 0.

Example 3.31. Determine the points of inflection and discuss the concavity of the graph
of f(x) = x4 ´ 4x3. Note that the zero of f 11 is x = 0 or x = 2 (since f 11(x) = 12x2 ´ 24x).
Since f 11(x) ą 0 if x ă 0 or x ą 2, and f 11(x) ą 0 if 0 ă x ă 2, we find that (0, 0) and
(2,´16) are points of inflection of the graph of f .

Theorem 3.32
Let f be a twice differentiable function on an open interval I containing c, and c is a
critical point of f .

1. If f 11(c) ą 0, then f(c) is a relative minimum of f on I.

2. If f 11(c) ă 0, then f(c) is a relative maximum of f on I.

Remark 3.33. If f 11(c) = 0 for some critical point c of f , then f may have a relative
maximum, a relative minimum, or neither at c. In such cases, you should use the First
Derivative Test.

Proof of Theorem 3.32. Since f 11(c) ą 0, there exist δ ą 0 such that
ˇ

ˇ

ˇ

f 1(x) ´ f 1(c)

x ´ c
´ f 11(c)

ˇ

ˇ

ˇ
ă
f 11(c)

2
if 0 ă |x ´ c| ă δ.

Since c is a critical point of f , f 1(c) = 0; thus the inequality above implies that

f 11(c)

2
ă
f 1(x)

x ´ c
ă

3f 11(c)

2
if 0 ă |x ´ c| ă δ.

In particular,

0 ă
f 1(c)

2
(x ´ c) ă f 1(x) if 0 ă x ´ c ă δ ,

f 1(x) ă
f 1(c)

2
(x ´ c) ă 0 if ´δ ă x ´ c ă 0 .



Therefore, f 1 changes from negative to positive at c; thus f(c) is a relative minimum of f
on I.

Example 3.34. Recall Example 3.21
(
f(x) =

1

2
x´sinx

)
. We have established that f

(π
3

)
is

a relative minimum of f on (0, 2π) using the First Derivative Test. Note that f 11(x) = sinx;

thus f 11
(π
3

)
= sin π

3
=

?
3

2
ą 0. Therefore, without using the First Derivative Test, we can

still conclude that f
(π
3

)
is a relative minimum of f on (0, 2π) by the second derivative test.

Example 3.35. Show that for all 1 ă p, q ă 8 satisfying 1

p
+

1

q
= 1, we have

ab ď
ap

p
+
bq

q
@ a, b ą 0 . (3.4.1)

The inequality above is called Young’s inequality. We remark that if 1

p
+

1

q
= 1, then

q =
p

p´ 1
.

For the moment we only show (3.4.1) for the case that p, q P Q (because we have not
talked about what it means by the p-th power if p is irrational). To show (3.4.1), we prove
that for each given b ą 0, the function f : (0,8) Ñ R

f(x) ”
xp

p
´ bx+

bq

q

is non-negative. In other words, we have to show that the “minimum” of f is non-negative.
To find the minimum of f , we differentiate and find that f 1(x) = xp´1 ´ b which implies

that c = b
1

p´1 is the only critical point. Since

f 11(c) = (p ´ 1)cp´2 = (p ´ 1)b
p´2
p´1 ą 0 ,

the second derivative test implies that f attains a local minimum at c. Since there is no
other critical points, f must attain its global minimum at c; thus

f(x) ě f(c) @x P (0,8)

and (3.4.1) is established since f(c) = b
p

p´1

p
´ b1+

1
p´1 +

bq

q
=
bq

p
´ bq +

bq

q
= 0.

Remark 3.36. Suppose that c is a critical point of a differentiable function f with f 11(c) =

0. For f to attain a local extremum at c, f 12(c) must be zero if the third derivative of f is
continuous. If in addition f (4) is continuous, then



1. f attains a local maximum at c provided that f (4)(c) ă 0.

2. f attains a local minimum at c provided that f (4)(c) ą 0.

In general, if f is 2k-times continuously differentiable (which means f (2k) exists every-
where and is continuous) and f 1(c) = f 11(c) = ¨ ¨ ¨ = f (2k´1)(c) = 0, then

1. f attains a local maximum at c provided that f (2k)(c) ă 0.

2. f attains a local minimum at c provided that f (2k)(c) ą 0.

On the other hand, if f is (2k + 1)-times continuously differentiable and f 1(c) = f 11(c) =

¨ ¨ ¨ = f (2k)(c) = 0 but f (2k+1)(c) ‰ 0, then f cannot attain its local extremum at c.

3.5 A Summary of Curve Sketching
When sketching the graph of functions, you need to have the following on the plot.

1. x-intercepts and y-intercepts;

2. asymptotes;

3. absolution extrema and relative extrema;

4. points of inflection.

Example 3.37. Sketch the graph of the function f(x) =
3x´ 2

?
2x2 + 1

.

First, we note that the x-intercepts and y-intercepts are
(3
2
, 0
)

and (0, f(0)) = (0,´2).
To determine the asymptotes, since

?
2x2 + 1 are never zero, there is no vertical asymptote.

As for the horizontal and slant asymptotes, by the fact that

lim
xÑ8

f(x) = lim
xÑ8

3x´ 2

x?
2x2 + 1

x

= lim
xÑ8

3 ´
2

x
b

2 +
1

x2

= lim
yÑ0+

3 ´ 2y
a

2 + y2
=

3
?
2

and

lim
xÑ´8

f(x) = lim
xÑ8

f(´x) = lim
xÑ8

´3x ´ 2
?
2x2 + 1

= lim
xÑ8

´3 ´
2

x
b

2 +
1

x2

= lim
yÑ0+

3 ´ 2y

´
a

2 + y2
= ´

3
?
2
,



we find that there are two horizontal asymptotes y = ˘
3

?
2
.

By the quotient rule,

f 1(x) =
3
?
2x2 + 1 ´ (3x ´ 2)

d

dx
(2x2 + 1)

1
2

2x2 + 1
=

3
?
2x2 + 1 ´ (3x ´ 2)

1

2
(2x2 + 1)´ 1

2 ¨ (4x)

2x2 + 1

=
3(2x2 + 1) ´ 2x(3x ´ 2)

(2x2 + 1)
3
2

=
4x+ 3

(2x2 + 1)
3
2

and

f 11(x) =
4(2x2 + 1)

3
2 ´ (4x+ 3)

3

2
(2x2 + 1)

1
2 ¨ (4x)

(2x2 + 1)3
=

4(2x2 + 1) ´ 6x(4x+ 3)

(2x2 + 1)
5
2

=
´16x2 ´ 18x+ 4

(2x2 + 1)
5
2

=
´2(8x2 + 9x ´ 2)

(2x2 + 1)
5
2

.

Therefore, x = ´
3

4
is the only critical point and since f 1 changes from negative to positive

at ´
3

4
, f

(
´

3

4

)
is a relative minimum of f .

f 11(x) = 0 occurs at x1 =
´9 ´

?
145

16
and x2 =

´9 +
?
145

16
. Since f 11 changes sign at x1

and x2, (x1, f(x1)) and (x2, f(x2)) are inflection points of the graph of f .

3.6 Optimization Problems

Explanation of examples in Section 3.7 in the textbook:

1. 一製造商想設計一個底部為正方形、表面積 108 平方公分且上方有開口的箱子。要
怎麼設計才能讓箱子容積最大？

2. Which points on the graph of y = 4 ´ x2 are closest to the point (0, 2)? 拋物線
y = 4 ´ x2 上哪個點到 (0, 2) 最近？

3. 試找出最小面積的方形頁面使之能上下留白三公分、左右留白兩公分且要包含 216
平方公分的長方形區域可用於印刷。

4. 兩根分別為 12 公尺及 28 公尺高的桿子相距 30 公尺。找出地面上一點使之到兩桿
之頂端之距離和最小。



5. Four meters of wire is to be used to form a square and a circle. How much of the wire
should be used for the square and how much should be used for the circle to enclose
the maximum total area? 一總長 4 公尺的線要被分為兩段用來圍出一個正方形和一
個圓形。要怎麼分段才能圍出最大的面積。

6. Application in Physics: Let v1 be the velocity of light in air and v2 the velocity of
light in water. According to Fermat’s Principle, a ray of light will travel from a point
A in the air to a point B in the water by a path ACB that minimizes the time taken.
Show that sin θ1

sin θ2
=
v1
v2
,

where θ1 (the angle of incidence) and θ2 (the angle of refraction) are as shown. This
equation is known as Snell’s Law.

Figure 3.1: Snell’s law

Proof. Assume that A = (0, a) and B = (b,´c). The goal is to find C = (x, 0) so that

f(x) =

?
x2 + a2

v1
+

a

(x´ b)2 + c2

v2

is minimized. Differentiating f , we find that a critical point x of f satisfies
1

v1

x
?
x2 + a2

=
1

v2

b´ x
a

(x´ b)2 + c2
.

Snell’s law then is concluded from the fact that sin θ1 =
x

?
x2 + a2

and sin θ2 =

b´ x
a

(b´ x)2 + c2
.

7. Application in Economics: Suppose that

r(x) = the revenue from selling x items,
c(x) = the cost of producing the x items,
p(x) = r(x) ´ c(x) = the profit from producing and selling x items.



Although x is usually an integer in many applications, we can learn about the behavior
of these functions by defining them for all nonzero real numbers and by assuming they
are differentiable functions. Economists use the terms marginal revenue (邊際收益),
marginal cost (邊際成本), and marginal profit (邊際利潤) to name the derivatives
r 1(x), c 1(x), and p 1(x) of the revenue, cost, and profit functions. Let us consider the
relationship of the profit p to these derivatives. If r(x) and c(x) are differentiable for x
in some interval of production possibilities, and if p(x) = r(x) ´ c(x) has a maximum
value there, it occurs at a critical point of p(x) or at an end-point of the interval. If it
occurs at a critical point, then p 1(x) = r 1(x)´c 1(x) = 0 and we see that r 1(x) = c 1(x).
In economic terms, this last equation means that

At a production level yielding maximum profit, marginal revenue equals
marginal cost.

Figure 3.2: The graph of a typical cost function starts concave down and later turns concave
up. It crosses the revenue curve at the break-even point B. To the left of B, the company
operates at a loss. To the right, the company operates at a profit, with the maximum profit
occurring where c 1(x) = r 1(x). Farther to the right, cost exceeds revenue (perhaps because
of a combination of rising labor and material costs and market saturation) and production
levels become unprofitable again.



3.7 Newton’s Method
The Newton method is a numerical method for finding zeros of differentiable functions.
Let f : (a, b) Ñ R be a differentiable function, and c P (a, b) is a zero of f . To find an
approximated value of c, the Newton method is the following iterative scheme:

1. Make an initial estimate x1 P (a, b) that is close to c.

2. Determine a new approximation using the iterative relation:

xn+1 = xn ´
f(xn)

f 1(xn)
.

Figure 3.3: Sequence of approximated zeros by Newton’s method

3. When |xn ´ xn+1| is within the desired accuracy, let xn+1 serve as the final approxi-
mation.

Example 3.38. To find the square root of a positive number A is equivalent to finding
zeros of the function f(x) = x2 ´ A in (0,8). The Newton method provides the iterative
scheme

xn+1 = xn ´
f(xn)

f 1(xn)
= xn ´

x2n ´ A

2xn
=
xn
2

+
A

2xn

to find approximated value of
?
A.

Example 3.39. To find the precise value of π we can look for a zero of the function
f(x) = cos x

2
. The Newton method provides the iterative scheme

xn+1 = xn ´
cos xn

2

´
1

2
sin xn

2

= xn + 2 cot xn
2



to find the value of zeros of f . Starting the iteration with x1 = 3, then x2 « 3.141829688605305,
x3 « 3.141592653588683 and x4 « 3.141592653589793. We note that x4 has already been
very close to π.

It can be shown that when
ˇ

ˇ

ˇ

f(x)f 11(x)

f 1(x)2

ˇ

ˇ

ˇ
ă 1 for all x P (a, b), then the Newton method

produces a convergent sequence which approaches a zero in (a, b).

3.8 Exercise
Problem 3.1. 1. Let f, g : (a, b) Ñ R be functions and f 1(x) = g 1(x). Show that there

exists a constant C such that f(x) = g(x) + C.

2. Suppose that f : R Ñ R is a differentiable function satisfying that f 1(x) = 3x2+4 cosx
and f(0) = 0. Find f(x).

Problem 3.2. Let f : [a, b] Ñ R be a continuous function such that f has only one critical
point c P (a, b).

1. Show that if f(c) is a local extremum of f , then f(c) is an absolute extremum of f .

2. Show that if f(c) is the absolute minimum of f , then f(x) ą f(c) for all x P [a, b] and
x ‰ c. Similarly, show that if f(c) is the absolute maximum of f , then f(x) ă f(c)

for all x P [a, b] and x ‰ c.

Problem 3.3. Let I, J be intervals, g : I Ñ R and f : J Ñ R be increasing functions.
Show that if J contains the range of g, then f ˝ g is increasing on I.

Problem 3.4. 1. If the function f(x) = x3 + ax2 + bx has the local minimum value ´
2
?
3

9

at x =
1

?
3
, what are the values of a and b?

2. Which of the tangent lines to the curve in part (1) has the smallest slope?

Problem 3.5. A number a is called a fixed point of a function f if f(a) = a. Prove that if
f 1(x) ‰ 1 for all real numbers x, then f has at most one fixed point.

Problem 3.6. Suppose f is an odd function (that is, f(´x) = ´f(x) for all x P R) and is
differentiable everywhere. Prove that for every positive number b, there exists a number c

in (´b, b) such that f 1(c) =
f(b)

b
.



Problem 3.7. Show that 2
?
x ą 3 ´

1

x
for all x ą 1.

Problem 3.8. Show that
?
b ´

?
a ă

b´ a

2
?
a

for all 0 ă a ă b.

Problem 3.9. Show that for all (rational numbers) p, q P (1,8) satisfying 1

p
+

1

q
= 1, we

have
ac+ bd ď (ap + bp)

1
p (cq + dq)

1
q @ a, b, c, d ą 0 .

Hint: Let x =
a

b
and y =

d

c
.

Problem 3.10. Show that for all k P N Y t0u,

x ´
x3

3!
+ ¨ ¨ ¨ +

x4k+1

(4k + 1)!
´

x4k+3

(4k + 3)!
ď sinx ď x ´

x3

3!
+ ¨ ¨ ¨ +

x4k+1

(4k + 1)!
@x ě 0 ,

1 ´
x2

2!
+ ¨ ¨ ¨ +

x4k

(4k)!
´

x4k+2

(4k + 2)!
ď cosx ď 1 ´

x2

2
+ ¨ ¨ ¨ +

x4k

(4k)!
@x ě 0 .

Problem 3.11. （不要用交叉相乘）Show that for all k P N Y t0u,

1 ´ x+ x2 ´ x3 + ¨ ¨ ¨ + x2k ´ x2k+1 ď
1

1 + x
ď 1 ´ x+ x2 ´ x3 + ¨ ¨ ¨ + x2k @x ě 0 .

Problem 3.12. Let f : R Ñ R be a differentiable function satisfying that f 1(x) = f(x) for
all x P R, and f(0) = 1.

1.（不要試著找出 f 而是直接用 f 的性質）Show that f is increasing on R.

2. Show that if k P N Y t0u, then f(x) ě 1 + x+
x2

2!
+ ¨ ¨ ¨ +

xk

k!
for all x ě 0.

3. Show that if k P N Y t0u, then

1 + x+
x2

2!
+ ¨ ¨ ¨ +

x2k

(2k)!
+

x2k+1

(2k + 1)!
ď f(x) ď 1 + x+

x2

2!
+ ¨ ¨ ¨ +

x2k

(2k)!
@x ď 0 .

Hint: 1. Show that f 2 is increasing on R and argue that f is also increasing on R.

Problem 3.13. 1. The function

f(x) =

"

0 if x = 0 ,

1 ´ x if 0 ă x ď 1

is differentiable on (0, 1) and satisfies f(0) = f(1). However, its derivative is never
zero on (0, 1). Does this contradict Rolle’s Theorem? Explain.



2. Can you find a function f such that f(´2) = ´2, f(2) = 6, and f 1(x) ă 1 for all x?
Why or why not?

Problem 3.14. Find the minimum value of
ˇ

ˇ sinx+ cosx+ tanx+ cotx+ secx+ cscx
ˇ

ˇ

for real numbers x.
Hint: Let t = sinx+ cosx.

Problem 3.15. Let f, g : (a, b) Ñ R be twice differentiable functions such that f 11(x) ‰ 0

and g 11(x) ‰ 0 for all x P (a, b). Prove that if f and g are positive, increasing, and concave
upward on the interval (a, b), then fg is also concave upward on (a, b).

Problem 3.16. For what values of a and b is (2, 2.5) an inflection point of the curve
x2 + ax+ by = 0? What additional inflection points does the curve have?



Chapter 4

Integration

‚ The Σ notation: The sum of n-terms a1, a2, ¨ ¨ ¨ , an is written as
n
ř

i=1

ai. In other words,
n
ÿ

i=1

ai = a1 + a2 + ¨ ¨ ¨ + an .

Here i is called the index of summation, ai is the i-th terms of the sum. We note that i in
the sum

n
ř

i=1

ai is a dummy index which can be replaced by other indices such as j, k, and

etc. Therefore,
n
ř

i=1

ai =
n
ř

j=1

aj =
n
ř

k=1

ak, and so on.

‚ Basic properties of sums:
n
ÿ

i=1

(cai + bi) = c
n
ÿ

i=1

ai +
n
ÿ

i=1

bi.

Theorem 4.1: Summation Formula

1.
n
ř

i=1

c = cn if c is a constant; 2.
n
ř

i=1

i =
n(n+ 1)

2
;

3.
n
ř

i=1

i2 =
n(n+ 1)(2n+ 1)

6
; 4.

n
ř

i=1

i3 =
n2(n+ 1)2

4
.

4.1 The Area under the Graph of a Non-negative Con-
tinuous Function

Let f : [a, b] Ñ R be a non-negative continuous function, and R be the region enclosed by
the graph of the function f , the x-axis and straight lines x = a and x = b. We consider
computing A(R), the area of R. Generally speaking, since the graph of y = f(x) is in
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general not a straight line, the computation of A(R) is not straight-forward. How do we
compute the area A(R)?

Partition [a, b] into n sub-intervals with equal length, and let ∆x =
b´ a

n
, xi = a+ i∆x.

By the Extreme Value Theorem, for each 1 ď i ď n f attains its maximum and minimum
on [xi´1, xi]; thus for 1 ď i ď n, there exist Mi,mi P [xi´1, xi] such that

f(Mi) = the maximum of f on [xi´1, xi]

and
f(mi) = the minimum of f on [xi´1, xi].

The sum S(n) ”
n
ř

i=1

f(Mi)∆x is called the upper sum of f for the partition ta = x0 ă x1 ă

x2 ă ¨ ¨ ¨ ă xn = bu, and s(n) ”
n
ř

i=1

f(mi)∆x is called the lower sum of f for the partition

ta = x0 ă x1 ă x2 ă ¨ ¨ ¨ ă xn = bu. By the definition of the upper sum and lower sum, we
find that for each n P N,

n
ÿ

i=1

f(mi)∆x ď A(R) ď

n
ÿ

i=1

f(Mi)∆x .

If the limits of the both sides exist and are identical as ∆x approaches 0 (which is the same
as n approaches infinity), by the Squeeze Theorem we can conclude that A(R) is the same
as the limit.

Example 4.2. Let f(x) = x2, and R be the region enclosed by the graph of y = f(x), the
X-axis, and the straight lines x = a and x = b, where we assume that 0 ď a ă b. Then the
lower sum is obtained by the “left end-point rule” approximation of A(R)

n
ÿ

i=1

(
a+

(i´ 1)(b´ a)

n

)2 b´ a

n

and the upper sum is obtained by the “right end-point rule” approximation
n
ÿ

i=1

(
a+

i(b´ a)

n

)2 b´ a

n
.

By Theorem 4.1,
n
ÿ

i=1

(
a+

i(b´ a)

n

)2 b´ a

n
=

n
ÿ

i=1

[
a2 +

2a(b ´ a)i

n
+
a2(b ´ a)2i2

n2

]b ´ a

n

= a2(b ´ a) +
a(b ´ a)2n(n+ 1)

n2
+
a2(b ´ a)3

n3

n(n+ 1)(2n+ 1)

6

= a2(b ´ a) + a(b ´ a)2
(
1 +

1

n

)
+
a2(b ´ a)3

6

(
1 +

1

n

)(
2 +

1

n

)
.



Letting n Ñ 8, we find that

lim
nÑ8

n
ÿ

i=1

(
a+

i(b´ a)

n

)2 b´ a

n
= a2(b ´ a) + a(b ´ a)2 +

a2(b ´ a)3

3
=
b3 ´ a3

3
.

Similarly,
n
ÿ

i=1

(
a+

(i´ 1)(b´ a)

n

)2 b´ a

n
=
a2(b ´ a)

n
+

n
ÿ

i=1

(
a+

i(b´ a)

n

)2 b´ a

n
´
b2(b ´ a)

n

= a2(b ´ a) +
a(b ´ a)2n(n+ 1)

n2
+
a2(b ´ a)3

n3

n(n+ 1)(2n+ 1)

6
+

(a2 ´ b2)(b ´ a)

n
;

thus
lim
nÑ8

n
ÿ

i=1

(
a+

(i´ 1)(b´ a)

n

)2 b´ a

n
=
b3 ´ a3

3
.

Therefore, A(R) =
b3 ´ a3

3
.

Remark 4.3. Let R1 be the region enclosed by f(x) = x2, the x-axis and x = a, the
R2 be the region enclosed by f(x) = x2, the x-axis and x = b, then intuitively A(R) =

A(R2) ´ A(R1) and this is true since A(R1) =
a3

3
and A(R2) =

b3

3
.

If f is not continuous, then f might not attain its extrema on the interval [xi´1, xi].
In this case, it might be impossible to form the upper sum or the lower sum for a given
partition. On the other hand, the left end-point rule

n
ř

i=1

f(xi´1)∆x and the right end-point

rule
n
ř

i=1

f(xi)∆x of approximating the area are always possible. We can even consider the

“mid-point rule” approximation given by
n
ÿ

i=1

f
(xi´1 + xi

2

)
∆x

and consider the limit of the expression above as n approaches infinity.

4.2 Riemann Sums and Definite Integrals
In general, in order to find an approximation of A(R), the interval [a, b] does not have to
be divided into sub-intervals with equal length. Assume that [a, b] are divided into n sub-
intervals and the end-points of those sub-intervals are ordered as a = x0 ă x1 ă x2 ă ¨ ¨ ¨ ă



xn = b, here the collection of end-points P = tx0, x1, ¨ ¨ ¨ , xnu is called a partition of [a, b].
Then the “left end-point rule” approximation for the partition P is given by

ℓ(P) =
n
ÿ

i=1

f(xi´1)(xi ´ xi´1)

and the “right end-point rule” approximation for the partition P is given by

r(P) =
n
ÿ

i=1

f(xi)(xi ´ xi´1) ,

and the limit process as n Ñ 8 in the discussion above is replaced by the limit process as
the norm of partition P , denoted by }P} and defined by }P} ” max

␣

xi ´ xi´1

ˇ

ˇ 1 ď i ď n
(

,
approaches 0. Before discussing what the limits above mean, let us look at the following
examples.

Example 4.4. Consider the region bounded by the graph of f(x) =
?
x and the x-axis for

0 ď x ď 1. Let xi =
i2

n2
and P = tx0 = 0 ă x1 ă ¨ ¨ ¨ ă xn = 1u. We note that

}P} = max
!

i2 ´ (i´ 1)2

n2

ˇ

ˇ

ˇ
1 ď i ď n

)

= max
!

2i´ 1

n2

ˇ

ˇ

ˇ
1 ď i ď n

)

=
2n ´ 1

n2

thus }P} Ñ 0 is equivalent to that n Ñ 8.
Using the right end-point rule (which is the same as the upper sum),

S(P) =
n
ÿ

i=1

f(xi)(xi ´ xi´1) =
n
ÿ

i=1

i

n

2i ´ 1

n2
=

1

n3

n
ÿ

i=1

(2i2 ´ i)

=
1

n3

[n(n+ 1)(2n+ 1)

3
´
n(n+ 1)

2

]
=

1

3

(
1 +

1

n

)(
2 +

1

n

)
´

1

2n

(
1 +

1

n

)
;

thus
lim

}P}Ñ0
S(P) = lim

nÑ8

[1
3

(
1 +

1

n

)(
2 +

1

n

)
´

1

2n

(
1 +

1

n

)]
=

2

3
.

Using the left end-point rule (which is the same as the lower sum),

s(P) =
n
ÿ

i=1

f(xi´1)(xi ´ xi´1) =
n
ÿ

i=1

i ´ 1

n

2i ´ 1

n2
=

1

n3

n
ÿ

i=1

(2i2 ´ 3i+ 1)

=
1

n3

[n(n+ 1)(2n+ 1)

3
´

3n(n+ 1)

2
+ n

]
=

1

3

(
1 +

1

n

)(
2 +

1

n

)
´

3

2n

(
1 +

1

n

)
+

1

n2
;



thus
lim

}P}Ñ0
s(P) = lim

nÑ8

[1
3

(
1 +

1

n

)(
2 +

1

n

)
´

3

2n

(
1 +

1

n

)
+

1

n2

]
=

2

3
.

Therefore, the area of the region of interest is 2

3
.

Example 4.5. In this example we use a different approach to compute A(R) in Example 4.2.
Assume that 0 ă a ă b. Let r =

( b
a

) 1
n , xi = ari, and P = ta = x0 ă x1 ă ¨ ¨ ¨ ă xn = bu.

Claim: If c ą 1, then c
1
n = 1 as n approaches infinity.

Proof of the claim: If c ą 1, then c
1
n ą 1. Let yn = c

1
n ´ 1. Then c = (1 + yn)

n ě 1 + nyn

which implies that 0 ă yn ď
c´ 1

n
for all n P N. By the Squeeze Theorem, c 1

n Ñ 1 as
n Ñ 8.

Note that the claim above implies that r Ñ 1 as n Ñ 8. Moreover, xi ´ xi´1 =

a(ri ´ ri´1) = ari´1(r ´ 1); thus

0 ă a(r ´ 1) = x1 ´ x0 ď }P} = xn ´ xn´1 = arn´1(r ´ 1) ă b(r ´ 1) .

Therefore, }P} Ñ 0 is equivalent to that n Ñ 8.
Using the “left end-point rule” approximation of the area,

A(R) = lim
nÑ8

n
ÿ

i=1

x2i´1(xi ´ xi´1) = lim
nÑ8

n
ÿ

i=1

a2r2(i´1)ari´1(r ´ 1) = a3 lim
nÑ8

(r ´ 1)
n
ÿ

i=1

r3(i´1)

= a3 lim
nÑ8

(r ´ 1)
r3n ´ 1

r3 ´ 1
= a3 lim

nÑ8

b3

a3
´ 1

r2 + r + 1
=
b3 ´ a3

3
.

Similarly, when applying the “right end-point rule” approximation, we obtain that

lim
nÑ8

n
ÿ

i=1

x2i (xi ´ xi´1) = a3 lim
nÑ8

(r ´ 1)
n
ÿ

i=1

r3i = a3 lim
nÑ8

(r ´ 1)
r3n+3 ´ r3

r3 ´ 1
=
b3 ´ a3

3
.

This also gives the area of the region R.

To compute an approximated value of A(R), there is no reason for evaluating the function
at the left end-points or the right end-points like what we have discussed above. For example,
we can also consider the “mid-point rule”

m(P) =
n
ÿ

i=1

f
(xi + xi´1

2

)
(xi ´ xi´1)



to approximate the value of A(R), and compute the limit of the sum above as }P} approaches
0 in order to obtain A(R). In fact, we should be able to consider any point ci P [xi´1, xi]

and consider the limit of the sum

lim
}P}Ñ0

n
ÿ

i=1

f(ci)(xi ´ xi´1)

if the region R does have area.
Now let us forget about the concept of the area. For a general function f : [a, b] Ñ R,

we can also consider the limit above as }P} approaches 0, if the limit exists. The discussion
above motivates the following definitions.

Definition 4.6: Partition of Intervals and Riemann Sums
A finite set P = tx0, x1, ¨ ¨ ¨ , xnu is said to be a partition of the closed interval [a, b] if
a = x0 ă x1 ă ¨ ¨ ¨ ă xn = b. Such a partition P is usually denoted by ta = x0 ă x1 ă

¨ ¨ ¨ ă xn = bu. The norm of P , denoted by }P}, is the number max
␣

xi ´ xi´1

ˇ

ˇ 1 ď

i ď n
(

; that is,
}P} ” max

␣

xi ´ xi´1

ˇ

ˇ 1 ď i ď n
(

.

A partition P = ta = x0 ă x1 ă ¨ ¨ ¨ ă xn = bu is called regular if xi ´ xi´1 = }P} for
all 1 ď i ď n.

Let f : [a, b] Ñ R be a function. A Riemann sum of f for the partition P = ta =

x0 ă x1 ă ¨ ¨ ¨ ă xn = bu of [a, b] is a sum which takes the form
n
ÿ

i=1

f(ci)(xi ´ xi´1) ,

where the set Ξ = tc0, c1, ¨ ¨ ¨ , cn´1u satisfies that xi´1 ď ci ď xi for each 1 ď i ď n.

Definition 4.7: Riemann Integrals - 黎曼積分

Let f : [a, b] Ñ R be a function. f is said to be Riemann integrable on [a, b] if there
exists a real number A such that for every ε ą 0, there exists δ ą 0 such that if P
is partition of [a, b] satisfying }P} ă δ, then any Riemann sums for the partition P
belongs to the interval (A´ ε, A+ ε). Such a number A (is unique and) is called the

Riemann integral of f on [a, b] and is denoted by
ż

[a,b]
f(x) dx.

Remark 4.8. For conventional reason, the Riemann integral of f over the interval with left

end-point a and right-end point b is written as
ż b

a
f(x) dx, and is called the definite integral



of f from a to b. The function f sometimes is called the integrand of the integral.
We also note that here in the representation of the integral, x is a dummy variable; that

is, we can use any symbol to denote the independent variable; thus
ż b

a

f(x) dx =

ż b

a

f(t) dt =

ż b

a

f(u) du

and etc.

The following example shows that no all functions are Riemann integrable.

Example 4.9. Consider the Dirichlet function

f(x) =

#

0 if x is rational ,
1 if x is irrational ,

on the interval [1, 2]. By partitioning [1, 2] into n sub-intervals with equal length, the
Riemann sum given by the right end-point rule is always zero since the right end-point of
each sub-interval is rational. On the other hand, by partitioning [1, 2] into n sub-intervals
using geometric sequence 1, r, r2, ¨ ¨ ¨ , rn´1, 2, where r = 2

1
n , by the fact that ri R Q for each

1 ď i ď n ´ 1 the Riemann sum of f for this partition given by the right end-point rule is

n
ÿ

i=1

f(ri)(ri ´ ri´1) =
n´1
ÿ

i=1

(ri ´ ri´1) = r1 ´ r0 + r2 ´ r1 + ¨ ¨ ¨ + rn´1 ´ rn´2

= rn´1 ´ r0 =
2

r
´ 1

which approaches 1 as r approaches 1. Therefore, f is not integrable on [1, 2] since there
are two possible limits of Riemann sums which means that the Riemann sums cannot con-
centrate around any firxed real number.

Theorem 4.10
If f : [a, b] Ñ R is continuous, then f is Riemann integrable on [a, b].

Example 4.11. In this example we compute
ż b

a
xq dx when q ‰ ´1 is a rational number

and 0 ă a ă b. Since f(x) = xq is continuous on [a, b], by Theorem 4.10 to find the integral
it suffices to find the limit of the Riemann sum given by the left end-point rule as }P}

approaches 0.



We follow the idea in Example 4.5. Let r =
(
b

a

) 1
n and xi = ari, as well as the partition

P = ta = x0 ă x1 ă ¨ ¨ ¨ ă xn = bu. Then the Riemann sum of f for the partition P given
by left end-point rule is

L(P) =
n
ÿ

i=1

(ari´1)q(ari ´ ari´1) = aq+1(r ´ 1)
n
ÿ

i=1

r(i´1)(q+1) = aq+1(r ´ 1)
rn(q+1) ´ 1

rq+1 ´ 1

=
r ´ 1

rq+1 ´ 1

(
bq+1 ´ aq+1

)
.

Since d

dr

ˇ

ˇ

ˇ

r=1
rq+1 = (q + 1), we have

lim
rÑ1

rq+1 ´ 1

r ´ 1
=

d

dr

ˇ

ˇ

ˇ

r=1
rq+1 = q + 1 ;

thus by the fact that r Ñ 1 as n Ñ 8 (or }P} Ñ 0), we find that

lim
}P}Ñ0

L(P) = lim
}P}Ñ0

L(P) =
bq+1 ´ aq+1

q + 1
.

Therefore,
ż b

a
xq dx =

bq+1 ´ aq+1

q + 1
if q ‰ 1 is a rational number and 0 ă a ă b.

Example 4.12. Since the sine function is continuous on any closed interval [a, b], to find
ż b

a
sinx dx we can partition [a, b] into sub-intervals with equal length, use the right end-

point rule to find an approximated value of the integral, and finally find the integral by
passing the number of sub-intervals to the limit.

Let ∆x =
b´ a

n
and xi = a+ i∆x. The right end-point rule gives the approximation

n
ÿ

i=1

sinxi∆x =
n
ÿ

i=1

sin(a+ i∆x)∆x = ∆x
n
ÿ

i=1

sin(a+ i∆x)

of the integral.
Using the sum and difference formula, we find that

cos
[
a+

(
i ´

1

2

)
∆x

]
´ cos

[
a+

(
i+

1

2

)
∆x

]
= 2 sin(a+ i∆x) sin ∆x

2
;



thus if sin ∆x

2
‰ 0,

n
ÿ

i=1

sin(a+ i∆x) =
1

2 sin ∆x
2

[(
cos

(
a+

1

2
∆x

)
´ cos

(
a+

3

2
∆x

))
+
(

cos
(
a+

3

2
∆x

)
´ cos

(
a+

5

2
∆x

))
+ ¨ ¨ ¨ + cos

[
a+ (n ´

1

2

)
∆x

]
´ cos

[
a+

(
n+

1

2

)
∆x

]]
which, by the fact that a+

(
n+

1

2
∆x

)
= b+

1

2
∆x, implies that

n
ÿ

i=1

sinxi∆x =
∆x
2

sin ∆x
2

[
cos

(
a+

1

2
∆x

)
´ cos

(
b+

1

2
∆x

)]
.

By the fact that lim
xÑ0

sinx
x

= 1 and the continuity of the cosine function, we conclude that
ż b

a

sinx dx = lim
nÑ8

n
ÿ

i=1

sinxi∆x = cos a ´ cos b .

Theorem 4.13
Let f : [a, b] Ñ R be a non-negative and continuous function. The area of the region
enclosed by the graph of f , the x-axis, and the vertical lines x = a and x = b is
ż b

a
f(x) dx.

Example 4.14. In this example we use the integral notation to denote the areas of some
common geometric figures (without really doing computations):

1.
ż 2

´2

?
4 ´ x2 dx = 2π ; 2.

ż 1

´1

?
4 ´ x2 dx =

2π

3
+

?
3 ; 3.

ż

?
3

´1

?
4 ´ x2 dx = π +

?
3.

4.2.1 Properties of Definite Integrals
Definition 4.15

1. If f is defined at x = a, then
ż a

a
f(x) dx = 0.

2. If f is integrable on [a, b], then
ż a

b
f(x) dx = ´

ż b

a
f(x) dx = ´

ż

[a,b]
f(x) dx.



Remark 4.16. By the definition above, if f is Riemann integrable on [a, b],
ż a

b
f(x) dx is

the limit of the sum
n
ÿ

i=1

f(xi)(xi ´ xi´) and
n
ÿ

i=1

f(xi´1)(xi ´ xi´1)

as max
␣

|xi ´ xi´1|
ˇ

ˇ 1 ď i ď n
(

Ñ 0, where x0 = b ą x1 ą x2 ą ¨ ¨ ¨ ą xn = a.

Theorem 4.17
If f is Riemann integrable on the three closed intervals determined by a, b and c, then

ż b

a

f(x) dx =

ż c

a

f(x) dx+

ż b

c

f(x) dx .

Theorem 4.18
Let f, g : [a, b] Ñ R be Riemann integrable on [a, b] and k be a constant. Then the
function kf ˘ g are Riemann integrable on [a, b], and

ż b

a

(kf ˘ g)(x) dx = k

ż b

a

f(x) dx ˘

ż b

a

g(x) dx .

Theorem 4.19

If f is non-negative and Riemann integrable on [a, b], then
ż b

a
f(x) dx ě 0.

Corollary 4.20

If f, g are Riemann integrable on [a, b] and f(x) ď g(x) for all a ď x ď b, then
ż b

a

f(x) dx ď

ż b

a

g(x) dx .

Theorem 4.21
If f is Riemann integrable on [a, b], then |f | is Riemann integrable on [a, b] and

ˇ

ˇ

ˇ

ż b

a

f(x) dx
ˇ

ˇ

ˇ
ď

ż b

a

ˇ

ˇf(x)
ˇ

ˇ dx .



Theorem 4.22: 可積必有界
Let f : [a, b] Ñ R be a function. If f is Riemann integrable on [a, b], then f is bounded
on [a, b]; that is, there exists M ą 0 such that

ˇ

ˇf(x)
ˇ

ˇ ď M whenever x P [a, b] .

Proof. Let f be Riemann integrable on [a, b]. Then there exists A P R and δ ą 0 such
that if P is a partition of [a, b] satisfying }P} ă δ, then any Riemann sum of f for P

belongs to (A ´ 1, A + 1). Choose n P N so that b´ a

n
ă δ. Then the regular partition

P = ta = x0 ă x1 ă ¨ ¨ ¨ ă xn = bu, where xi = a+
b´ a

n
i, satisfies }P} ă δ.

Suppose the contrary that f is not bounded. Then there exists x˚ P [a, b] such that

ˇ

ˇf(x˚)
ˇ

ˇ ą
n(|A| + 1)

b´ a
+

n
ÿ

i=1

ˇ

ˇf(xi)
ˇ

ˇ .

Suppose that x˚ P [xk´1, xk]. By the fact that
n
ř

i=1
i‰k

f(xi)(xi ´ xi´1) + f(x˚)(xk ´ xk´1) is a

Riemann sum of f for P , we have

A ´ 1 ă

n
ÿ

i=1
i‰k

f(xi)(xi ´ xi´1) + f(x˚)(xk ´ xk´1) ă A+ 1 .

Since xi ´ xi´1 =
b´ 1

n
for all 1 ď i ď n, the inequality above shows that

n(A ´ 1)

b ´ a
´

n
ÿ

i=1
i‰k

f(xi) ă f(x˚) ă
n(A+ 1)

b ´ a
´

n
ÿ

i=1
i‰k

f(xi)

and the triangle inequality further implies that

´

[n(|A| + 1)

b ´ a
+

n
ÿ

i=1
i‰k

ˇ

ˇf(xi)
ˇ

ˇ

]
ă f(x˚) ă

n(|A| + 1)

b ´ a
+

n
ÿ

i=1
i‰k

ˇ

ˇf(xi)
ˇ

ˇ .

Therefore, we conclude that

ˇ

ˇf(x˚)
ˇ

ˇ ă
n(|A| + 1)

b ´ a
+

n
ÿ

i=1
i‰k

ˇ

ˇf(xi)
ˇ

ˇ ď
n(|A| + 1)

b ´ a
+

n
ÿ

i=1

ˇ

ˇf(xi)
ˇ

ˇ ,

a contradiction.



Example 4.23. Let f : [0, 1] Ñ R be defined by

f(x) =

# 1

x
if x P (0, 1] ,

0 if x = 0 .

Then f has only one discontinuity in [0, 1] but f is not Riemann integrable on [0, 1] since f
is not bounded.

4.3 The Fundamental Theorem of Calculus
In this section, we develop a theory which shows a systematic way of finding integrals if the
integrand is a continuous function.
Definition 4.24

A function F is an anti-derivative of f on an interval I if F 1(x) = f(x) for all x in I.

Theorem 4.25
If F is an anti-derivative of f on an interval I, then G is an anti-derivative of f on
the interval I if and only if G is of the form G(x) = F (x) +C for all x in I, where C
is a constant.（導函數相同的函數相差一常數）

Proof. It suffices to show the “ñ” (only if) direction. Suppose that F 1 = G 1 = f on I.
Then the function h = F ´ G satisfies h 1(x) = 0 for all x P I. By the mean value theorem,
for any a, b P I with a ‰ b, there exists c in between a and b such that

h(b) ´ h(a) = h 1(c)(b ´ a) .

Since h 1(x) = 0 for all x P I, h(a) = h(b) for all a, b P I; thus h is a constant function.

Theorem 4.26: Mean Value Theorem for Integrals - 積分均值定理

Let f : [a, b] Ñ R be a continuous function. Then there exists c P [a, b] such that
ż b

a

f(x) dx = f(c)(b ´ a) .

Proof. By the Extreme Value Theorem, f has a maximum and a minimum on [a, b]. Let
M = f(x1) and m = f(x2), where x1, x2 P [a, b], denote the maximum and minimum of f



on [a, b], respectively. Then m ď f(x) ď M for all x P [a, b]; thus Corollary 4.20 implies
that

m(b ´ a) =

ż b

a

mdx ď

ż b

a

f(x) dx ď

ż b

a

M dx =M(b ´ a) .

Therefore, the number 1

b´ a

ż b

a
f(x) dx P [m,M ]. By the Intermidiate Value Theorem, there

exists c in between x1 and x2 such that f(c) = 1

b´ a

ż b

a
f(x) dx.

Theorem 4.27: Fundamental Theorem of Calculus - 微積分基本定理
Let f : [a, b] Ñ R be a continuous function, and F be an anti-derivative of f on [a, b].
Then

ż b

a

f(x) dx = F (b) ´ F (a) .

Moreover, if G(x) =
ż x

a
f(t) dt for x P [a, b], then G is an anti-derivative of f .

We note that for x P [a, b], f is continuous on [a, x]; thus f is Riemann integrable on
[a, x] which shows that G(x) =

ż x

a
f(t) dt is well-defined.

Proof of the Fundamental Theorem of Calculus. Note that for h ‰ 0 such that x+h P [a, b],
we have

G(x+ h) ´ G(x)

h
=

1

h

[ ż x+h

a

f(t) dt ´

ż x

a

f(t) dt
]
=

1

h

ż x+h

x

f(t) dt .

By the Mean Value Theorem for Integrals, there exists c = c(h) in between x and x+h such

that 1

h

ż x+h

x
f(t) dt = f(c). Since f is continuous on [a, b], lim

hÑ0
f(c) = lim

cÑx
f(c) = f(x); thus

lim
hÑ0

G(x+ h) ´ G(x)

h
= lim

hÑ0

1

h

ż x+h

x

f(t) dt = lim
hÑ0

f(c) = f(x)

which shows that G is an anti-derivative of f on [a, b].
By Theorem 4.25, G(x) = F (x) + C for all x P [a, b]. By the fact that G(a) = 0,

C = ´F (a); thus
ż b

a

f(x) dx = G(b) = F (b) ´ F (a)

which concludes the theorem.



Example 4.28. Since an anti-derivative of the function y = xq, where q ‰ ´1 is a rational

number, is y =
xq+1

q + 1
, we find that

ż b

a

xq dx =
xq+1

q + 1

ˇ

ˇ

ˇ

x=b
´
xq+1

q + 1

ˇ

ˇ

ˇ

x=a
=
bq+1 ´ aq+1

q + 1
.

Example 4.29. Since an anti-derivative of the sine function is negative of cosine, we find
that

ż b

a

sinx dx = (´ cos)(b) ´ (´ cos)(b) = cos b ´ cos a .

Example 4.30. Find d

dx

ż

?
x

0
sin100 t dt for x ą 0.

Let F (x) =
ż x

0
sin100 t dt. Then by the chain rule,

d

dx
F (

?
x) = F 1(

?
x)

d

dx

?
x =

1

2
?
x
F 1(

?
x) .

By the Fundamental Theorem of Calculus, F 1(x) = sin100 x; thus

d

dx

ż

?
x

0

sin100 t dt =
d

dx
F (

?
x) =

sin100
?
x

2
?
x

.

Theorem 4.31
Let f : [a, b] Ñ R be continuous and f is differentiable on (a, b). If f 1 is Riemann
integrable on [a, b], then

ż b

a

f 1(x) dx = f(b) ´ f(a) .

Proof. Let ε ą 0 be given, and define A =
ż b

a
f 1(x) dx. By the definition of the integrability

there exists δ ą 0 such that if P = ta = x0 ă x1 ă ¨ ¨ ¨ ă xn = bu is a partition of [a, b]
satisfying }P} ă δ, then any Riemann sums of f for P belongs to the interval (A´ε, A+ε).

Let P = ta = x0 ă x1 ă ¨ ¨ ¨ ă xn = bu be a partition of [a, b] satisfying that }P} ă δ.
Then by the mean value theorem, for each 1 ď i ď n there exists xi´1 ă c ă xi such that
f(xi) ´ f(xi´1) = f 1(ci)(xi ´ xi´1). Since

n
ÿ

i=1

f 1(ci)(xi ´ xi´1)



is a Riemann sum of f for P , we must have
ˇ

ˇ

ˇ

n
ÿ

i=1

f 1(ci)(xi ´ xi´1) ´ A
ˇ

ˇ

ˇ
ă ε .

On the other hand, by the fact that
n
ÿ

i=1

f 1(ci)(xi ´ xi´1) =
n
ÿ

i=1

[
f(xi) ´ f(xi´1)

]
= f(x1) ´ f(x0) + f(x2) ´ f(x1) + ¨ ¨ ¨ + f(xn) ´ f(xn´1)

= f(xn) ´ f(x0) = f(b) ´ f(a) ,

we conclude that
ˇ

ˇ

ˇ
f(b) ´ f(a) ´

ż b

a

f 1(x) dx
ˇ

ˇ

ˇ
ă ε .

Since ε ą 0 is chosen arbitrarily, we find that
ż b

a
f 1(x) dx = f(b) ´ f(a).

Remark 4.32. If f 1 is continuous on [a, b], then the theorem above is simply a direct
consequence of the Fundamental Theorem of Calculus. The theorem above can be viewed
as a generalization of the Fundamental Theorem of Calculus.

Theorem 4.27 and 4.31 can be combined as follows:
Theorem 4.33

Let f : [a, b] Ñ R be a Riemann integrable function and F be an anti-derivative of f
on [a, b]. Then

ż b

a

f(x) dx = F (b) ´ F (a) .

Moreover, if in addition f is continuous on [a, b], then G(x) =
ż x

a
f(t) dt is differen-

tiable on [a, b] and
G 1(x) = f(x) for all x P [a, b] .

Definition 4.34

An anti-derivative of f , if exists, is denoted by
ż

f(x) dx, and sometimes is also called
an indefinite integral of f .

‚ Basic Rules of Integration:



Differentiation Formula Anti-derivative Formula
d

dx
C = 0

ż

0 dx = C

d

dx
xr = rxr´1

ż

xq dx =
xq+1

q + 1
+ C if q ‰ ´1

d

dx
sinx = cosx

ż

cosx dx = sinx+ C

d

dx
cosx = ´ sinx

ż

sinx dx = ´ cosx+ C

d

dx
tanx = sec2 x

ż

sec2 x dx = tanx+ C

d

dx
secx = secx tanx

ż

secx tanx dx = secx+ C

d

dx

[
kf(x) + g(x)

]
= kf 1(x) + g 1(x)

ż [
kf 1(x) + g 1(x)

]
dx = kf(x) + g(x) + C

4.4 Integration by Substitution - 變數變換
Suppose that g : [a, b] Ñ R is differentiable, and f : range(g) Ñ R is differentiable. Then
the chain rule implies that f ˝ g is an anti-derivative of (f 1 ˝ g)g 1; thus provided that

1. (f ˝ g) 1 is Riemann integrable on [a, b],

2. f 1 is Riemann integrable on the range of g,

then Theorem 4.31 implies that
ż b

a

f 1
(
g(x))g 1(x) dx =

ż b

a

(f ˝ g) 1(x) dx = (f ˝ g)(b) ´ (f ˝ g)(a)

= f
(
g(b)

)
´ f

(
g(a)

)
=

ż g(b)

g(a)

f 1(u) du . (4.4.1)

Replacing f 1 by f in the identity above shows the following

Theorem 4.35
If the function u = g(x) has a continuous derivative on the closed interval [a, b], and
f is continuous on the range of g, then

ż b

a

f
(
g(x)

)
g 1(x) dx =

ż g(b)

g(a)

f(u) du .



The anti-derivative version of Theorem 4.35 is stated as follows.
Theorem 4.36

Let g be a function with range I and f be a continuous function on I. If g is
differentiable on its domain and F is an anti-derivative of f on I, then

ż

f
(
g(x)

)
g 1(x) dx = F

(
g(x)

)
+ C

Letting u = g(x) gives du = g 1(x) dx and
ż

f(u) du = F (u) + C .

Example 4.37. Find
ż

(x2 + 1)2(2x) dx.

Let u = x2 + 1. Then du = 2xdx; thus
ż

(x2 + 1)2(2x) dx =

ż

u2 du =
1

3
u3 + C =

1

3
(x2 + 1)3 + C .

Example 4.38. Find
ż

cos(5x) dx.

Let u = 5x. Then du = 5dx; thus
ż

cos(5x) dx =
1

5

ż

cosu du =
1

5
sinu+ C =

1

5
sin(5x) + C .

Example 4.39. Find
ż

sec2 x(tanx+ 3) dx.

Let u = tanx. Then du = sec2 xdx; thus
ż

sec2 x(tanx+ 3) dx =

ż

(u+ 3) du =
1

2
u2 + 3u+ C =

1

2
tan2 x+ 3 tanx+ C .

On the other hand, let v = tanx+ 3. Then dv = sec2 x dx; thus
ż

sec2 x(tanx+ 3) dx =

ż

v dv =
1

2
v2 + C =

1

2
(tanx+ 3)2 + C

=
1

2
tan2 x+ 3 tanx+ 9

2
+ C .

We note that even though the right-hand side of the two indefinite integrals look different,
they are in fact the same since C could be any constant, and 9

2
+ C is also any constant.



Example 4.40. Find
ż

2zdz
3
?
z2 + 1

.

Method 1: Let x = z2 + 1. Then dx = 2zdz; thus
ż

2zdz
3

?
z2 + 1

=

ż

dx
3

?
x
=

ż

x´ 1
3 dx =

3

2
x

2
3 + C =

3

2
(z2 + 1)

2
3 + C .

Method 2: Let y = 3
?
z2 + 1. Then y3 = z2 + 1; thus 3y2dy = 2zdz. Therefore,

ż

2zdz
3

?
z2 + 1

=

ż

3y2dy

y
=

ż

3y dy =
3

2
y2 + C =

3

2
(z2 + 1)

2
3 + C .

Example 4.41. Find
ż

18 tan2 x sec2 x
(2 + tan3 x)2

dx.

Let u = 2 + tan3 x. Then du = 3 tan2 x secx dx; thus
ż

18 tan2 x sec2 x
(2 + tan3 x)2

dx =

ż

6du

u2
= 6

ż

u´2 du = ´6u´1 + C = ´
6

2 + tan3 x
+ C .

Sometimes an definite integral can be evaluated even though the anti-derivative of the
integrand cannot be found. In such kind of cases, we have to look for special structures so
that we can simplify the integrals. There is no general rule for this, and we have to do this
case by case.

Example 4.42. Find
ż π

0

2x sinx
3 + cos(2x) dx.

Let the integral be I. By the substitution u = π ´ x, we find that

I =
ż 0

π

2(π ´ u) sin(π ´ u)

3 + cos(2(π ´ u))
(´1) du =

ż π

0

2(π ´ u) sinu
3 + cos 2u du

=

ż π

0

2π sinu
3 + cos 2u du ´

ż π

0

2u sinu
3 + cos 2u du = 2π

ż π

0

sinu
3 + cos 2u du ´ I ;

thus

I = π

ż π

0

sinu
3 + cos 2u du = ´π

ż π

0

d(cosu)
3 + 2 cos2 u ´ 1

= ´
π

2

ż ´1

1

dv

v2 + 1

=
π

2

ż 1

´1

dv

v2 + 1
=
π

2

ż π
4

´π
4

sec2 y
tan2 y + 1

dy =
π

2

ż π
4

´π
4

dy =
π2

4
.



4.5 Exercise
Problem 4.1. Let f : [a, b] Ñ R be a function, and f is Riemann integrable on [a, b]. Show
that f must be bounded on [a, b]; that is, there exists a real number M ą 0 such that
|f(x)| ď M for all a ď x ď b.

Problem 4.2. Let a ă b be real numbers. Compute
ż b

a
cosx dx by the following steps.

(a) Partition [a, b] into n sub-intervals with equal length. Write down the Riemann sum
using the right end-point rule.

(b) Prove that
n
ÿ

i=1

cos(a+ id) =
sin

[
a+

(
n+

1

2

)
d
]

´ sin
(
a+

d

2

)
2 sin d

2

. (4.5.1)

Hint: Use the sum and difference formula sin(ϑ+ φ) ´ sin(ϑ ´ φ) = 2 sinϑ cosφ.

(c) Use (4.5.1) to simplify the Riemann sum in (a), and find the limit of the Riemann
sum as n approaches infinity. Show that

ż b

a

cosx dx = sin b ´ sin a .

Problem 4.3. Let a ă b be real numbers. Compute
ż b

a
xN dx, where N is a non-negative

integer, by the following steps.

(a) Let P = ta = x0 ă x1 ă ¨ ¨ ¨ ă xn = bu be a regular partition of [a, b]. Show that the
Riemann sum using the right end-point rule is given by

In =
N
ÿ

k=0

[
CN

k a
N´k(b ´ a)k+1

( 1

nk+1

n
ÿ

i=1

ik
)]
,

where CN
k =

N !

k!(N ´ k)!
.

(b) Show that
n
ÿ

i=1

i k =
1

k + 1
(n+ 1)k+1 ´

1

k + 1

[
Ck+1

k´1

n
ÿ

i=1

i k´1 + ¨ ¨ ¨ + Ck+1
1

n
ÿ

i=1

i+ (n+ 1)
]
. (4.5.2)

Hint: Expand (j + 1)k for j = 0, 1, 2, ¨ ¨ ¨ , n by the binomial expansion formula, and
sum over j to obtain the equality above.



(c) Use (4.5.2) to show that lim
nÑ8

1

nk+1

n
ÿ

i=1

ik =
1

k + 1
for each k P N.

(d) Use the limit in (c) to find the limit of the Riemann sum in (a) by passing to the limit
as n approaches infinity. Simplify the result to show that

ż b

a

xN dx =
bN+1 ´ aN+1

N + 1
.

Hint: (c) By induction!

Problem 4.4. In class we have used the limit of Riemann sums to compute the integral
ż π

0
x cosx dx. Find this integral by completing what we did in class.

Problem 4.5. Determine the following limits by identifying the limits as limits of certain
Riemann sums so that the limits are the same as certain integrals.

1. lim
nÑ8

?
1 +

?
2 +

?
3 + ¨ ¨ ¨ +

?
n

n
3
2

.

2. lim
nÑ8

1
?
n

(
1 +

1
?
2
+ ¨ ¨ ¨ +

1
?
n

)
.

3. lim
nÑ8

[
1

?
n2 + 2n

+
1

?
n2 + 4n

+
1

?
n2 + 6n

+ ¨ ¨ ¨ +
1

?
n2 + 2n2

]
.

Problem 4.6. Let f : [a, b] Ñ R be Riemann integrable on [a, b], and m ď f(x) ď M for
all x P [a, b]. Show that

m(b ´ a) ď

ż b

a

f(x) dx ď M(b ´ a) .

Problem 4.7. Let f : [0, 1] Ñ R be a function satisfying that
ˇ

ˇf(x) ´ f(y)
ˇ

ˇ ď M |x ´ y| @x, y P [0, 1] .

Under the fact that f is Riemann integrable on [0, 1], show that
ˇ

ˇ

ˇ

ż 1

0

f(x) dx ´
1

n

n
ÿ

i=1

f
( i
n

)ˇ
ˇ

ˇ
ă
M

2n
.

Problem 4.8. Suppose that f, g : [a, b] Ñ R are Riemann integrable on [a, b]. Under the
fact that fg is Riemann integrable on [a, b], show that

ż b

a

f(x)g(x) dx ď

( ż b

a

ˇ

ˇf(x)
ˇ

ˇ

2
dx

) 1
2
( ż b

a

ˇ

ˇg(x)
ˇ

ˇ

2
dx

) 1
2
.



Problem 4.9. Recall that in Problem 2.5 we have “shown” that there exists a number e ą 1

such that
d

dx
loge x =

1

x
@x ą 0 .

In this example you need to compute
ż b

1
logex dx by the following steps.

(a) Partition [1, b] into n sub-intervals by xi = ri, where 1 ď i ď n and r = b
1
n . Show

that the Riemann sum given by the right end-point rule is

(r ´ 1) loger
n
ÿ

i=1

iri´1 . (4.5.3)

(b) Use (4.5.3) and the formula in Problem 4 of Exercise 4 to simplify the Riemann sum
given above and show that the Riemann sum is

nbr ´ nb ´ b+ 1

n(r ´ 1)
logeb =

[
b ´

b ´ 1

n(r ´ 1)

]
logeb .

(c) Pass the Riemann sum above to the limit as n Ñ 8 to show that
ż b

1

logex dx = b logeb ´ b+ 1 .

(d) Verify that f(x) = x loge x ´ x is an anti-derivative of y = loge x.

Problem 4.10. Use Problem 2.14 to find the integral
ż

?
3

1

1

x2 + 1
dx.

Problem 4.11. Find an anti-derivative of the function y = x sinx (using Riemann sums).
Hint: See Problem 2.4 for reference.



Chapter 5

Logarithmic, Exponential, and other
Transcendental Functions

5.1 Inverse Functions
Definition 5.1

A function g is the inverse function of the function f if

f(g(x)) = x for all x in the domain of g (5.1.1)

and
g(f(x)) = x for all x in the domain of f. (5.1.2)

The inverse function of f is usually denoted by f´1.

Some important observations about inverse functions:

1. If g is the inverse function of f , then f is the inverse function of g.

2. Note that (5.1.1) implies that

(a) the domain of g is contained in the range of f ,

(b) the domain of f contains the range of g,

(c) g is one-to-one since if g(x1) = g(x2), then x1 = f(g(x1)) = f(g(x2)) = x2

and (5.1.2) implies that

(a) the domain of f is contained in the range of g,
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(b) the domain of g contains the range of f ,

(c) f is one-to-one since if f(x1) = f(x2), then x1 = g(f(x1)) = g(f(x2)) = x2.

According to the statements above, the domain of f´1 is the range of f , and the range
of f´1 is the domain of f .

3. A function need not have an inverse function, but when it does, the inverse function
is unique: Suppose that g and h are inverse function of f , then

(a) the domain of g is identical to the domain of h (since they are both the range of
f);

(b) for each x in the range of f ,

f(g(x)) = x = f(h(x))

thus by the fact that f is one-to-one, g(x) = h(x) for all x in the range of f .

Therefore, g and h are identical functions.

Example 5.2. The functions

f(x) = 2x3 ´ 1 and g(x) =
3

c

x+ 1

2

are inverse functions of each other since

f(g(x)) = 2
[

3

c

x+ 1

2

]3
´ 1 = 2

x+ 1

2
´ 1 = x

and

g(f(x)) =
3

c

2x3 ´ 1 + 1

2
=

3
?
x3 = x .

Theorem 5.3
A function f has an inverse function if and only if f is one-to-one.

Proof. It suffices to show the “ð” direction. Suppose that f is one-to-one. Then for each
x in the range of f , there exists only a unique y in the domain of f such that f(y) = x.
Denote the map x ÞÑ y by g; that is,

y = g(x) if f(y) = x and x P Range(f) .



Then f(g(x)) = x for all x in the range of f . Since the domain of g is the range of f , we
find that

f(g(x)) = x for all x in the domain of g.

On the other hand, by the definition of g we must also have

g(f(x)) = x for all x in the domain of f ;

thus f has an inverse function.

Theorem 5.4
Let f be a function with inverse f´1. The graph of f contains the point (a, b) if and
only if the graph of f´1 contains the point (b, a).

Proof. Let (a, b) be on the graph of f . Then b = f(a) which implies that f´1(b) =

f´1(f(a)) = a. Therefore, (b, a) is on the graph of f´1.

Remark 5.5. Theorem 5.4 implies that the graph of f and the graph of f´1 is symmetric
above the straight line y = x.

Theorem 5.6
Let f be a function defined on an interval I and have an inverse function. Then

1. if f is continuous on I, then f´1 is continuous on its domain;

2. if f is strictly increasing on I, then f´1 is strictly increasing on the range of f ;

3. if f is strictly decreasing on I, then f´1 is strictly decreasing on the range of f ;

4. if f is differentiable on an interval containing c and f 1(c) ‰ 0, then f´1 is
differentiable at f(c).

Proof. We only show 2 (and the proof of 3 is similar).
To show that f´1 is strictly increasing on the range of f , we need to show that

f´1(x1) ă f´1(x2) if x1 ă x2 are in the range of f.

Nevertheless, if f is increasing on I and x1 ă x2 are in the range of f , there exists y1 =

f´1(x1) and y2 = f´1(x2) in I such that f(y1) = x1 and f(y2) = x2. Since x1 ă x2, y1 ­ě y2;
thus the trichotomy law implies that y1 ă y2.



Remark 5.7. If I is not an interval, then even if f : I Ñ R is one-to-one and continuous,
f´1 might be discontinuous. For example, let I =

[
0,
π

2

)
Y
(π
2
, π) and f(x) = tanx. Then

clearly f : I Ñ R is one-to-one, onto and continuous; however, the inverse function is not
continuous at 0: you can check this by looking at the graph of f´1.

x

y

˝(0, π)

‚

x = tan y

x = tan y

Figure 5.1: The graph of f´1

From the graph of f´1, we find that lim
xÑ0+

f´1(x) = 0 while lim
xÑ0´

f´1(x) = π; thus f is not
continuous at 0.

Theorem 5.8: Inverse Function Differentiation
Let f be a function that is differentiable on an interval I. If f has an inverse function
g, then g is differentiable at any x for which f 1(g(x)) ‰ 0. Moreover,

g 1(x) =
1

f 1(g(x))
for all x with f 1(g(x)) ‰ 0.

Proof. Suppose that f is differentiable at g(c) P I and f 1(g(c)) ‰ 0. We show that g is
differentiable at c. If k ‰ 0 is small enough, g(c+ k) ´ g(c) = h. Then c+ k = f(g(c) + h).
Moreover, h Ñ 0 as k Ñ 0 since g is continuous (by Theorem 5.6). Therefore,

g(c+ k) ´ g(c)

k
=

h

f(g(c) + h) ´ f(g(c))
=

h

f(g(c) + h) ´ f(g(c))

which approaches 1

f 1(g(c))
as k approaches zero. Therefore, g 1(c) =

1

f 1(g(c))
.

5.2 The Function y = lnx

Recall Example 4.11 that
ż b

a
xq dx =

bq+1 ´ aq+1

q + 1
if q ‰ ´1 is a rational number and

0 ă a ă b. What happened to the case
ż b

a
x´1 dx? In the following, we define a new



function which can be used to compute this integral.
Definition 5.9

The function ln : (0,8) Ñ R is defined by

lnx =

ż x

1

1

t
dt @x ą 0 .

We emphasize again that we cannot write lnx =
ż x

1

1

x
dx since the upper limit in the

integral is some arbitrary but fixed number (denoted by x) and the variable of the integrand
should be really arbitrary.

Remark 5.10. For historical reason, when the variable is clear we should ignore the paren-
theses and write lnx instead of ln(x). On the other hand, if the variable is product of several
variables such as xy, for the sake of clarity we should still write ln(xy) instead of lnxy.

5.2.1 Properties of y = lnx
‚ Differentiability

Since the function y =
1

x
is continuous on (0,8), the Fundamental Theorem of Calculus

implies the following
Theorem 5.11

d

dx
lnx =

1

x
for all x ą 0.

In particular, the function y = lnx is continuous on (0,8).

Corollary 5.12

The function ln : (0,8) Ñ R is strictly increasing on (0,8), and the graph of y = lnx
is concave downward on (0,8).

Example 5.13. In this example we prove that

x ´
x2

2
ď ln(1 + x) ď x @x ą 0 . (5.2.1)

Let f(x) = ln(1 + x) ´ x+
x2

2
and g(x) = ln(1 + x) ´ x. Then for x ą 0,

f 1(x) =
1

1 + x
´ 1 + x =

x2

1 + x
ą 0 , g 1(x) =

1

1 + x
´ 1 =

´x

1 + x
ă 0 .



The two identities above shows that f is strictly increasing on [0,8) and g is strictly
decreasing on [0,8). Therefore,

f(x) ą f(0) = 0 and g(x) ă g(0) = 0 @x ą 0 .

These inequalities lead to (5.2.1).

‚ The range

Next we show that lim
xÑ8

lnx = 8 and lim
xÑ´8

lnx = ´8. To see this, we note that

ln(2n) =
ż 2n

1

1

t
dt =

ż 2

1

1

t
dt+

ż 4

2

1

t
dt+

ż 8

4

1

t
dt+ ¨ ¨ ¨ +

ż 2n

2n´1

1

t
dt

=
n
ÿ

i=1

ż 2i

2i´1

1

t
dt ě

n
ÿ

i=1

ż 2i

2i´1

1

2i
dt =

n
ÿ

i=1

2i ´ 2i´1

2i
=

n
ÿ

i=1

1

2
=
n

2

and

ln(2´n) =

ż 2´n

1

1

t
dt = ´

ż 1

2´n

1

t
dt = ´

[ ż 2´n+1

2´n

1

t
dt+

ż 2´n+2

2´n+1

1

t
dt+ ¨ ¨ ¨ +

ż 1

1
2

1

t
dt
]

= ´

n
ÿ

i=1

ż 21´i

2´i

1

t
dt ď ´

n
ÿ

i=1

ż 21´i

2´i

1

21´i
dt = ´

n
ÿ

i=1

21´i ´ 2´i

21´i
= ´

n
ÿ

i=1

1

2
= ´

n

2
;

thus we have lim
xÑ8

lnx = 8 and lim
xÑ´8

lnx = ´8. By the continuity of ln and the Interme-

diate Value Theorem, for each b P R there exists one a P (0,R) such that b = ln a. By the
strict monotonicity ln : (0,8) Ñ R is one-to-one and onto.

Remark 5.14. In particular, there exists one unique number e such that ln e = 1. We note
that

ln 2 =

ż 2

1

1

t
dt =

ż 1.5

1

1

t
dt+

ż 2

1.5

1

t
dt ď

0.5

1
+

0.5

1.5
=

5

6
ă 1

and

ln 3 =

ż 3

1

1

t
dt =

( ż 1.25

1

+

ż 1.5

1.25

+

ż 1.75

1.5

+

ż 2

1.75

+

ż 2.5

2

+

ż 3

2.5

)
1

t
dt

ě
0.25

1.25
+

0.25

1.5
+

0.25

1.75
+

0.25

2
+

0.5

2.5
+

0.5

3

=
1

5
+

1

6
+

1

7
+

1

8
+

1

5
+

1

6
=

841

840
ą 1 .

Therefore, 2 ă e ă 3. In fact, e « 2.718281828459.



Example 5.15. In this example we show that there is no slant/horizontal asymptote of
the graph of y = lnx. Recall that if the graph of y = lnx has a slant/horizontal asymptote

y = mx+ k, then m = lim
xÑ8

lnx
x

and k = lim
xÑ8

(lnx ´ mx). We first show that lim
xÑ8

lnx
x

= 0.

Let ε ą 0. Choose M = max
␣ε

2
, 1
(

. Then if x ą M , for all 1 ă c ă x we have

0 ă
lnx
x

=
1

x

ż x

1

1

t
dt =

1

x

[ ż c

1

1

t
dt+

ż x

c

1

t
dt
]

ď
c ´ 1

x
+

1

x

ż x

c

1

t
dt .

By the mean value theorem for integrals (Theorem 4.26), there exists c ď d ď x such that
ż x

c

1

t
dt =

x´ c

d
; thus if x ą M and 1 ă c ă x,

0 ă
lnx
x

=
1

x

ż x

1

1

t
dt ď

c ´ 1

x
+
x ´ c

dx
ď
c ´ 1

M
+

1

M
ď
εc

2
ă ε ,

where the last inequality is concluded by choosing 1 ă c ă x and c ă 2. Therefore, for every
ε ą 0 there exists M ą 0 such that

ˇ

ˇ

ˇ

lnx
x

´ 0
ˇ

ˇ

ˇ
ă ε whenever x ą M .

This is exactly the definition of lim
xÑ8

lnx
x

= 0. However, since the range of ln is R, lim
xÑ8

lnx =

8 which implies that
lim
xÑ0

(lnx ´ 0 ¨ x) D.N.E.

Therefore, there is no slant/horizontal asymptote of the graph of y = lnx.

‚ Logarithmic Laws

The most important property of the function y = lnx is the relation among ln a, ln b and
ln(ab). By the property of integration,

ln(ab) =
ż ab

1

1

t
dt =

ż a

1

1

t
dt+

ż ab

a

1

t
dt = ln a+

ż ab

a

1

t
dt .

By the substitution t = au, dt = adu; thus
ż ab

a

1

t
dt =

ż b

1

1

au
adu =

ż b

1

1

u
du = ln b .

Therefore, we obtain the identity:

ln(ab) = ln a+ ln b @ a, b ą 0 . (5.2.2)



Having established (5.2.2), we can show that the function ln is a logarithmic function
for the following reason. First, we observe that for all a ą 0 and n P N,

ln(an) = ln(an´1a) = ln(an´1) + ln a = ln(an´2a) + ln a = ln(an´2) + 2 ln a = ¨ ¨ ¨ = n ln a .

Moreover, by the definition of ln, 0 = ln(1) = ln(a0) = 0 ln a; thus

ln(an) = n ln a @ a ą 0 , n P N Y t0u .

Next, by the law of exponents, for a ą 0 and n P N we have

0 = ln(a0) = ln(an ¨ a´n) = ln(an) + ln(a´n) = n ln a+ ln(a´n) .

Therefore, for all n P N, we also have ln(a´n) = ´n ln a; hence

ln(an) = n ln a @ a ą 0 , n P Z .

The identity above also implies that if k, n P Z and n ‰ 0,

n ln(a k
n ) = ln((a k

n )n) = ln(ak) = k ln a ,

and this shows that

ln(a k
n ) =

k

n
ln a @ a ą 0 , n, k P Z , n ‰ 0 .

As a consequence,
ln(ar) = r ln a @ a ą 0 , r P Q .

Finally, we find that ln(er) = r ln e = r, so lnx is indeed the logarithm of x to the base e.
In other words, we obtain that

loge x = lnx =

ż x

1

1

t
dt @x ą 0 . (5.2.3)

Theorem 5.16: Logarithmic properties of y = lnx
Let a, b be positive numbers and r be a rational number. Then

1. ln 1 = 0; 2. ln(ab) = ln a+ ln b;

3. ln(ar) = r ln a; 4. ln
(a
b

)
= ln a ´ ln b.



Remark 5.17. Since the function y = lnx has the logarithmic property, it is called the
natural logarithmic function.

Example 5.18. Let f(x) = (x2 + 3)2

x 3
?
x2 + 1

. Since ln f(x) = 2 ln(x2 + 3) ´ lnx´
1

3
ln(x2 + 1) for

x ą 0, by the chain rule we find that
f 1(x)

f(x)
=

d

dx
ln f(x) = 4x

x2 + 3
´

1

x
´

2x

3(x2 + 1)
;

thus
f 1(x) =

(x2 + 3)2

x 3
?
x2 + 1

[ d
dx

ln f(x) = 4x

x2 + 3
´

1

x
´

2x

3(x2 + 1)

]
.

Theorem 5.19
If f is a differentiable function on an interval I, then ln |f | is differentiable at those
point x P I satisfying f(x) ‰ 0. Moreover,

d

dx
ln
ˇ

ˇf(x)
ˇ

ˇ =
f 1(x)

f(x)
for all x P I with f(x) ‰ 0 .

Proof. Note that the function y = |x| is differentiable at non-zero points, and
d

dx
|x| =

d

dx
(x2)

1
2 =

1

2
(x2)´ 1

2 ¨ 2x =
x

|x|
@x ‰ 0 .

If f(c) ‰ 0, by the fact that the natural logarithmic function ln is differentiable at |f(c)|,
the absolute function | ¨ | is differentiable at f(c) and f is differentiable at c, the chain rule
implies that y = ln

ˇ

ˇf(x)
ˇ

ˇ is differentiable at c and

d

dx

ˇ

ˇ

ˇ

x=c
ln
ˇ

ˇf(x)
ˇ

ˇ =
1

ˇ

ˇf(c)
ˇ

ˇ

f(c)
ˇ

ˇf(c)
ˇ

ˇ

f 1(c) =
f 1(c)

f(c)
.

Example 5.20. d

dx
ln | cosx| =

´ sinx
cosx = ´ tanx for all x with cosx ‰ 0.

Example 5.21. Compute the derivative of f(x) = (x2 + 3)2

x 3
?
x2 + 1

for x ą 0.
Let h(x) = ln f(x). Then

f 1(x)

f(x)
= h 1(x) =

d

dx

[
2 ln(x2 + 3) ´ lnx ´

1

3
ln(x2 + 1)

]
= 2

d

dx
ln(x2 + 3) ´

d

dx
lnx ´

1

3

d

dx
ln(x2 + 1)

=
4x

x2 + 3
´

1

x
´

2x

3(x2 + 1)
;



thus
f 1(x) =

(x2 + 3)2

x 3
?
x2 + 1

[ 4x

x2 + 3
´

1

x
´

2x

3(x2 + 1)

]
.

5.3 Integrations Related to y = lnx
Theorem 5.19 implies the following

Theorem 5.22

1.
ż

1

x
dx = ln |x| + C; 2.

ż

f 1(x)

f(x)
dx = ln

ˇ

ˇf(x)
ˇ

ˇ+ C.

Example 5.23. Compute
ż

x

x2 + 1
dx. From observation, the numerator is a half of the

derivative of the denominator, so
ż

x

x2 + 1
dx =

1

2

ż

2x

x2 + 1
dx =

1

2
ln(x2 + 1) + C .

Example 5.24. Compute
ż

1

x lnx dx. Let u = lnx. Then du =
1

x
dx; thus

ż

1

x lnx dx =

ż

1

u
du = ln |u| + C = ln | lnx| + C .

Theorem 5.25

1.
ż

sinx dx = ´ cosx+ C; 2.
ż

cosx dx = sinx+ C;

3.
ż

tanx dx = ´ ln | cosx| + C = ln | secx| + C;

4.
ż

secx dx = ln | secx+ tanx| + C.

Proof. We only prove 4. Let t = tan x
2

. Then sinx =
2t

1 + t2
, cos x =

1 ´ t2

1 + t2
and dx =

2dt

1 + t2
;

thus
ż

secx dx =

ż

1 + t2

1 ´ t2
2

1 + t2
dt =

ż

2

1 ´ t2
dt =

ż

´2

(t ´ 1)(t+ 1)
dt

=

ż [ 1

t+ 1
´

1

t ´ 1

]
dt = ln |t+ 1| ´ ln |t ´ 1| + C = ln

ˇ

ˇ

ˇ

t+ 1

t´ 1

ˇ

ˇ

ˇ
+ C .



The conclusion then follows from the identity

t+ 1

t ´ 1
=

sin x
2
+ cos x

2

sin x
2

´ cos x
2

=

(
sin x

2
+ cos x

2

)2
sin2 x

2
´ cos2 x

2

=
1 + 2 sin x

2
cos x

2

´ cosx

= ´
1 + sinx

cosx = ´(secx+ tanx) .

Finally we compute
ż a

1
lnx dx for a ą 0. Suppose first that a ą 1. Following the idea

of Example 4.5, we let r = a
1
n and xi = ri, as well as a partition P = t1 = x0 ă x1 ă

¨ ¨ ¨ ă xn = au of [1, a]. Then the Riemann sum of f for the partition P given by the right
end-point rule, which happens to be the upper sum of f for the partition P , is

S(P) =
n
ÿ

i=1

ln(xi)(xi ´ xi´1) =
n
ÿ

i=1

ln(ri)(ri ´ ri´1) = (r ´ 1) ln r
n
ÿ

i=1

iri´1 .

Note that iri´1 =
d

dr
ri; thus

n
ÿ

i=1

iri´1 =
n
ÿ

i=1

d

dr
ri =

d

dr

n
ÿ

i=1

ri =
d

dr

rn+1 ´ r

r ´ 1
=

[
(n+ 1)rn ´ 1

]
(r ´ 1) ´ rn+1 + r

(r ´ 1)2

=
nrn+1 ´ (n+ 1)rn + 1

(r ´ 1)2
=
nar ´ (n+ 1)a+ 1

(r ´ 1)2
.

By the fact that n =
ln a
ln r ,

S(P) =
ra ln a ´ a ln a ´ a ln r + ln r

r ´ 1
.

Since }P} Ñ 0 is equivalent to that r Ñ 1,

lim
}P}Ñ0

S(P) = lim
rÑ1

ra ln a ´ a ln a ´ a ln r + ln r
r ´ 1

=
d

dr

ˇ

ˇ

ˇ

r=1

(
ra ln a ´ a ln a ´ a ln r + ln r

)
= a ln a ´ a+ 1 .

If 0 ă a ă 1, by Remark 4.16 it suffices to show that a 1
n Ñ 1 as n approaches infinity.

Nevertheless, a 1
n = 1/(1/a)

1
n and the denominator approaches 1 as n approaches infinity;

thus lim
nÑ8

a
1
n = 1 even if 0 ă a ă 1.

Theorem 5.26

1.
ż a

1
lnx dx = a ln a ´ a+ 1 for all a ą 0; 2.

ż

lnx dx = x lnx ´ x+ C.



Example 5.27. Find the limit lim
nÑ8

(
n!

nn

) 1
n .

Consider the sum
n
ř

k=1

1

n
ln k

n
. This sum looks like a Riemann sum of the “integral”

ż 1

0
lnx dx; however, since ln x blows up at x = 0, lnx is not Riemann integrable on [0, 1].

In other words, the sum is not a Riemann sum for a particular integral.
On the other hand, by the monotonicity of the function y = lnx, we find that

n
ÿ

k=1

1

n
ln k
n
=

n´1
ÿ

k=1

1

n
ln k
n

ď

ż 1

1
n

lnx dx ď

n
ÿ

k=2

1

n
ln k
n
= ´

1

n
ln 1

n
+

n
ÿ

k=1

1

n
ln k
n
;

thus by Theorem 5.26,

1

n
´ 1 ď

n
ÿ

k=1

1

n
ln k
n

ď ´
1

n
ln 1

n
+

1

n
´ 1 .

Therefore, by the fact that lim
nÑ8

lnn
n

= 0, we conclude from the Squeeze Theorem that

lim
nÑ8

n
ÿ

k=1

1

n
ln k
n
= ´1 .

Finally, note that
n
ÿ

k=1

1

n
ln k
n
=

1

n

n
ÿ

k=1

ln k
n
=

1

n
ln n!

nn
= ln

( n!
nn

) 1
n
;

thus the continuity and strict monotonicity of y = lnx implies that

lim
nÑ8

( n!
nn

) 1
n
=

1

e
.

5.4 Exponential Functions
In the previous section we have shown that the natural logarithmic function ln : (0,8) Ñ R
is one-to-one and onto. Therefore, for each a P R there exists a unique b P (0,8) satisfying
a = ln b. The map a ÞÑ b is called the natural exponential function. To be more precise, we
have the following
Definition 5.28

The natural exponential function exp : R Ñ (0,8) is a function defined by

exp(x) = y if and only if x = ln y .



By the definition of the natural exponential function, we have

exp(lnx) = x @x P (0,8) and ln(exp(x)) = x @x P R . (5.4.1)

Therefore, exp and ln are inverse functions to each other; thus exp : R Ñ (0,8) is one-to-
one, onto, and strictly increasing. Note that by the definition, exp(0) = 1.

Let a ą 0 be a real number. If r P Q, ar is a well-defined positive number and the
logarithmic laws implies that

ln ar = r ln a .

By the definition of the natural exponential function, ar = exp(r ln a) for all r P Q. Since
exp : R Ñ (0,8) is continuous, for a real number x, we shall defined ax as exp(x ln a) and
this induces the following
Definition 5.29

Let a ą 0 be a real number. For each x P R, the exponential function to the base a,

denote by y = ax, is defined by ax ” exp(x ln a). In other words,

ax = exp(x ln a) @x P R .

Remark 5.30. For each x P R, the number 1x is 1 since 1x = exp(x ln 1) = exp(0) = 1.

Remark 5.31. The function y = ex is identical to the function y = exp(x) since

ex = exp(x ln e) = exp(x) @x P R .

Therefore, we often write exp(x) as ex as well (even though ex, when x is a irrational
number, has to be defined through the natural exponential function), and write ax = ex ln a.
Moreover, by the definition of the natural exponential function,

ln(ax) = ln(exp(x ln a)) = x ln a @ a ą 0 and x P R . (5.4.2)

5.4.1 Properties of Exponential Functions
‚ The range and the strict monotonicity of the exponential functions

Note that Theorem 5.6 implies that exp : R Ñ (0,8) is strictly increasing. Suppose that
a ą 1. Then ln a ą 0 which further implies that

ax1 = exp(x1 ln a) ă exp(x2 ln a) = ax2 @x1 ă x2 .



Similarly, if 0 ă a ă 1, the exponential function to the base a is a strictly decreasing
function.

Moreover, since exp : R Ñ (0,8) is onto, we must have that for 0 ă a ‰ 1, the range of
the exponential function to the base a is also R. Therefore, for 0 ă a ‰ 1, the exponential
function a¨ : R Ñ (0,8) is one-to-one and onto.

‚ The law of exponentials

(a) If a ą 0, then ax+y = axay for all x, y P R: First we show the case when a = e. Let
exp(x) = c and exp(y) = d or equivalently, x = ln c and y = ln d. Then

ex+y = exp(x+ y) = exp(ln c+ ln d) = exp(ln(cd)) = cd = exey .

For general a ą 0, by the definition of exponential functions, for x, y P R,

ax+y = exp((x+ y) ln a) = ex ln a+y ln a = ex ln aey ln a = exp(x ln a) exp(y ln a) = axay .

(b) If a ą 0, then ax´y =
ax

ay
for all x, y P R: Using (a), we obtain that

ax´yay = ax´y+y = ax @x, y P R ;

thus ax´y =
ax

ay
for all x, y P R.

(c) If a, b ą 0, then (ab)x = axbx for all x P R: By the definition of the exponential
functions,

(ab)x = ex ln(ab) = ex(ln a+ln b) = ex ln a+x ln b = ex ln aex ln b = axbx .

(d) If a, b ą 0, then
(
a

b

)x

=
ax

bx
for all x P R: Using (b), we obtain that

(a
b

)x

= ex ln a
b = ex ln(ab´1) = ex(ln a´ln b) =

ex ln a

ex ln b
=
ax

bx
.

(e) If a ą 0, then (ax)y = axy for all x, y P R: Using (5.4.2),

(ax)y = ey ln ax = exy ln a = axy .



‚ The differentiation of the exponential functions

Theorem 5.32
d

dx
ex = ex for all x P R.

Proof. Define f : (0,8) Ñ R and g : R Ñ (0,8) by f(x) = lnx and g(x) = exp(x) = ex.
Then f and g are inverse functions to each other, and the Inverse Function Differentiation
implies that

g 1(x) =
1

f 1(g(x))
@x P R with f 1(g(x)) ‰ 0 .

Since f 1(x) =
1

x
, f 1(g(x)) =

1

g(x)
= exp(´x) ‰ 0 for all x P R; thus

g 1(x) = g(x) @x P R .

Corollary 5.33

1.
ż a

0
ex dx = ea ´ 1 for all a ą 0; 2.

ż

ex dx = ex + C.

The following corollary is a direct consequence of Theorem 5.32 and the chain rule.
Corollary 5.34

Let f be a differentiable function defined on an interval I. Then

d

dx
ef(x) = exf 1(x) @x P I .

Corollary 5.35

1. For a ą 0, d

dx
ax = ax ln a for all x P R

(
so

ż

ax dx =
ax

ln a + C
)

.

2. Let r be a real number. Then d

dx
xr = rxr´1 for all x ą 0.

3. Let f, g be differentiable functions defined on an interval I. Then

d

dx
|f(x)|g(x) = |f(x)|g(x)

[
g 1(x) ln |f(x)|+

f 1(x)

f(x)
g(x)

]
@x P I with f(x) ‰ 0 .

Proof. The corollary holds because ax = ex ln a, xr = er lnx, and |f(x)|g(x) = eg(x) ln |f(x)|.



Example 5.36. d

dx
e´ 3

x = e´ 3
x
d

dx

(
´

3

x

)
=

3e´3/x

x2
for all x ‰ 0.

Example 5.37. Let f : (0,8) Ñ R be defined by f(x) = xx. Then

f 1(x) =
d

dx
ex lnx = ex lnx d

dx
(x lnx) = xx(lnx+ 1) .

Example 5.38. Find the indefinite integral
ż

5xe´x2
dx.

Let u = ´x2. Then du = ´2xdx; thus
ż

5xe´x2

dx = ´
5

2

ż

e´x2

(´2x) dx = ´
5

2

ż

eu du = ´
5

2
eu + C = ´

5

2
e´x2

+ C .

Example 5.39. Compute the definite integral
ż 0

´1
ex cos(ex) dx.

Let u = ex. Then du = ex dx; thus
ż 0

´1

ex cos(ex) dx =

ż 1

e´1

cosu du = sinu
ˇ

ˇ

ˇ

u=1

u=e´1
= sin 1 ´ sin(e´1) .

5.4.2 The number e

By the mean value theorem for integrals, for each x ą 0 there exists c P [1, 1 + x] such that

ln(1 + x)

x
=

1

x

ż 1+x

1

1

t
dt =

1

c

which implies that

(1 + x)
1
x = exp

(
ln(1 + x)

1
x

)
= exp

( ln(1 + x)

x

)
= exp

(1
c

)
.

By the fact that the natural exponential function is continuous, we find that

lim
xÑ0+

(1 + x)
1
x = lim

xÑ0+
exp

(1
c

)
= lim

cÑ1+
exp

(1
c

)
= e .

Note that the limit above also shows that

e = lim
xÑ8

(
1 +

1

x

)x
. (5.4.3)

Example 5.40. Let f(x) = (1 + x)
1
x = e

ln(1+x)
x . Then

f 1(x) = (1 + x)
1
x ¨

x

1 + x
´ ln(1 + x)

x2
=

(1 + x)
1
x

x2

(
1 ´

1

1 + x
´ ln(1 + x)

)
.



Let g(x) = 1 ´
1

1 + x
´ ln(1 + x). Then

g 1(x) =
1

(1 + x)2
´

1

1 + x
=

´x

(1 + x)2
ă 0 if x ą 0 .

Therefore, g(x) ă g(0) = 0 if x ą 0; thus f 1(x) ă 0 for x ą 0. This implies that f is strictly
decreasing on (0,8). This fact then implies that the function h(x) =

(
1 +

1

x

)x is strictly
increasing on (0,8).

Example 5.41. From Example 5.27 we find that for large n we have
(
n!

nn

) 1
n

«
1

e
which

seems to imply that n! « nne´n. This is in fact not true since the n-root of any constant,
or even n, converges to 1. In this example, we try to determine how n! behaves as n Ñ 8.

Recall that the graph of y = lnx is concave downward. Therefore, we have the two
figures below

xO 2

y

3 n

· · · · · ·

n− 14

y = lnx

(a) Under-estimate of
ż n

1

lnxdx

xO 2

y

3

y = lnx

4 5 2n− 1 2n 2n + 1

· · · · · ·

(b) Over-estimate of
ż 2n+1

1

lnxdx

and find that
ż n

1

lnx dx ě

n
ÿ

k=2

ln k + ln(k ´ 1)

2
=

1

2

n
ÿ

k=2

ln k + 1

2

n´1
ÿ

k=1

ln k = ln(n!) ´
1

2
lnn

and
ż 2n+1

1

lnx dx ď

n
ÿ

k=1

2 ln(2k) = 2n ln 2 + 2
n
ÿ

k=1

ln k = 2n ln 2 + 2 ln(n!) .

Theorem 5.26 then shows that

ln(n!) ´
1

2
lnn ď n lnn ´ n+ 1 and

(
n+

1

2

)
ln
(
n+

1

2

)
+

1

2
ln 2 ´ n ď ln(n!) .

As a consequence, we conclude that
?
2
(
1 +

1

2n

)n+0.5
ď

n!

nn+0.5e´n
ď e @n P N . (5.4.4)



Note that the function f(x) =
(
1+

1

2x

)x+0.5 is decreasing on (0,8) since (5.2.1) shows that

f 1(x) = f(x)
d

dx

[(
x+

1

2

)
ln
(
1 +

1

2x

)]
= f(x)

[
ln
(
1 +

1

2x

)
´

1

2x

]
ď 0 for all x ą 0 ;

thus (5.4.3) and (5.4.4) imply that
?
2e ď

n!

nn+0.5e´n
ď e @n P N . (5.4.5)

5.5 Logarithmic Functions to Bases Other than e

Definition 5.42
Let 0 ă a ‰ 1 be a real number. The logarithmic function to the base a, denoted by
loga, is the inverse function of the exponential function to the base a. In other words,

y = loga x if and only if ay = x .

Theorem 5.43

Let 0 ă a ‰ 1. Then loga x =
lnx
ln a for all x ą 0.

Proof. Let y = loga x. Then ay = x; thus (5.4.2) implies that

y ln a = ln(ay) = lnx

which shows y =
lnx
ln a .

5.5.1 Properties of logarithmic functions
‚ Logarithmic laws

The following theorem is a direct consequence of Theorem 5.16 and 5.43.
Theorem 5.44: Logarithmic properties of y = loga x

Let a, b, c be positive numbers, a ‰ 1, and r is rational. Then

1. loga 1 = 0; 2. loga(bc) = loga b+ logb c;

3. loga(a
x) = x for all x P R; 4. aloga x = x for all x ą 0;

5. loga

(b
c

)
= loga b ´ loga c.



‚ The change of base formula

We have the following identity

loga c =
logb c

logb a
@ a, b, c ą 0, a, b ‰ 1 .

In fact, if d = loga c, then c = ad; thus logb c = d logb a which implies the identity above.

‚ The differentiation of y = loga x

By Theorem 5.43, we find that
d

dx
loga x =

1

x ln a @x ą 0 .

Similar to Theorem 5.19, if f is differentiable on an interval I, we also have
d

dx
loga

ˇ

ˇf(x)
ˇ

ˇ =
f 1(x)

f(x) ln a for all x P I with f(x) ‰ 0 .

5.6 Indeterminate Forms and L’Hôspital’s Rule
Theorem 5.45: Cauchy Mean Value Theorem

Let f, g : [a, b] Ñ R be continuous on [a, b] and differentiable on (a, b). If g 1(x) ‰ 0

for all x P (a, b), then there exists c P (a, b) such that

f 1(c)

g 1(c)
=
f(b) ´ f(a)

g(b) ´ g(a)
.

Proof. Let h : [a, b] Ñ R be defined by

h(x) =
(
f(x) ´ f(a)

)(
g(b) ´ g(a)

)
´
(
f(b) ´ f(a)

)(
g(x) ´ g(a)

)
.

Then h(a) = h(b) = 0, and h is differentiable on (a, b). Then Rolle’s Theorem implies that
there exists c P (a, b) such that h 1(c) = 0; thus for some c P (a, b),

f 1(c)
(
g(b) ´ g(a)

)
´
(
f(b) ´ f(a)

)
g 1(c) = 0 .

Since g 1(x) ‰ 0 for all x P (a, b), the Mean Value Theorem implies that g(b) ‰ g(a).
Therefore, the equality above implies that

f 1(c)

g 1(c)
=
f(b) ´ f(a)

g(b) ´ g(a)

for some c P (a, b).



Theorem 5.46: L’Hôspital’s Rule

Let f, g be differentiable on (a, b), and f(x)

g(x)
and f 1(x)

g 1(x)
be defined on (a, b). If

lim
xÑa+

f 1(x)

g 1(x)
exists, and one of the following conditions holds:

1. lim
xÑa+

f(x) = lim
xÑa+

g(x) = 0; 2. lim
xÑa+

f(x) = lim
xÑa+

g(x) = 8,

then lim
xÑa+

f(x)

g(x)
exists, and

lim
xÑa+

f(x)

g(x)
= lim

xÑa+

f 1(x)

g 1(x)
.

Proof. We first prove L’Hôspital’s rule for the case that lim
xÑa+

f(x) = lim
xÑa+

g(x) = 0. Define
F,G : (a, b) Ñ R by

F (x) =

"

f(x) if x P (a, b) ,

0 if x = a ,
and G(x) =

"

g(x) if x P (a, b) ,

0 if x = a .

Then for all x P (a, b), F,G are continuous on the closed [a, x], and differentiable on the
open interval with end-points (a, x). Therefore, the Cauchy Mean Value Theorem implies
that there exists a point c between a and x such that

f 1(c)

g 1(c)
=
F 1(c)

G 1(c)
=
F (x) ´ F (a)

G(x) ´ G(a)
=
F (x)

G(x)
=
f(x)

g(x)
.

Since c approaches a as x approaches a, we have

lim
xÑa+

f 1(c)

g 1(c)
= lim

cÑa+

f 1(c)

g 1(c)
= lim

xÑa+

f 1(x)

g 1(x)
;

thus
lim
xÑa+

f(x)

g(x)
= lim

xÑa+

f 1(c)

g 1(c)
= lim

xÑa+

f 1(x)

g 1(x)
.

Next we prove L’Hôspital’s rule for the case that lim
xÑa+

f(x) = lim
xÑa+

g(x) = 8. Let

L = lim
xÑa+

f 1(x)

g 1(x)
and ε ą 0 be given. Then there exists δ1 ą 0 such that

ˇ

ˇ

ˇ

f 1(x)

g 1(x)
´ L

ˇ

ˇ

ˇ
ă
ε

2
whenever a ă x ă a+ δ1 (ă b) .



Let d = a + δ1. For a ă x ă d, the Cauchy mean value theorem implies that for some c in
(x, d) such that

f(x) ´ f(d)

g(x) ´ g(d)
=
f 1(c)

g 1(c)
.

Note that the quotient above belongs to
(
L ´

ε

2
, L+

ε

2

)
(if a ă x ă d). Moreover,

f(x) ´ f(d)

g(x) ´ g(d)
´
f(x)

g(x)
=

(
f(x) ´ f(d)

)
g(x) ´

(
g(x) ´ g(d)

)
f(x)(

g(x) ´ g(d)
)
g(x)

=

(
f(x) ´ f(d)

)
g(d) ´

(
g(x) ´ g(d)

)
f(x)(

g(x) ´ g(d)
)
g(d)

=
f 1(c)

g 1(c)

g(d)

g(x)
´
f(d)

g(x)
;

thus
ˇ

ˇ

ˇ

f(x) ´ f(d)

g(x) ´ g(d)
´
f(x)

g(x)

ˇ

ˇ

ˇ
ď

(
|L| +

ε

2

)ˇ
ˇ

ˇ

g(d)

g(x)

ˇ

ˇ

ˇ
+
ˇ

ˇ

ˇ

f(d)

g(x)

ˇ

ˇ

ˇ
whenever a ă x ă d .

Since lim
xÑa+

g(x) = 8, the right-hand side of the inequality above approaches zero as x
approaches a from the right. Therefore, there exists 0 ă δ ă δ1, such that

ˇ

ˇ

ˇ

f(x) ´ f(d)

g(x) ´ g(d)
´
f(x)

g(x)

ˇ

ˇ

ˇ
ă
ε

2
whenever a ă x ă a+ δ (ă d ă b) .

As a consequence, if a ă x ă a+ δ,
ˇ

ˇ

ˇ

f(x)

g(x)
´ L

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ

f(x) ´ f(d)

g(x) ´ g(d)
´
f(x)

g(x)

ˇ

ˇ

ˇ
+
ˇ

ˇ

ˇ

f(x) ´ f(d)

g(x) ´ g(d)
´ L

ˇ

ˇ

ˇ
ă
ε

2
+
ε

2
= ε

which concludes the theorem.

Remark 5.47. 1. L’Hôspital Rule can also be applied to the case when lim
xÑb´

replaces lim
xÑa+

in the theorem. Moreover, the one-sided limit can also be replaced by full limit lim
xÑc

if c P (a, b) (by considering L’Hôspital’s Rule on (a, c) and (c, b), respectively). See
Example 5.48 for more details on the full limit case.

2. L’Hôspital Rule can also be applied to limits as x Ñ 8 or x Ñ ´8 (and here b or a
has to be changed to 8 or ´8 as well). To see this, we note that if F (x) = f

(1
x

)
and

G(x) = g
(1
x

)
, then either lim

xÑ0+
F (x) = lim

xÑ0+
G(x) = 0 or lim

xÑ0+
F (x) = lim

xÑ0+
G(x) = 8;

thus L’Hôspital Rule implies that

lim
xÑ8

f 1(x)

g 1(x)
= lim

yÑ0+

f 1
(
1
y

)
g 1
(
1
y

) = lim
yÑ0+

f 1
(
1
y

)
´1
y2

g 1
(
1
y

)
´1
y2

= lim
yÑ0+

F 1(y)

G 1(y)
= lim

yÑ0+

F (y)

G(y)
= lim

xÑ8

f(x)

g(x)
.



3. L’Hôspital’s rule only states that under suitable assumptions, if the limit of f 1(x)

g 1(x)

exists, so does the limit of f(x)
g(x)

and the limits are identical, but not the other way

around. In other words, under the same assumptions in the statement of L’Hôspital’s
rule, the existence of the limit of f(x)

g(x)
does NOT implies the existence of the limit of

f 1(x)

g 1(x)
. For example, consider the case f(x) = xe´x´2 sin(x´4) and g(x) = e´x´2 . Then

the Squeeze Theorem implies that lim
xÑ0

f(x) = lim
xÑ0

g(x) = 0, and

lim
xÑ0

f(x)

g(x)
= lim

xÑ0
x sin(x´4) = 0 .

However, since f 1(x) =
[
(1+2x´2) sin(x´4)´4x´4 cos(x´4)

]
e´x´2 and g 1(x) = 2x´3e´x´2 ,

we have
f 1(x)

g 1(x)
=

1

2
(x3 + 2x) sin(x´4) ´

2

x
cos(x´4)

whose limit, as x approaches 0, does not exist.

‚ Indeterminate form 0

0

Example 5.48. Compute lim
xÑ0

e2x ´ 1

x
.

Let f(x) = e2x ´ 1 and g(x) = x. Then f, g are differentiable on (0, 1) and g(x) ‰

0, g 1(x) ‰ 0 for all x P (0, 1). Moreover,

lim
xÑ0+

f 1(x)

g 1(x)
= lim

xÑ0+

2e2x

1
= 2

and lim
xÑ0+

f(x) = lim
xÑ0+

g(x) = 0. Therefore, L’Hôspital’s Rule implies that

lim
xÑ0+

f(x)

g(x)
= lim

xÑ0+

f 1(x)

g 1(x)
= 2 .

Similarly, by the fact that

1. f, g are differentiable on (´1, 0) and g(x) ‰ 0, g 1(x) ‰ 0 for all x P (´1, 0),

2. lim
xÑ0´

f 1(x)

g 1(x)
= lim

xÑ0´

2e2x

1
= 2,

3. lim
xÑ0+

f(x) = lim
xÑ0+

g(x) = 0,



L’Hôspital’s Rule implies that lim
xÑ0´

f(x)

g(x)
= lim

xÑ0´

f 1(x)

g 1(x)
= 2 . Theorem 1.33 then shows that

lim
xÑ0

f(x)

g(x)
= 2 exists.

From the discussion in Example 5.48, using L’Hôspital’s Rule in Theorem 5.46 we deduce
the following L’Hôspital’s Rule for the full limit case.
Theorem 5.46:*

Let a ă c ă b, and f, g be differentiable functions on (a, b)ztcu. Assume that g 1(x) ‰ 0

for all x P (a, b)ztcu. If the limit of f(x)
g(x)

as x approaches c produces the indeterminate

form 0

0

(
or 8

8

)
; that is, lim

xÑc
f(x) = lim

xÑc
g(x) = 0

(
or lim

xÑc
f(x) = lim

xÑc
g(x) = 8

)
, then

lim
xÑc

f(x)

g(x)
= lim

xÑc

f 1(x)

g 1(x)

provided the limit on the right exists.

‚ Indeterminate form 8

8

Example 5.49. In this example we compute lim
xÑ8

lnx
x

. Note that lim
xÑ8

d
dx lnx

d
dxx

= lim
xÑ8

1

x
= 0,

so L’Hôspital’s Rule implies that

lim
xÑ8

lnx
x

= lim
xÑ8

d
dx lnx

d
dxx

= 0 .

In fact, the logarithmic function y = lnx grows slower than any power function; that is,

lim
xÑ8

lnx
xp

= 0 @ p ą 0 .

To see this, note that lim
xÑ8

d
dx lnx
d
dxx

p
= lim

xÑ8

1
x

pxp´1
=

1

p
lim
xÑ8

1

xp
= 0 , so L’Hôspital’s Rule implies

that
lim
xÑ8

lnx
xp

= lim
xÑ8

d
dx

lnx
d
dx
xp

= 0 .

‚ Indeterminate form 0 ¨ 8

Example 5.50. Compute lim
xÑ8

e´x
?
x. Rewrite e´x

?
x as

?
x

ex
and note that

lim
xÑ8

d
dx

?
x

d
dx
ex

= lim
xÑ8

1
2

?
x

ex
= lim

xÑ8

1

2
?
xex

= 0 .



Therefore, L’Hôspital’s Rule implies that

lim
xÑ8

?
x

ex
= lim

xÑ8

d
dx

?
x

d
dx
ex

= 0 .

In fact, the natural exponential function y = ex grows faster than any power function;
that is,

lim
xÑ8

xp

ex
= 0 @ p ą 0 .

The proof is left as an exercise.

‚ Indeterminate form 18

Example 5.51. In this example we compute lim
xÑ0

(1 + x)
1
x . Rewrite (1 + x)

1
x as e

ln(1+x)
x . If

the limit lim
xÑ0

ln(1 + x)

x
exists, then the continuity of the exponential function implies that

lim
xÑ0

(1 + x)
1
x = exp

(
lim
xÑ0

ln(1 + x)

x

)
.

Nevertheless, since lim
xÑ0

ln(1 + x) = 0, lim
xÑ0

x = 0 and

lim
xÑ0

d
dx

ln(1 + x)
d
dx
x

= lim
xÑ0

1

1 + x
= 1

L’Hôspital’s Rule implies that

lim
xÑ0

ln(1 + x)

x
= lim

xÑ0

d
dx

ln(1 + x)
d
dx
x

= 1 ;

thus lim
xÑ0

(1 + x)
1
x = exp(1) = e.

‚ Indeterminate form 00

Example 5.52. In this example we compute lim
xÑ0+

(sinx)x. When sin x ą 0, we have

(sinx)x = ex ln sinx = e
ln sin x
1/x .

Since
lim
xÑ0+

d
dx

ln sin x
d
dx

1
x

= lim
xÑ0+

cosx
sinx

´ 1
x2

= ´ lim
xÑ0+

x

sinxx cosx = 0 ,

by L’Hôspital’s Rule and the continuity of the natural exponential function we find that

lim
xÑ0+

(sinx)x = lim
xÑ0+

e
ln sin x
1/x = e0 = 1 .



‚ Indeterminate form 8 ´ 8

Example 5.53. Compute lim
xÑ1+

(
1

lnx ´
1

x´ 1

)
.

Rewrite 1

lnx ´
1

x´ 1
=
x´ 1 ´ lnx
(x´ 1) lnx and note that the right-hand side produces indeter-

minate form 0

0
as x approaches from the right. Also note that

d
dx
(x ´ 1 ´ lnx)
d
dx
(x ´ 1) lnx

=
1 ´ 1

x

lnx+ x´1
x

=
x ´ 1

x lnx+ x ´ 1

which, as x approaches 1 from the right, again produces indeterminate form 0

0
. In order to

find the limit of the right-hand side we compute

lim
xÑ1+

d
dx
(x ´ 1)

d
dx
(x lnx+ x ´ 1)

= lim
xÑ1+

1

lnx+ 1 + 1
=

1

2
;

thus L’Hôspital’s Rule implies that

lim
xÑ1+

x ´ 1

x lnx+ x ´ 1
= lim

xÑ1+

d
dx
(x ´ 1)

d
dx
(x lnx+ x ´ 1)

=
1

2
.

This in turm shows that

lim
xÑ1+

x ´ 1 ´ lnx
(x ´ 1) lnx = lim

xÑ1+

d
dx
(x ´ 1 ´ lnx)
d
dx
(x ´ 1) lnx

= lim
xÑ1+

x ´ 1

x lnx+ x ´ 1
=

1

2
.

5.7 The Inverse Trigonometric Functions: Differentia-
tion

Definition 5.54
The arcsin, arccos, and arctan functions are the inverse functions of the function
f :

[
´
π

2
,
π

2

]
Ñ R, g : [0, π] Ñ R, and h :

(
´
π

2
,
π

2

)
Ñ R, respectively, where

f(x) = sinx, g(x) = cosx and h(x) = tanx. In other words,

1. y = arcsinx if and only if sin y = x, where ´
π

2
ď y ď

π

2
, ´1 ď x ď 1.

2. y = arccosx if and only if cos y = x, where 0 ď y ď π, ´1 ď x ď 1.

3. y = arctanx if and only if tan y = x, where ´
π

2
ă y ă

π

2
, ´8 ă x ă 8.



Remark 5.55. Since arcsin, arccos and arctan look like the inverse function of sin, cos and
tan, respectively, often times we also write arcsin as sin´1, arccos as cos´1, and arctan as
tan´1.

Example 5.56. arcsin 1

2
=
π

6
, arccos

(´
?
2

2

)
=

3π

4
, and arctan 1 =

π

4
.

Example 5.57. Suppose that y = arcsinx. Then y P
[
´
π

2
,
π

2

]
which implies that cos y ě 0.

Therefore, by the fact that sin2 y + cos2 y = 1, we have

cos y =

b

1 ´ sin2 y =
?
1 ´ x2 if y = arcsinx .

In other words, cos(arcsinx) =
?
1 ´ x2.

Similarly, if y = arccosx, then y P (0, π) which implies that sin y ě 0. Therefore,

sin y =
a

1 ´ cos2 y =
?
1 ´ x2 if y = arccosx

or equivalently, sin(arccosx) =
?
1 ´ x2.

Example 5.58. Suppose that y = arctanx for some x P R. Then y P
(

´
π

2
,
π

2

)
which

implies that cos y ą 0. Therefore,

cos y =
1

sec y =
1

a

1 + tan2 y
=

1
?
1 + x2

.

As for sin y, we note that y ą 0 if and only if x ą 0; thus sin y =
x

?
1 + x2

(
instead of ´x

?
1 + x2

)
.

Therefore,
sin(arctanx) = x

?
1 + x2

and cos(arctanx) = 1
?
1 + x2

.

Theorem 5.59: Differentiation of Inverse Trigonometric Functions

1. d

dx
arcsinx =

1
?
1 ´ x2

for all ´1 ă x ă 1.

2. d

dx
arccosx = ´

1
?
1 ´ x2

for all ´1 ă x ă 1.

3. d

dx
arctanx =

1

1 + x2
for all x P R.



Proof. By Inverse Function Differentiation,

d

dx
arcsinx =

1

cos(arcsinx) =
1

?
1 ´ x2

@x P (´1, 1) ,

d

dx
arccosx =

1

´ sin(arccosx) = ´
1

?
1 ´ x2

@x P (´1, 1) ,

and
d

dx
arctanx =

1

sec2(arctanx) =
1

1 + tan2(arctanx) =
1

1 + x2
@x P R .

Remark 5.60. By Theorem 5.59,

d

dx

(
arcsinx+ arccosx

)
=

1
?
1 ´ x2

´
1

?
1 ´ x2

= 0 @ ´ 1 ă x ă 1 .

Therefore, the function y = arcsinx + arccosx is constant on the interval (´1, 1). The
constant can be obtained by testing with x = 0 and we find that

arcsinx+ arccosx =
π

2
@x P [´1, 1] , (5.7.1)

where the value of the left-hand side at x = ˘1 are computed separately.

Example 5.61. Find the derivative of y = arcsinx+ x
?
1 ´ x2.

By Theorem 5.59 and the chain rule, for ´1 ă x ă 1 we have

dy

dx
=

1
?
1 ´ x2

+
?
1 ´ x2 ´ x ¨

1

2
(1 ´ x2)´ 1

2 (2x) = 2
?
1 ´ x2 .

Example 5.62. Find the derivative of y = arctan
?
x.

By the chain rule,

dy

dx
=

1

1 +
?
x
2

d

dx

?
x =

1

1 + x

1

2
?
x
=

1

2
?
x(1 + x)

.

5.8 Inverse Trigonometric Functions: Integration
Theorem 5.63

Let a be a positive real number. Then

1.
ż

dx
?
a2 ´ x2

= arcsin x
a
+ C. 2.

ż

dx

a2 + x2
=

1

a
arctan x

a
+ C.



Proof. 1. Let x = a sinu. Then dx = a cosudu; thus
ż

dx
?
a2 ´ x2

=

ż

a cosu
a

a2(1 ´ sin2 u)
du =

ż

du = u+ C = arcsin x
a
+ C .

2. Let x = a tanu. Then dx = a sec2 udu; thus
ż

dx

a2 + x2
=

ż

a sec2 u
a2(1 + tan2 u)

du =
1

a

ż

du =
u

a
+ C =

1

a
arctan x

a
+ C .

Example 5.64. Find the indefinite integral
ż

dx
?
x2 ´ a2

, where a ą 0 is a constant.

Let x = a secu. Then dx = a secu tanudu; thus
ż

dx
?
x2 ´ a2

=

ż

a secu tanu
a

a2(sec2 u ´ 1)
du =

ż

secu du = ln | secu+ tanu| + C

= ln
ˇ

ˇ

ˇ

x

a
+

?
x2 ´ a2

a

ˇ

ˇ

ˇ
+ C = ln

ˇ

ˇx+
?
x2 ´ a2

ˇ

ˇ+ C .

Example 5.65. Find the indefinite integral
ż

dx
?
x2 + a2

, where a ą 0 is a constant.

Let x = a tanu. Then dx = a sec2 udu; thus
ż

dx
?
a2 + x2

=

ż

a sec2 u
a

a2(tan2 u+ 1)
du =

ż

secu du = ln | secu+ tanu| + C

= ln
ˇ

ˇ

ˇ

?
x2 + a2

a
+
x

a

ˇ

ˇ

ˇ
+ C = ln

ˇ

ˇx+
?
x2 + a2

ˇ

ˇ+ C .

Example 5.66. Find the indefinite integral
ż

dx

x
?
x2 ´ a2

, where a ą 0 is a constant.

Let x = a secu. Then dx = a secu tanu; thus
ż

dx

x
?
x2 ´ a2

=

ż

a secu tanu
a secu

a

a2(sec2 u ´ 1)
=

1

a

ż

du =
u

a
+ C .

If x = a secu, then tanu =

?
x2 ´ a2

a
; thus u = arctan

?
x2 ´ a2

a
which implies that

ż

dx

x
?
x2 ´ a2

=
1

a
arctan

?
x2 ´ a2

a
+ C .

Example 5.67. Find the indefinite integral
ż

dx
?
e2x ´ 1

.

Let u = ex. Then du = exdx; thus dx =
du

u
which implies that

ż

dx
?
e2x ´ 1

=

ż

du

u
?
u2 ´ 1

= arctan
?
u2 ´ 1 + C = arctan

?
e2x ´ 1 + C .



Example 5.68. Find the indefinite integral
ż

x+ 2
?
4 ´ x2

dx.

Let x = 2 sinu. Then dx = 2 cosudu; thus
ż

x+ 2
?
4 ´ x2

dx =

ż

2 sinu+ 2
?
4 ´ 4 sin2 u

¨ 2 cosu du =

ż

(2 sinu+ 2) du = 2u ´ 2 cosu+ C

= 2 arcsin x
2

´ 2

c

1 ´
(x
2

)2
+ C = 2 arcsin x

2
´

?
4 ´ x2 + C .

Example 5.69. Find the indefinite integral
ż

dx

x2 ´ 4x+ 7
.

First we complete the square and obtain that x2 ´ 4x + 7 = (x ´ 2)2 + 3. Let x ´ 2 =
?
3 tanu. Then dx =

?
3 sec2 udu; thus

ż

dx

x2 ´ 4x+ 7
=

ż

?
3 sec2 u

3 tan2 u+ 3
du =

1
?
3

ż

du =
1

?
3
u+ C =

1
?
3

arctan x ´ 2
?
3

+ C .

Example 5.70. Find the indefinite integral
ż

c

1 ´ x

1 + x
dx.

Note that the integrand can be rewritten as 1 ´ x
?
1 ´ x2

. Therefore,

ż

c

1 ´ x

1 + x
dx =

ż

1 ´ x
?
1 ´ x2

dx =

ż

1
?
1 ´ x2

dx ´

ż

x
?
1 ´ x2

dx

= arcsinx+
?
1 ´ x2 + C .

Example 5.71. In this example, we compute
ż

arcsinx dx. Note the by the substitution
x = sinu,

ż

arcsinx dx =

ż

u cosu du ;

thus it suffices to compute the anti-derivative of the function y = x cosx. We first compute
the definite integral

ż a

0
x cosx dx.

By Example 4.12, for 0 ă x ă π we have

n
ÿ

i=1

sin(ix) = 1

2 sin x
2

[
cos x

2
´ cos

(
(n+

1

2
)x
)]
.



Therefore, if 0 ă x ă π,
n
ÿ

i=1

i cos(ix) = d

dx

n
ÿ

i=1

sin(ix) = d

dx

1

2 sin x
2

[
cos x

2
´ cos

(
(n+

1

2
)x
)]

=
´ cos x

2

4 sin2 x
2

[
cos x

2
´ cos

(
(n+

1

2
)x
)]

+
1

2 sin x
2

[
´
1

2
sin x

2
+ (n+

1

2
) sin

(
(n+

1

2
)x
)]
.

By partitioning [0, a] into n sub-intervals with equal length, the Riemann sum of y = x cosx
for this partition given by the right end-point rule is

In =
n
ÿ

i=1

ia

n
cos ia

n

a

n
=
a2

n2

n
ÿ

i=1

i cos ia
n
.

Letting r = a

2n
, we find that

In = 4r2
n
ÿ

i=1

i cos(2ir)

=
´r2 cos r

sin2 r

[
cos r ´ cos(a+ r)

]
+

r

sin r

[
´r sin r + (a+ r) sin(a+ r)

]
which, by the fact that sinx

x
Ñ 1 as x Ñ 0 and r Ñ 0 as n Ñ 8, implies that

ż a

0

x cosx dx = lim
nÑ8

In = ´(1 ´ cos a) + a sin a = a sin a+ cos a ´ 1 .

The identity above further implies that
ż

x cosx dx = x sinx+ cosx+ C ;

thus with the substitution x = sinu,
ż

arcsinx dx =

ż

u cosu du = u sinu+ cosu+ C = x arcsinx+
?
1 ´ x2 + C .

Using (5.7.1), we also find that
ż

arccosx dx =

ż (π
2

´ arcsinx
)
dx =

π

2
x ´ x arcsinx ´

?
1 ´ x2 + C

= x
(π
2

´ arcsinx
)

´
?
1 ´ x2 + C = x arccosx ´

?
1 ´ x2 + C .



5.9 Hyperbolic Functions

Definition 5.72: Hyperbolic Functions
The hyperbolic functions sinh, cosh, tanh, coth, sech and csch are defined by

sinhx =
ex ´ e´x

2
, coshx =

ex + e´x

2
, tanhx =

sinhx
coshx ,

cothx =
1

tanhx , sechx =
1

coshx , cschx =
1

sinhx .

Motivation: The Euler identity provides the following relation

eix = cosx+ i sinx @x P R . (5.9.1)

This implies that

sinx =
eix ´ e´ix

2i
and cos x =

eix + e´ix

2
@x P R .

For a complex number z = x+ iy, where x, y P R, define sin z and cos z by

sin z = eiz ´ e´iz

2i
=
ei(x+iy) ´ e´i(x+iy)

2i
=
e´yeix ´ eye´ix

2i
, (5.9.2a)

cos z = eiz + e´iz

2
=
ei(x+iy) + e´i(x+iy)

2
=
e´yeix + eye´ix

2
. (5.9.2b)

Then on the imaginary axis, we have

sin(iy) = e´y ´ ey

2i
= i sinh y @ y P R , (5.9.3a)

cos(iy) = e´y + ey

2
= cosh y @ y P R . (5.9.3b)

The hyperbolic functions, roughly speaking, can be viewed as trigonometric functions on
the imaginary axis (by ignoring i in the output).

We also note that by definition, for z = x+ iy with x, y P R,

sin2 z + cos2 z = e´2ye2ix ´ 2 + e2ye´2ix

´4
+
e´2ye2ix + 2 + e2ye´2ix

4
= 1 .



Moreover, if z1, z2 are complex numbers,

cos z1 cos z2 ´ sin z1 sin z2

=
eiz1 + e´iz1

2
¨
eiz2 + e´iz2

2
´
eiz1 ´ e´iz1

2i
¨
eiz2 ´ e´iz2

2i

=
ei(z1+z2) + ei(z1´z2) + ei(z2´z1) + e´i(z1+z2)

4
+
ei(z1+z2) ´ ei(z1´z2) ´ ei(z2´z1) + e´i(z1+z2)

4

=
ei(z1+z2) + ei(z1+z2)

2
= cos(z1 + z2) .

The above computations show that trigonometric identities are still valid even for complex
arguments.

‚ The graph of hyperbolic functions



Theorem 5.73: Hyperbolic identities

1. cosh2 x ´ sinh2 x = 1; 2. tanh2 x+ sech 2x = 1;

3. coth2 x ´ csch 2x = 1;

4. sinh(x ˘ y) = sinhx cosh y ˘ sinh y coshx;

5. cosh(x ˘ y) = coshx cosh y ˘ sinhx sinh y;

6. sinh2 =
´1 + cosh(2x)

2
; cosh2 x =

1 + cosh(2x)
2

;

7. sinh(2x) = 2 sinhx coshx; cosh(2x) = cosh2 x+ sinh2 x.

Remark 5.74. By the definition (5.9.2), one can easily check that sin2 z + cos2 z = 1 for
all complex z and this further implies that

1 = sin2(iy) + cos2(iy) = (i sinh y)2 + cosh2 y = cosh2 y ´ sinh2 y @ y P R .

All the other hyperbolic identities can be memorized/derived in the same way.

Theorem 5.75: Differentiation and integration of hyperbolic functions

1. d

dx
sinhx = coshx;

ż

coshx dx = sinhx+ C;

2. d

dx
coshx = sinhx;

ż

sinhx dx = coshx+ C;

3. d

dx
tanhx = sech 2x;

ż

sech 2x dx = tanhx+ C;

4. d

dx
cothx = ´ csch 2x;

ż

csch 2x dx = ´ cothx+ C;

5. d

dx
sechx = ´ sechx tanhx;

ż

sechx tanhx dx = ´ sechx+ C;

6. d

dx
cschx = ´ cschx cothx;

ż

cschx cothx dx = cschx+ C;

7.
ż

tanhx dx = ln cosh x+ C;

8.
ż

sechx dx = 2 arctan ex + C.



Proof. We only prove 7 and 8. By Theorem 5.22, it is easy to see that
ż

tanhx dx =

ż sinhx
coshx dx =

ż d
dx

coshx
coshx dx = ln cosh x+ C ,

so we focus on 8.
Let u = ex. Then du = ex dx or equivalently, du

u
= dx; thus

ż

sechx dx =

ż

2

u+ u´1
¨
du

u
=

ż

2

u2 + 1
du = 2 arctanu+ C = 2 arctan ex + C .

Remark 5.76. Assuming that one knows that d

dx
f(ix) = if 1(ix) (that is, the rule of

differentiation d

dx
f(ax) = af 1(ax) can also be applied for complex a), we have

d

dx
tanhx =

d

dx

sinhx
coshx =

1

i

d

dx

sin(ix)
cos(ix) =

1

i
tan(ix) = sec2(ix)

=
1

cos2(ix) =
1

cosh2 x
= cosh2 x .

All the other derivatives of hyperbolic functions can be memorized/derived in the same way.

‚ Inverse hyperbolic functions

Similar to inverse trigonometric functions, we can also talk about the inverse function of
hyperbolic functions. Note that

sinh : (´8,8)
1´1

ÝÝÑ
onto

(´8,8) ,

tanh : (´8,8)
1´1

ÝÝÑ
onto

(´1, 1) ,

while

cosh : (´8,8) Ñ [1,8) is onto but not one-to-one ,
sech : (´8,8) Ñ (0, 1] is onto but not one-to-one .

We first find the inverse function of sinh and tanh.

1. Let y = sinhx =
ex ´ e´x

2
. Then e2x ´ 2yex ´ 1 = 0; thus by the fact that ex ą 0,

ex =
2y +

a

4y2 + 4

2
= y +

a

y2 + 1

which further implies that x = ln(y +
a

y2 + 1). Therefore,

sinh´1 x = ln(x+
?
x2 + 1) @x P R .



2. Let y = tanhx =
ex ´ e´x

ex + e´x
. Then e2x(1 ´ y) = 1 + y; thus x =

1

2
ln 1 + y

1 ´ y
. Therefore,

tanh´1 x =
1

2
ln 1 + x

1 ´ x
@x P (´1, 1) .

To find the inverse of cosh, we note that cosh : [0,8)
1´1

ÝÝÑ
onto

[1,8). Let x ě 0 and

y = coshx =
ex + e´x

2
. Then e2x ´ 2yex + 1 = 0 which implies that

ex = y +
a

y2 ´ 1 .

As a consequence,
cosh´1 x = ln(x+

?
x2 ´ 1) @x P [1,8) .

Since sech x =
1

coshx , we find that

sech ´1x = cosh´1 1

x
= ln

(1
x
+

c

1

x2
´ 1

)
= ln 1 +

?
1 ´ x2

x
.

We summarize these inverse hyperbolic functions in the following
Theorem 5.77

1. sinh´1 x = ln(x+
?
x2 + 1) @x P R.

2. cosh´1 x = ln(x+
?
x2 ´ 1) @x P [1,8).

3. tanh´1 x =
1

2
ln 1 + x

1 ´ x
@x P (´1, 1).

4. sech ´1x = ln 1 +
?
1 ´ x2

x
@x P (0, 1].

‚ Differentiation and integration of inverse hyperbolic functions

Theorem 5.78

1. d

dx
sinh´1 x =

1
?
x2 + 1

;
ż

dx
?
x2 + 1

= sinh´1 x+ C;

2. d

dx
cosh´1 x =

1
?
x2 ´ 1

;
ż

dx
?
x2 ´ 1

= cosh´1 x+ C;

3. d

dx
tanh´1 x =

1

1 ´ x2
;

ż

dx

1 ´ x2
= tanh´1 x+ C.



Proof. By the chain rule,

d

dx
sinh´1 x =

1

x+
?
x2 + 1

d

dx
(x+

?
x2 + 1) =

1
?
x2 + 1

,

d

dx
cosh´1 x =

1

x+
?
x2 ´ 1

d

dx
(x+

?
x2 ´ 1) =

1
?
x2 ´ 1

,

as well as
d

dx
tanh´1 x =

1

2

[ 1

1 + x
+

1

1 ´ x

]
=

1

1 ´ x2
.

Example 5.79. Find the indefinite integral
ż

dx

x
?
a2 ´ x2

, where a ą 0.

First we use trigonometric substitution x = a cosu to compute the integral. Since
dx = ´a sinu du, we have

ż

dx

x
?
a2 ´ x2

=

ż

´a sinu
a cosu ¨ a sinu du = ´

1

a

ż

secu du = ´
1

a
ln | secu+ tanu| + C

= ´
1

a
ln a+

?
a2 ´ x2

|x|
+ C .

Now we use hyperbolic functions substitution to compute the integral. Let x = a sechu
(we note that when using this substitution, we have already restrict ourself to the case
x ą 0). Then dx = ´a sechu tanhu du; thus

ż

dx

x
?
a2 ´ x2

=

ż

´a sechu tanhu
a sechu

a

a2 ´ a2 sech 2u
du = ´

1

a

ż sechu tanh
sechu

a

1 ´ sech 2u
du

= ´
1

a

ż sechu tanhu
sechu

?
a2 tanh2 u

du = ´
1

a

ż

du = ´
1

a
u+ C

=
1

a
sech ´1x

a
+ C =

1

a
ln

1 +
b

1 ´ x2

a2

x
a

+ C

= ´
1

a
ln a+

?
a2 ´ x2

x
+ C .

5.10 Exercise
Problem 5.1. Compute

ż 1

´

b

3
2

dx
?
2 ´ x2

using the following substitution of variables:

1. x =
?
2 sin t. 2. x = ´

?
2 sin t. 3. x =

?
2 cos t. 4. x = ´

?
2 cos t.



Problem 5.2. Find the definite integral
ż π

2

0

sinxdx
1 + cos2 x .

Problem 5.3. Find the following indefinite integrals.

1.
ż cos

?
x

?
x

dx. 2.
ż

1

x3
cos2 1

x2
dx. 3.

ż

1

x2
cos3 1

x
dx. 4.

ż sin
?
x

a

x cos3
?
x
dx.

Problem 5.4. Find the following indefinite integrals.

1.
ż

tan3 x sec2 x dx ,
ż sec2 x

tan2 x
dx ,

ż

tan2 x sec2 x dx. Use your experience on these three

integrals to find
ż

tanm x sec2 x dx for m ‰ ´1.

2.
ż

sec3 x tanx dx ,
ż

sec5 x tanx dx ,
ż tanx

sec3 x dx. Use your experience on these three

integrals to find
ż

secm x tanx dx for m ‰ 0.

Problem 5.5. Compute the indefinite integral
ż

sin6 x dx by the following steps:

1. Write sin6 x = sin3 x ¨ sin3 x, and use the triple and double angle formula, as well as
the product to sum formula, to show that

sin6 x = ´
1

32
cos 6x+ 3

16
cos 4x ´

15

32
cos 2x+ 5

16
.

2. Find the indefinite integral
ż

sin6 x dx using the identity above.

Problem 5.6. Compute the indefinite integral
ż

cos5 x dx by the following steps:

1. Write cos5 x = cos3 x ¨ cos2 x, and use the triple and double angle formula, as well as
the product to sum formula, to show that

cos5 x =
1

16
cos 5x+ 5

16
cos 3x+ 5

8
cosx .

2. Find the indefinite integral
ż

cos5 x dx using the identity above.

Problem 5.7. Let y be a twice differentiable function satisfying

d2y

dx2
= 4 sec´2 2x tan 2x , y(0) = ´1, y 1(0) = 4 .

Find y.



Problem 5.8. 1. Let f : [0, a] Ñ R be a continuous function. Find
ż a

0

f(x)

f(x) + f(a´ x)
dx.

2. Find
ż 1

0

sinx
sinx+ sin(1 ´ x)

dx. 3. Find
ż 3

0

?
x

?
x+

?
3 ´ x

dx.

Problem 5.9. Let f : [´1, 1] Ñ R be a continuous function.

1. Show that
ż π

2

0

f(sinx) dx =

ż π
2

0

f(cosx) dx .

2. Use the identity above to find the integrals
ż π

2

0
cos2 x dx and

ż π
2

0
sin2 x dx.

Problem 5.10. Let a and b be positive (rational) numbers. Show that
ż 1

0

xa(1 ´ x)b dx =

ż 1

0

xb(1 ´ x)a dx .

Problem 5.11. Let a0, a1, ¨ ¨ ¨ , an be real numbers satisfying

a0
1

+
a1
2

+
a2
3

+ ¨ ¨ ¨ +
an

n+ 1
= 0 .

Show that the polynomial p(x) = a0 + a1x+ a2x
2 + ¨ ¨ ¨ + anx

n has at least one real zero.

Problem 5.12. Let I be an interval, and f : I Ñ R be one-to-one, onto and continuous.
Show that if g : N Ñ R is a function satisfying that lim

nÑ8
f(g(n)) = b, then lim

nÑ8
g(n) =

f´1(b).

Problem 5.13. Show that the following functions (defined by integrals) are one-to-one and
find (f´1) 1(0).

1. f(x) =
ż x

2

?
1 + t2 dt. 2. f(x) =

ż x

2

dt
?
1 + t4

.

Problem 5.14. Let f be an one-to-one, twice differentiable function with an inverse func-
tion g.

1. Show that g is twice differentiable function and find g 11.

2. Show that if in addition f is strictly increasing and the graph of f is concave upward,
then the graph of g is concave downward.



Problem 5.15. Find the limit lim
nÑ8

(
n!

nn

) 1
n through the following steps.

(1) Show that
n´1
ÿ

k=1

1

n
ln k
n

ď

ż 1

1
n

lnx dx ď

n
ÿ

k=2

1

n
ln k
n

.

(2) Find lim
nÑ8

n
ř

k=1

1

n
ln k

n
.

(3) Find lim
nÑ8

(
n!

nn

) 1
n .

Hint: (1) Use the property of integrals.
(3) Using (1).

Problem 5.16. Show that for all natural number n,
2n
ÿ

k=1

(´1)k´1xk

k
ď ln(1 + x) ď

2n´1
ÿ

k=1

(´1)k´1xk

k
@x ą 0 .

Problem 5.17. Find the derivative of the following functions by first taking the logarithm
(base e) and then differentiating.

1. y =
x(x´ 1)

3
2

?
x+ 1

, x ą 1. 2. y =
(x+ 1)(x´ 2)

(x´ 1)(x+ 2)
, x ą 2

Problem 5.18. Use implicit differentiation to find dy

dx
, where (x, y) satisfies the relation

4xy + lnx2y = 7.

Problem 5.19. Locate any relative extrema and points of inflection of the function y =

x2 ln x
4

.

Problem 5.20. Use the substitution of variable t = tan x
2

to find the integral
ż

cscx dx.

Problem 5.21. Find the following indefinite integrals.

1.
ż

(lnx)2
x

dx. 2.
ż ln

?
x

x
dx. 3.

ż

dx

x(lnx2)3 . 4.
ż

(1 + lnx)2
x

dx.

5.
ż sin(lnx)

x
dx. 6.

ż sin 2x

1 + cos2 x dx.

Problem 5.22. Show that 1

y
ă

lnx´ ln y
x´ y

ă
1

x
for all 0 ă x ă y.



Problem 5.23. Show that the following functions are decreasing on (0,8).

1. y =
(
1 +

1

2x

)x+0.5. 2. y =
(
1 +

1

x

)x+0.5.

Problem 5.24. In this example you are asked to compute the integral of y = xex by the
Riemann sum. Complete the following.

1. Show that if r ‰ 1, then
n
ř

k=1

krk =
r(1 ´ rn)

(1 ´ r)2
´
nrn+1

1 ´ r
.

2. Compute
ż a

0
xex dx by the limit the Riemann sum of y = xex for regular partition

using the right end-point rule.

3. Find an anti-derivative of y = xex.

Problem 5.25 (Integrating Factor).

1. Let f, g : [a, b] Ñ R be a continuous function, F be an anti-derivative of f , and
y : [a, b] Ñ R satisfies that

y 1 + f(x)y = g(x) . (‹)

Find an expression of y.

2. Find the function y satisfying y 1 + x2y = 2x3 and y(0) = 1.

Hint: Multiply both sides of (‹) by exp(F (x)) and observe that the left-hand side is the
derivative of a certain function.

Problem 5.26. 1. Show that for 0 ă a ă b,

e
ln a+ln b

2 ¨ (ln b ´ ln a) ă

ż ln b

ln a

ex dx ă
eln a + eln b

2
¨ (ln b ´ ln a) .



2. Using the result above to show that for 0 ă a ă b,
?
ab ă

b ´ a

ln b ´ ln a ă
a+ b

2
.

Problem 5.27. Prove the following inequalities.

1. ex ą 1 + ln(1 + x) for all x ą 0.

2. ex ą 1 + (1 + x) ln(1 + x) for all x ą 0.

3. ex ě 1 + x+
x2

2!
+
x3

3!
+ ¨ ¨ ¨ +

xn

n!
for all x ě 0 and n P N.

Problem 5.28. Let a, b be two positive numbers, p, q any nonzero numbers, and p ă q.
Prove that [

θap + (1 ´ θ)bp
] 1

p ď
[
θaq + (1 ´ θ)bq

] 1
q @ θ P (0, 1) .

Hint: Show that the function f(p) =
[
θap + (1 ´ θ)bp

] 1
p is an increasing function of p.

Problem 5.29. 1. Find an equation for the line through the origin tangent to the graph
of y = lnx.

2. Show that ln x ă
x

e
for all x ‰ e.

3. Show that xe ă ex for all x ‰ e.

4. Show that if e ď A ă B, then AB ą BA.

Problem 5.30 (Implicit Differentiation).

1. Find y 1 if e
x
y = x ´ y.

2. Find an equation of the tangent line to the curve xey + yex = 1 at the point (0, 1).

3. Find an equation of the tangent line to the curve 1 + lnxy = ex´y at the point (1, 1)

Problem 5.31. Evaluate the following limits. Use L’Hôspital’s Rule where appropriate. If
L’Hôspital’s Rule does not apply, explain why.

1. lim
xÑ0+

arctan(2x)
lnx . 2. lim

xÑ0+

xx ´ 1

lnx+ x´ 1
. 3. lim

xÑ0

ln(1 + x)

cosx+ ex ´ 1
.

4. lim
xÑ0

xa ´ 1

xb ´ 1
, where b ‰ 0. 5. lim

xÑ0

ex ´ e´x ´ 2x

x´ sinx . 6. lim
xÑa+

cosx ¨ ln(x´ a)

ln(ex ´ ea)
.



7. lim
xÑ0+

(
1

x
´

1

arctanx

)
. 8. lim

xÑ8
(x ´ lnx). 9. lim

xÑ1+
ln(x7 ´ 1) ´ ln(x5 ´ 1).

10. lim
xÑ8

x
ln 2

1+ln x . 11. lim
xÑ8

xe
´x . 12. lim

xÑ1
(2 ´ x)tan(πx/2). 13. lim

xÑ0+
(sinx)(lnx).

Problem 5.32. Evaluate the following limits:

1. lim
xÑ8

x
[(
1 +

1

x

)x
´ e

]
. 2. lim

xÑ8

!

e

2
x+ x2

[(
1 +

1

x

)x
´ e

])
.

3. lim
xÑ8

x
[(
1 +

1

x

)x
´ e ln

(
1 +

1

x

)x]. 4. lim
xÑ0

(sinx
x

) 1
x2 . 5. lim

xÑ8

(sinx
x

) 1
x2 .

6. lim
xÑ8

(
x ´ x2 ln 1 + x

x

)
. 7. lim

xÑ8

[
1

x
¨
ax ´ 1

a´ 1

] 1
x , where a ą 0 and a ‰ 1.

Problem 5.33. For what values of a and b is the following equations true?

1. lim
xÑ0

(sin 2x

x3
+ a+

b

x2

)
= 0.

2. lim
xÑ0

(tan 2x

x3
+

a

x2
+

sin bx
x

)
= 0.

Problem 5.34. Show that lim
xÑ8

xx
´n

= 1 for every positive integer n.

Problem 5.35. Let f(x) =
#

e´1/x2 if x ‰ 0 ,

0 if x = 0 .

1. Find f 1(0). Is f continuously differentiable?

2. Show that f has derivatives of all orders on R; that is, f is infinitely many times
differentiable on R.

Hint: First show by induction that there is a polynomial pn(x) and a non-negative integer

kn such that f (n)(x) =
pn(x)f(x)

xkn
for x ‰ 0.

Problem 5.36. Find d

dx
arcsin(sinx), d

dx
arccos(sinx) and d

dx
arctan(tanx).

Problem 5.37. Show that 2 arcsinx = arccos(1 ´ 2x2) for all x ě 0.

Problem 5.38. Prove the identity arcsin x´ 1

x+ 1
= 2 arctan

?
x ´

π

2
for all x ě 0.

Problem 5.39. Prove that x

1 + x2
ă arctanx ă x for all x ą 0.



Problem 5.40. Evaluate
ż 1

0
arcsinx dx by interpreting it as an area and integrating with

respect to y instead of x.

Problem 5.41. Evaluate the following definite integrals.

1.
ż 1?

2

0

arcsinx
?
1 ´ x2

dx. 2.
ż 1?

2

0

arccosx
?
1 ´ x2

dx. 3.
ż ln 4

ln 2

e´x

?
1 ´ e´2x

dx.

4.
ż 3

2

2x´ 3
?
4x´ x2

dx. 5.
ż 4

3

dx

(x´ 1)
?
x2 ´ 2x

.

Problem 5.42. Find the following indefinite integrals.

1.
ż

?
ex ´ 3 dx. 2.

ż

?
x´ 2

x+ 1
dx. 3.

ż

dx
?

´2x2 + 8x+ 4
.

4.
ż

2x arctan(x2 + 1)

x4 + 2x2 + 2
dx. 5.

ż
?
x

4 + x3
dx. 6.

ż

c

x

4 + x3
dx, x ą 0.

Problem 5.43. Find the function y satisfying (1 + x2)y 1 + xy = 1 and y(0) = 1.

Problem 5.44. Show (by contradiction) that π is an irrational number through the follow-
ing steps.

1. Assume (the contrary) that π =
a

b
for some a, b P N. Define f(x) = xn(a´ bx)n

n!
. Show

that f(x) = f(π ´ x), and 0 ă f(x) sinx ă
anπn

n!
for all 0 ă x ă π.

2. Show that f (k)(0) and f (k)(π) are all integers for all k P N, where f (k)(0) =
dk

dxk

ˇ

ˇ

ˇ

x=0
f(x)

and f (k)(π) =
dk

dxk

ˇ

ˇ

ˇ

x=π
f(x).

3. Define

g(x) =
n
ÿ

k=0

(´1)kf (2k)(x) = f(x) ´ f (2)(x) + f (4)(x) + ¨ ¨ ¨ + (´1)nf (2n)(x) .

Show that d

dx

(
g 1(x) sinx´g(x) cosx

)
= f(x) sinx and conclude that

ż π

0
f(x) sinx dx =

g(0) + g(π).

4. Conclude that 0 ă

ż π

0
f(x) sinx dx ă

anπn+1

n!
and use (5.4.5) to lead to a contradic-

tion.



Chapter 7

Applications of Integration

7.1 Area of a Region between Two Curves
The motivation of integration of functions is finding areas. Let us recall that if f : [a, b] Ñ R
is non-negative, then the area A of the region bounded by the graph of f , the x-axis and
vertical lines x = a and x = b is the integral of f on [a, b] or in notation,

A =

ż b

a

f(x) dx .

The idea above can be extended to the following statement: Let f, g : [a, b] Ñ R be contin-
uous and g(x) ď f(x) for all x P [a, b], then the area of the region bounded by the graphs
of f and g and the vertical lines x = a and x = b is

A =

ż b

a

[
f(x) ´ g(x)

]
dx .

‚ How about if the graphs of two continuous functions intersect?

Suppose that f, g : [a, b] Ñ R are continuous functions but neither g(x) ď f(x) for all
x P [a, b] nor f(x) ď g(x) for all x P [a, b]. In other words, the graphs of f and g intersect
(and transverse). In this case, the area of the region bounded by the graphs of f and g, as
well as the vertical lines x = a and x = b, is given by

A =

ż b

a

ˇ

ˇf(x) ´ g(x)
ˇ

ˇ dx .

To find this integral, in general we need to find all the zeros of the function h(x) = f(x)´g(x)

and write the integral as sum of integrals on sub-intervals. To be more precise, suppose that
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the distinct zeros of h is given by tckunk=1, where a ď c1 ă c2 ă ¨ ¨ ¨ ă cn ď b, then

A =

ż b

a

ˇ

ˇf(x) ´ g(x)
ˇ

ˇ dx

=

ż c1

a

ˇ

ˇf(x) ´ g(x)
ˇ

ˇ dx+
n
ÿ

k=1

ż ck

ck´1

ˇ

ˇf(x) ´ g(x)
ˇ

ˇ dx+

ż b

cn

ˇ

ˇf(x) ´ g(x)
ˇ

ˇ dx

=
ˇ

ˇ

ˇ

ż c1

a

[
f(x) ´ g(x)

]
dx

ˇ

ˇ

ˇ
+

n
ÿ

k=1

ˇ

ˇ

ˇ

ż ck

ck´1

[
f(x) ´ g(x)

]
dx

ˇ

ˇ

ˇ
+
ˇ

ˇ

ˇ

ż b

cn

[
f(x) ´ g(x)

]
dx

ˇ

ˇ

ˇ
.

When f, g are continuous function on R and h = f ´ g has finitely many distinct zeros
tckunk=1, we can also talk about the area of the (bounded) region bounded by the graph of
f and g. This area is given by

A =
n
ÿ

k=1

ˇ

ˇ

ˇ

ż ck

ck´1

[
f(x) ´ g(x)

]
dx

ˇ

ˇ

ˇ

7.2 Volume: The Disk Method（圓盤法）
In the following two sections, the main focus is to develop ways of finding the volume of the
so-called solids of revolution（旋轉體）, a solid formed by revolving a certain region about
a line called the axis of revolution (and usually a line parallel to the x-axis or y-axis).

Example 7.1. The ball centered at the origin with radius r (usually denoted by B(0, r) or
Br(0)), is a solid of revolution. It can be formed by revolving the region

R =
␣

(x, y)
ˇ

ˇ 0 ď y ď
?
r2 ´ x2

(

about the x-axis.

Example 7.2. A solid torus can be formed by revolving a disk

D =
␣

(x, y)
ˇ

ˇ (x ´ a)2 + y2 = r2
(

(where 0 ă a ă r)

about the y-axis.

Figure 7.1: A solid torus



Consider the volume of a solid D formed by revolving a region R about the line y = y0,
where the region R is given by

R =
␣

(x, y)
ˇ

ˇx P [a, b] , y0 ď y ď f(x)
(

for some continuous function f : [a, b] Ñ R with min
xP[a,b]

f(x) ě y0. Note that the function

y = π
[
f(x) ´ c

]2 is also continuous on [a, b] thus integrable on [a, b].

Figure 7.2: Disk method

∆

∆

Let P = ta = x0 ă x1 ă ¨ ¨ ¨ ă xn = bu be a partition of [a, b], and ∆xi = xi ´ xi´1.
Then the volume of D is approximated by

n
ÿ

i=1

π
[
f(ξi) ´ y0

]2
∆xi ,

where ξi P [xi´1, xi] for each 1 ď i ď n. Note that the sum above is a Riemann sum of the
function y = π

[
f(x) ´ y0

]2 for partition P .
When }P} approaches 0, we expect that the sum above approaches the volume of D.

Since f is continuous on [a, b], the function y = π
[
f(x) ´ y0

]2 is Riemann integrable on
[a, b]; thus for any given ε ą 0, there exists δ ą 0 such that if }P } ă δ, then any Riemman
sum of the function y = π

[
f(x) ´ y0

]2 for P lies in the interval( ż b

a
π
[
f(x) ´ y0

]2
dx ´ ε,

ż b

a
π
[
f(x) ´ y0

]2
dx+ ε

)
.

In particular, if max
␣

xi ´ xi´1

ˇ

ˇ 1 ď i ď n
(

ă δ,

ˇ

ˇ

ˇ

n
ÿ

i=1

π
[
f(ξi) ´ y0

]2
∆xi ´

ż b

a

π
[
f(x) ´ y0

]2
dx

ˇ

ˇ

ˇ
ă ε .



Since ε ą 0 is arbitrary, we conclude that the volume of D can be computed by

π

ż b

a

[
f(x) ´ y0

]2
dx .

Example 7.3. The volume of the ball B(0, r) is given by

π

ż r

´r

(?
r2 ´ x2

)2
dx = π

ż r

´r

(r2 ´ x2) dx = π
[
r2x ´

1

3
x3
]ˇ
ˇ

ˇ

x=r

x=´r
=

4

3
πr3 .

Example 7.4. The volume of the solid formed by revolving the region bounded by the
graphs of f(x) = 2 ´ x2 and g(x) = 1 about the line y = 1 is given by

π

ż 1

´1

[
(2 ´ x2) ´ 1

]2
dx = π

ż 1

´1

(1 ´ x2)2 dx = π

ż 1

´1

(1 ´ 2x2 + x4) dx

= π
[
x ´

2

3
x3 +

1

5
x5
]ˇ
ˇ

ˇ

x=1

x=´1
=

16π

15
.

Similarly, if D is a solid formed by revolving a region R about the line x = x0, where R
is given by

R =
␣

(x, y)
ˇ

ˇ y P [c, d] , x0 ď x ď g(y)
(

for some continuous function g : [c, d] Ñ R with min
yP[c,d]

g(y) ě x0, then the volume of D is

π

ż d

c

[
g(y) ´ x0

]2
dy .

A solid of revolution may be formed by revolving a region away from the axis of revolu-
tion. In this case, the solid will have holes and the volume of

Suppose that the region R is given by

R =
␣

(x, y)
ˇ

ˇ a ď x ď b , y0 ď g(x) ď y ď f(x)
(

,

where f, g : [a, b] Ñ R are continuous functions with max
xP[a,b]

g(x) ď min
xP[a,b]

f(x). Let R1 and R2

be given by

R1 =
␣

(x, y)
ˇ

ˇ a ď x ď b , y0 ď y ď f(x)
(

and R2 =
␣

(x, y)
ˇ

ˇ a ď x ď b , y0 ď y ď g(x)
(

.

Then the volume of the solid formed by revolving R about the line y = y0 is the volume of
the solid formed by revolving R1 about the line y = y0 minus the volume of the solid formed
by revolving R2 about the line y = y0 and is given by

π

ż b

a

[
(f(x) ´ y0)

2 ´ (g(x) ´ y0)
2
]
dx .



Similarly, if R is given by

R =
␣

(x, y)
ˇ

ˇ c ď y ď d , x0 ď g(y) ď x ď f(y)
(

,

where f, g : [c, d] Ñ R are continuous functions with max
yP[c,d]

g(y) ď min
yP[c,d]

f(y).. Then the
volume of the solid formed by revolving R about the line x = x0 is given by

π

ż d

c

[
(f(y) ´ x0)

2 ´ (g(y) ´ x0)
2
]
dy .

Example 7.5. Find the volume of the solid formed by revolving the region bounded by the
graphs of y =

?
x and y = x2 about the x-axis.

The points of intersection of the graphs of the two functions are x = 0 and x = 1, and
0 ď x2 ď x on [0, 1]. Therefore, the volume of the solid described above is given by

π

ż 1

0

[?
x
2

´ (x2)2
]
dx = π

ż 1

0

(
x ´ x4

)
dx = π

(1
2
x2 ´

1

5
x4
)ˇ
ˇ

ˇ

x=1

x=0
=

3π

10
.

Example 7.6. The volume of the solid torus given in Example 7.2 is given by

π

ż r

´r

[
(a+

a

r2 ´ y2 ´ 0)2 ´ (a ´
a

r2 ´ y2 ´ 0)2
]
dy

= 4aπ

ż r

´r

a

r2 ´ y2 dy = 4aπ ¨
πr2

2
= 2π2ar2 .

Example 7.7. Find the volume of the solid formed by a ball with 5 inch radius having a
cylindrical hole as shown in the following figure.

The volume of the solid described above is given by

π

ż 4

´4

[
(
?
25 ´ x2 ´ 0)2 ´ (3 ´ 0)2

]
dx =

256π

3
.



In general, the disk method can be used to compute a solid whose area of cross sections
along a particular axis is known. Let D be a solid lies between two planes x = a and x = b

(a ă b), and the area of the cross section of D taken perpendicular to the x-axis is A(x),
then

the volume of D =

ż b

a

A(x) dx .

Similarly, if D lies between y = c and y = d (c ă d), and the area of the cross section of D
taken perpendicular to the y-axis is A(y), then

the volume of D =

ż d

c

A(y) dy .

∆ ∆

Example 7.8. The volume of a cone with height h and base area A is given by
ż h

0

A(h ´ y)2

h2
dy = ´

A

h2
1

3
(h ´ y)3

ˇ

ˇ

ˇ

y=h

y=0
=

1

3
Ah .

Example 7.9. Find the volume of the solid of intersection of the two right circular cylinders
of radius r whose axes meet at right angles.



The area of cross sections taken perpendicular to the z-axis is given by

A(z) = (2
?
r2 ´ z2)2 = 4(r2 ´ z2) .

Therefore, the volume of the solid of intersection is given by
ż r

´r

4(r2 ´ z2) dz =
16

3
r3 .

7.3 Volume: The Shell Method（剝殼法）
Consider the volume of a solid D formed by revolving a region R about line x = L, where
R is given by

R =
␣

(x, y)
ˇ

ˇx P [a, b] , 0 ď y ď f(x)
(

,

for some a ě L and continuous function f : [a, b] Ñ [0,8). When f is one-to-one, let
g : [c, d] Ñ R be the inverse function of f

(
note that c = min

xP[a,b]
f(x) and d = max

xP[a,b]
f(x)

)
.

Then the volume of D computed using the disk method is given by

π

ż d

c

[
(g(y) ´ L)2 ´ (a ´ L)2

]2
dy + π

ż c

0

[
(b ´ L)2 ´ (a ´ L)2

]
dy .

On the other hand, if f is not one-to-one, then sometimes it will be not so easy to find the
volume of D using the disk method. How do we compute the volume of D in this case?

Figure 7.3: The shell method



Let P = ta = x0 ă x1 ă ¨ ¨ ¨ ă xn = bu be a partition of [a, b], ∆xk = xk ´ xk´1 and
ck =

xk´1 + xk
2

; that is, ck is the middle point of the interval [xk´1, xk]. Then Figure 7.3
implies that the volume of D can be approximated by the sum of these cylindrical shells
(one cylindrical shell is shown above in orange color). The volume of the cylindrical shell
shown in Figure 7.3 is given by

π(xk ´ L)2f(ck) ´ π(xk´1 ´ L)2f(ck) = πf(ck)
[
(xk ´ L)2 ´ (xk´1 ´ L)2

]
= πf(ck)(xk ´ L+ xk´1 ´ L)

[
xk ´ L ´ (xk´1 ´ L)

]
= 2π(ck ´ L)f(ck)∆xk .

Therefore, the volume of D can be approximated by the sum
n
ÿ

k=1

2π(ck ´ L)f(ck)∆xk .

We note that the sum above is a Riemann sum of the function y = 2π(x ´ L)f(x) for
partition P using the mid-point rule. Therefore, similar to the argument in Section 7.2, we
find that the volume of D is given by

2π

ż b

a

(x ´ L)f(x) dx .

This way of computing the volume of D is called the shell method.
Similarly, let D be formed by revolving a region R about the line x = L, where the

region R is given by
R =

␣

(x, y)
ˇ

ˇx P [a, b] , g(x) ď y ď f(x)
(

for some a ą L and continuous functions f, g : [a, b] Ñ R with min
xP[a,b]

f(x) ě max
xP[a,b]

g(x). Then
the volume of D is given by

2π

ż b

a

(x ´ L)
[
f(x) ´ g(x)

]
dx .

Example 7.10. In this example we compute the volume of the ball B(0, r) by the shell
method. Note that B(0, r) can be formed by revolving the region

R =
␣

(x, y)
ˇ

ˇx P [0, r] ,´
?
r2 ´ x2 ď y ď

?
r2 ´ x2

(

about the y-axis. Therefore, by the shell method, the volume of B(0, r) is given by

π

ż r

0

(x ´ 0)
[?
r2 ´ x2 ´ (´

?
r2 ´ x2)

]
dx

= 4π

ż r

0

x(r2 ´ x2)
1
2 dx = 4π

[
´

3

4
(r2 ´ x2)

2
3

]ˇ
ˇ

ˇ

x=r

x=0
=

4π

3
r3 .



Example 7.11. In this example we compute the volume of the solid torus given in Example
7.2 by the shell method. Note that this solid torus can also be formed by revolving the region

R =
␣

(x, y)
ˇ

ˇx P [a ´ r, a+ r] ,´
a

r2 ´ (x ´ a)2 ď y ď
a

r2 ´ (x ´ a)2
(

about the y-axis. Therefore, by the shell method, the volume of the solid torus given in
Example 7.2 is given by

2π

ż a+r

a´r

(x ´ 0)
[a

r2 ´ (x ´ a)2 ´ (´
a

r2 ´ (x ´ a)2)
]
dx = 4π

ż a+r

a´r

x
a

r2 ´ (x ´ a)2 dx .

By the substitution x = a+ r sinu, we find that
ż a+r

a´r

x
a

r2 ´ (x ´ a)2 dx =

ż π
2

´π
2

(a+ r sinu)
a

r2 ´ r2 sin2 u ¨ r cosu du

= r2
ż π

2

´π
2

(a+ r sinu) cos2 u du = r2
ż π

2

´π
2

[
a
1 + cos(2u)

2
+ r sinu cos2 u

]
du

= r2
[au
2

+
a sin(2u)

4
´
r

3
cos3 u

]ˇ
ˇ

ˇ

u=π
2

u=´π
2

=
π

2
ar2 ;

thus the volume of the solid torus is 4π ¨
π

2
ar2 = 2π2ar2 which agrees with what Example

7.6 shows.

Example 7.12. A solid D is formed by rotating the region bounded by the graph of y =

1 ´
x2

16
and y = 0 about the x-axis. Then the volume of D computed by the disk method is

given by

π

ż 4

´4

(
1 ´

x2

16

)2

dx = π
[
x ´

x3

24
+

x5

5 ¨ 256

]ˇ
ˇ

ˇ

x=4

x=´4
=

64π

15

while the volume of D computed by the shell method is given by

2π

ż 1

0

y
[a

16(1 ´ y) ´ (´
a

16(1 ´ y))
]
dy = 16π

ż 1

0

y
a

1 ´ y dy = 16π

ż 0

1

(1 ´ u)u
1
2 (´ du)

= 16π

ż 1

0

(
u

1
2 ´ u

3
2

)
du = 16π

[2
3
u

3
2 ´

2

5
u

5
2

]u=1

u=0
= 16π

(2
3

´
2

5

)
=

64π

15
.

Now consider the volume of a solid D formed by revolving a region R about the line
y = L, where

R =
␣

(x, y)
ˇ

ˇ y P [c, d] , g(y) ď x ď f(y)
(



for some c ě L and continuous functions f, g : [c, d] Ñ R with min
yP[c,d]

f(y) ě max
yP[c,d]

g(y).
Similar to the argument above, the volume of D is given by

2π

ż d

c

(y ´ L)
[
f(y) ´ g(y)

]
dy .

Example 7.13. Find the volume of the solid formed by revolving the region R about the
x-axis, where R is the region bounded by the graph of x = e´y2 , y = 0, y = 1 and the y-axis.

Using the shell method, the volume of this solid is given by

2π

ż 1

0

(y ´ 0)e´y2 dy = 2π
(

´
e´y2

2

)ˇ
ˇ

ˇ

y=1

y=0
= π(1 ´ e´1) .

Example 7.14. Let R be the region bounded by the graph of y2 = x(4 ´ x)2.

Find the volume of the solid D formed by revolving R about

(a) the x-axis, (b) the y-axis, and (c) the line x = 4.



(a) Using the disk method, the volume of D is given by

π

ż 4

0

x(4 ´ x)2 dx = π

ż 4

0

(
x3 ´ 8x2 + 16x

)
dx = π

(1
4
x4 ´

8

3
x3 + 8x2

)ˇ
ˇ

ˇ

x=4

x=0
=

64π

3
.

It will not be easy to compute the volume of D using the shell method since it requires
solving for x (in terms of y) from y2 = x(4 ´ x)2.

(b) Using the shell method, the volume of D is given by

2π

ż 4

0

x
[a

x(4 ´ x)2 ´ (´
a

x(4 ´ x)2)
]
dx = 4π

ż 4

0

x(4 ´ x)x
1
2 dx

= 4π

ż 4

0

(
4x

3
2 ´ x

5
2

)
dx = 4π

(8
5
x

5
2 ´

2

7
x

7
2

)ˇ
ˇ

ˇ

x=4

x=0
=

2048π

35
.

(c) Using the shell method, the volume of D is given by

2π

ż 4

0

(4 ´ x)
[a

x(4 ´ x)2 ´ (´
a

x(4 ´ x)2)
]
dx = 4π

ż 4

0

(x ´ 4)2x
1
2 dx

= 4π

ż 4

0

(
x

5
2 ´ 8x

3
2 + 16x

1
2

)
dx = 4π

(2
7
x

7
2 ´

16

5
x

5
2 +

32

3
x

3
2

)ˇ
ˇ

ˇ

x=4

x=0
=

8192π

105
.

7.4 Arc Length and Surfaces of Revolution

7.4.1 Arc length

In this sub-section we consider the arc length of a curve which is the graph of a function
on a closed interval. Let f : [a, b] Ñ R be a continuous function, and P = ta = x0 ă x1 ă

¨ ¨ ¨ ă xn = bu be a partition of [a, b]. Then the arc length of the graph of f on [a, b] can be
approximated by

n
ÿ

k=1

b

(xk ´ xk´1)2 +
(
f(xk) ´ f(xk´1)

)2
,

where for each k, the number
b

(xk ´ xk´1)2 +
(
f(xk) ´ f(xk´1)

)2 is the length of the line
segment joining points

(
xk, f(xk)

)
and

(
xk´1, f(xk´1)

)
.



Figure 7.4: The length of the polygonal path P0P1P2 ¨ ¨ ¨Pn approximates the arc length of
the graph of f on [a, b]

With ∆xk denoting xk ´ xk´1, then

n
ÿ

k=1

b

(xk ´ xk´1)2 +
(
f(xk) ´ f(xk´1)

)2
=

n
ÿ

k=1

d

1 +
(f(xk) ´ f(xk´1)

xk ´ xk´1

)2

∆xk .

If f is differentiable on (a, b), then the Mean Value Theorem implies that for each 1 ď k ď n

there exists ck P (xk´1, xk) such that

f(xk) ´ f(xk´1)

xk ´ xk´1

= f 1(ck) ;

thus
n
ÿ

k=1

b

(xk ´ xk´1)2 +
(
f(xk) ´ f(xk´1)

)2
=

n
ÿ

k=1

a

1 + f 1(ck)2∆xk

which is a Riemann sum of the function y =
a

1 + f 1(x)2 for partition P . Therefore, if f
is continuously differentiable on [a, b]; that is, f 1 is continuous on [a, b], then

a

1 + f 1(x)2

is Riemann integrable on [a, b]. Therefore, using the arguments in Section 7.2, we find that
the arc length of the graph of a continuously differentiable function f on [a, b] is

ż b

a

a

1 + f 1(x)2 dx .

Example 7.15. Compute the perimeter of a circle with radius r.



Let f(x) =
?
r2 ´ x2. Then the perimeter of a circle with radius r is the same as twice

the arc length of the graph of f on [´r, r]. Therefore, the perimeter of a circle with radius
r is

2

ż r

´r

a

1 + f 1(x)2 dx = 2

ż r

´r

c

1 +
x2

r2 ´ x2
dx = 2r

ż r

´r

1
?
r2 ´ x2

dx

= 2r

ż π
2

´π
2

1
?
r2 ´ r2 sin2 u

r cosu du

= 2r

ż π
2

´π
2

r cosu
r cosu du = 2r

ż π
2

´π
2

du = 2πr .

Example 7.16. The arc length of the graph of y =
x3

6
+

1

2x
on the interval

[1
2
, 2
]

is

ż 2

1
2

c

1 +
[
d

dx

(x3
6

+
1

2x

)]2
dx =

ż 2

1
2

c

1 +
[
x2

2
´

1

2x2

]2
dx

=

ż 2

1
2

c

1 +
x4

4
´

1

2
+

1

4x4
dx =

ż 2

1
2

c(
x2

2
+

1

2x2

)2

dx

=

ż 2

1
2

(x2
2

+
1

2x2

)
dx =

(x3
6

´
1

2x

)ˇ
ˇ

ˇ

x=2

x= 1
2

=
33

16
.

Example 7.17. The arc length of the graph of y = ln(cosx) from x = 0 to x =
π

4
is

ż π
4

0

c

1 +
( d
dx

ln(cosx)
)2
dx =

ż π
4

0

c

1 +
sin2 x

cos2 x dx =

ż π
4

0

a

1 + tan2 x dx

=

ż π
4

0

secx dx = ln | secx+ tanx|

ˇ

ˇ

ˇ

x=π
4

x=0

= ln(
?
2 + 1) ´ ln 1 = ln(

?
2 + 1) .

Let f be continuously differentiable on [a, b]. Then the arc length of the graph of f on
[a, x], where x P [a, b], is given by

s(x) =

ż x

a

a

1 + f 1(t)2 dx .

The fundamental theorem of Calculus then shows that

s 1(x) =
ds

dx
(x) =

a

1 + f 1(x)2



or equivalently,
ds

dx
=

c

1 +
(dy
dx

)2

.

Symbolically, ds =
a

dx2 + dy2; thus the arc length of the graph of a function is
ż

ds. This
variable s is usually called the arc length parameter.

7.4.2 Surface of Revolution

In this section we consider the surface area of a surface formed by revolving a curve about
a line (again, this line is called the axis of revolution and usually is a line parallel to the
x-axis or y-axis). Let f : [a, b] Ñ R be a continuous function, and S be the surface formed
by revolving the graph of f on [a, b] about the x-axis. The general procedures shown in
the previous sections is first finding a way to compute an approximated value of the surface
area and then see what is the limit of this approximation as }P} approaches 0.

We first try the following idea: let P = ta = x0 ă x1 ă ¨ ¨ ¨ ă xn = bu be a partition of
[a, b] and ∆xk = xk ´ xk´1. Consider the sum

n
ÿ

k=1

2πf(ck)∆xk , ck P [xk´1, xk]

which is the sum of the area of cylinders formed by revolving the graph of the constant
function y = f(ck) on [xk´1, xk] about the x-axis. Since the sum above is a Riemann sum
of the function y = 2πf(x) for partition P , we expect that if f : [a, b] Ñ R is continuous,
then as }P} Ñ 0 the sum approaches

2π

ż b

a

f(x) dx .

If this is true, then the surface of the sphere with radius r is given by

2π

ż r

´r

?
r2 ´ x2 dx = 2π

ż π
2

´π
2

r2 cos2 u du = 2πr2
ż π

2

´π
2

1 + cos(2u)
2

du = π2r2

which is definitely not the correct area of the sphere with radius r. What is wrong with this
idea?

The mistake is due to the fact that the area of surface of revolution has to be approxi-
mated by the sum of the lateral surface area of frustum of right circular cones rather than
sum of lateral surface area of cylinders. The lateral area of the frustum in Figure 7.5 below



Figure 7.5

is given by 2πrL, where r = r1 + r2
2

; thus the surface area of S can be approximated by

n
ÿ

k=1

2π
f(xk) + f(xk´1)

2

b

(xk ´ xk´1)2 +
(
f(xk) ´ f(xk´1)

)2
=

n
ÿ

k=1

2π
f(xk) + f(xk´1)

2

a

1 + f 1(ck)2∆xk

It can be shown that the sum above approaches
ż b

a
2πf(x)

a

1 + f 1(x)2 dx as }P} approaches
0. Therefore, the area of the surface formed by revolving the graph of f on [a, b] about the
x-axis is given by

2π

ż b

a

ˇ

ˇf(x)
ˇ

ˇ

a

1 + f 1(x)2 dx .

In general, the area of the surface formed by revolving the graph of f on [a, b] about y = L

is given by

2π

ż b

a

ˇ

ˇf(x) ´ L
ˇ

ˇ

a

1 + f 1(x)2 dx .

Example 7.18. The surface area of a sphere with radius r is given by

2π

ż r

´r

(?
r2 ´ x2 ´ 0

)c
1 +

x2

r2 ´ x2
dx = 2π

ż r

´r

?
r2 dx = 4πr2 ,

where we treat the sphere as a surface formed by revolving the graph of y =
?
r2 ´ x2 about

the x-axis.

Example 7.19. In this example we consider the area of the surface formed by revolving

the (upper part) ellipse x2

a2
+
y2

b2
= 1 (or the graph of y =

b

a

?
a2 ´ x2 on [´a, a]

)
about the



x-axis. Using the formula above, we find that the surface area is given by

2π

ż a

´a

b

a

?
a2 ´ x2

c

1 +
b2

a2
x2

a2 ´ x2
dx =

2πb

a

ż a

´a

c

a2 ´ x2 +
b2

a2
x2 dx

=
2πb

a2

ż a

´a

a

a4 ´ (a2 ´ b2)x2 dx = 2πb

ż a

´a

c

1 ´
a2 ´ b2

a4
x2 dx .

1. Suppose that a ą b; that is, x-axis is the major axis. Let c =

?
a2 ´ b2

a2
. Then the

substitution x =
1

c
sinu implies that

2π

ż a

´a

b

a

?
a2 ´ x2

c

1 +
b2

a2
x2

a2 ´ x2
dx = 2πb

ż a

´a

?
1 ´ c2x2 dx

= 2πb

ż arcsin(ac)

´ arcsin(ac)

a

1 ´ sin2 u ¨
1

c
cosu du

=
2πb

c

ż arcsin(ac)

´ arcsin(ac)
cos2 u du =

2πb

c

ż arcsin(ac)

´ arcsin(ac)

1 + cos(2u)
2

du

=
2πb

c

(u
2
+

sin(2u)
4

)ˇ
ˇ

ˇ

u=arcsin(ac)

u=´ arcsin(ac)

=
2πa2b

?
a2 ´ b2

[
arcsin

?
a2 ´ b2

a
+
b
?
a2 ´ b2

a2

]
=

2πa2b
?
a2 ´ b2

arcsin
?
a2 ´ b2

a
+ 2πb2 .

2. Suppose that a ă b; that is, x-axis is the minor axis. Let c =
?
b2 ´ a2

a2
. Then similar

to the previous case, the substitution x =
1

c
sinhu implies that

2π

ż a

´a

b

a

?
a2 ´ x2

c

1 +
b2

a2
x2

a2 ´ x2
dx = 2πb

ż sinh´1(ac)

´ sinh´1(ac)

a

1 + sinh2 u ¨
1

c
coshu du

=
2πb

c

ż sinh´1(ac)

´ sinh´1(ac)

cosh2 u du =
2πb

c

ż sinh´1(ac)

´ sinh(ac)

1 + cosh(2u)
2

du

=
2πb

c

(u
2
+

sinh(2u)
4

)ˇ
ˇ

ˇ

u=sinh´1(ac)

u=´ sinh´1(ac)

=
2πa2b

?
b2 ´ a2

[
sinh´1

?
a2 ´ b2

a
+

?
a2 ´ b2

a
cosh

(
sinh´1

?
b2 ´ a2

a

)]
=

2πa2b
?
b2 ´ a2

sinh´1

?
a2 ´ b2

a
+ 2πb2 .



7.5 Moments, Centers of Mass, and Centroids
‚ Center of mass in a one-dimensional system

Let m1,m2, ¨ ¨ ¨ ,mn be n point masses located at x1, x2, ¨ ¨ ¨ , xn on a (massless) rigid x-axis
supported by a fulcrum at the origin.

Each mass mk exerts a downward force mkg (which is negative), and each of these forces
has a tendency to turn the x-axis about the origin. This turning effect, called a torque,
is measured by multiplying the force mkg by the signed distance xk from the point of
application to the origin. By convention, a positive torque induces a counterclockwise turn.

The sum of these torques measures the tendency of the system to rotate about the
fultrum/origin. This sum is called the system torque; thus

System torque = m1gx1 +m2gx2 + ¨ ¨ ¨ +mngxn = g(m1x1 +m2x2 + ¨ ¨ ¨ +mnxn) .

The system will balance if and only if its torque is zero. The number M0 ” m1x1 +m2x2 +

¨ ¨ ¨+mnxn is called the moment of the system about the origin, and is the sum of moments
m1x1, m2x2, ¨ ¨ ¨ , mnxn of individual masses. If M0 is 0, then the system is said to be in
equilibrium.

For a system that is not in equilibrium, the center of mass (of the system) is defined as
the point x̄ at which the fulcrum could be relocated to attain equilibrium.

Such an x̄ must satisfy

0 = m1(x1 ´ x̄) +m2(x2 ´ x̄) + ¨ ¨ ¨ +mn(xn ´ x̄)

which implies that

x̄ =

n
ř

i=1

mixi

n
ř

i=1

mi

=
moment of system about the origin

total mass of system .



Definition 7.20
Let the point masses m1,m2, ¨ ¨ ¨ ,mn be located at x1, x2, ¨ ¨ ¨ , xn (on a coordinate
line).

1. The moment about the origin is

M0 = m1x1 +m2x2 + ¨ ¨ ¨ +mnxn .

2. The center of mass x̄ is M0

m
, where m = m1 +m2 + ¨ ¨ ¨ +mn is the total mass

of the system.

‚ Center of mass in a two-dimensional system

Definition 7.21
Let the point masses m1,m2, ¨ ¨ ¨ ,mn be located at (x1, y1), (x2, y2), ¨ ¨ ¨ , (xn, yn) (on
a plane).

1. The moment about the y-axis is

My = m1x1 +m2x2 + ¨ ¨ ¨ +mnxn .

2. The moment about the x-axis is

Mx = m1y1 +m2y2 + ¨ ¨ ¨ +mnyn .

3. The center of mass (x̄, ȳ) is

x̄ =
My

m
and ȳ =

Mx

m
,

where m = m1 +m2 + ¨ ¨ ¨ +mn is the total mass of the system.

‚ Center of mass of a planar lamina

Consider an irregularly shaped thin flat plate of material (called lamina) of uniform density
ϱ (a measure of mass per unit of area), bounded by the graphs of y = f(x), y = g(x), and
x = a, x = b, as shown in the following figure.



Then the density of this region is

m = ϱ

ż b

a

[
f(x) ´ g(x)

]
dx = ϱA ,

where A is the area of this region.
Partition [a, b] into n sub-intervals with equal width ∆x, and let xi be the mid-point

of the i-th sub-interval. The area of the portion on the i-th sub-interval can be approxi-
mated by

[
f(xi) ´ g(xi)

]
∆x; thus the mass of the portion on the i-th sub-interval can be

approximated by ϱ
[
f(xi)´g(xi)

]
∆x. Now, considering this mass to be located at the center(

xi,
f(xi) + g(xi)

2

)
, the moment of this mass about the x-axis is

ϱ
[
f(xi) ´ g(xi)

]
∆x

f(xi) + g(xi)

2
.

Summing all the moments and passing to the limit as n Ñ 8 suggest the following
Definition 7.22

Let f, g : [a, b] Ñ R be continuous such that f(x) ě g(x) for all x P [a, b], and consider
the lamina of uniform density ϱ bounded by the graphs of f , g and the lines x = a,
x = b.

1. The moment about the x-axis and the y-axis are

Mx =
ϱ

2

ż b

a

[
f(x)2 ´ g(x)2

]
dx and My = ϱ

ż b

a

x
[
f(x) ´ g(x)

]
dx .

2. The center of mass (x̄, ȳ) is given by x̄ =
My

m
and ȳ =

Mx

m
, where m =

ϱ
ż b

a

[
f(x) ´ g(x)

]
dx is the mass of the lamina.



The center of mass of a lamina of uniform density depends only on the shape of the
lamina but not on its density. For this reason, the center of mass of a region in the plain is
also called the centroid of the region.

Example 7.22. Compute the centroid of a triangle with vertex (0, 0), (a, b1) and (a, b2),
where a ą 0 and b1 ă b2.

Let f(x) = b2
a
x and g(x) =

b1
a
x. Then the triangle given above is the region bounded

by the graphs of f , g and x = a. Assume uniform density ϱ = 1. Then the moment of the
region about the x-axis is

Mx =
1

2

ż a

0

( b22
a2

´
b21
a2

)
x2 dx =

a(b22 ´ b21)

6

and the moment of the region about the y-axis is

My =

ż a

0

x
[b2
a

´
b1
a

]
x dx =

a2(b2 ´ b1)

3
,

as well as the total mass

m =

ż a

0

[b2
a

´
b1
a

]
x dx =

a(b2 ´ b1)

2
.

Therefore, the centroid of the given triangle is

(x̄, ȳ) =
(2a
3
,
b1 + b2

3

)
.

Theorem 7.23: Pappus
Let R be a region in a plane and L be a line in the same plane such that L does not
intersect the interior of R. If r is the distance between the centroid of R and the line,
then the volume V of the solid of revolution formed by revolving R about the line is

V = 2πrA ,

where A is the area of R.

Proof. We draw the axis of revolution as the x-axis with the region R in the first quadrant
(see figure below).



Let L(y) be the length of the cross section of R perpendicular to the y-axis at y, and we
assume that L is continuous on [c, d]. Then the area of R is given by

A =

ż d

c

L(y) dy ,

and the shell method implies that the volume of the solid formed by revolving R about the
x-axis is

V = 2π

ż d

c

yL(y) dy .

On the other hand, if r denotes the distance between the centroid of R and the x-axis, then
r is the y-coordinate of the centroid of R and is given by

r =
the moment of the region about the x-axis

the total mass of the region =

ż d

c
yL(y) dy

ż d

c
L(y) dy

which validates the relation V = 2πrA.

Example 7.24. Using the Pappus theorem, the volume of the solid torus given in Example
7.2 is

2πa(πr2) = 2π2ar2

since the centroid of a disk is the center of the disk.



Chapter 8

Integration Techniques and Improper
Integrals

8.1 Basic Integration Rules
We recall the following formula:

1. Let f, g be functions and k be a constant. Then
ż

kf(x) dx = k
ż

f(x) dx ,

ż

(f + g)(x) dx =

ż

f(x) dx+

ż

g(x) dx .

2. Let r be a real number. Then

ż

xr dx =

$

&

%

1

r + 1
xr+1 + C if r ‰ ´1 ,

lnx+ C if r = ´1 .

3. If a ą 0, then
ż

ax dx =
1

ln aa
x + C. In particular,

ż

ex dx = ex + C.

4. If a ‰ 0,
ż

sin(ax) dx = ´
1

a
cos(ax) + C,

ż

cos(ax) dx =
1

a
sin(ax) + C,

ż

tan(ax) dx =
1

a
ln | sec(ax)| + C,

ż

cot(ax) dx =
1

a
ln | sin(ax)| + C,

ż

sec(ax) dx =
1

a
ln | sec(ax)+tan(ax)|+C,

ż

cscx dx = ´
1

a
ln | csc(ax)+cot(ax)|+C.

5.
ż

sec2 x dx = tanx+ C,
ż

secx tanx dx = secx+ C.
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6. If a ą 0, then
ż

dx
?
a2 ´ x2

= arcsin x
a
+ C ,

ż

dx

a2 + x2
=

1

a
arctan x

a
+ C

ż

dx

x
?
x2 ´ a2

=
1

a
arctan

?
x2 ´ a2

a
+ C .

Example 8.1. Find the indefinite integrals
ż

4

x2 + 9
dx,

ż

4x

x2 + 9
dx and

ż

4x2

x2 + 9
dx.

From the formula above, it is easy to see that
ż

4

x2 + 9
dx =

4

3
arctan x

3
+ C .

Noting that 4x

x2 + 9
= 2

d
dx(x

2 + 9)

x2 + 9
, using the formula d

dx
ln |f(x)| =

f 1(x)

f 1(x)
, we find that

ż

4x

x2 + 9
dx = 2 ln |x2 + 9| + C = 2 ln(x2 + 9) + C .

Finally, noting that 4x2

x2 + 9
=

4(x2 + 9) ´ 36

x2 + 9
= 4´

36

x2 + 9
, by the formula above we find that

ż

4x2

x2 + 9
dx = 4x ´ 12 arctan x

3
+ C .

Example 8.2. Find the indefinite integrals
ż

3
?
4 ´ x2

dx,
ż

3x
?
4 ´ x2

dx and
ż

3x2
?
4 ´ x2

dx.
From the formula above,

ż

3
?
4 ´ x2

dx = 3 arcsin x
2
+ C .

For the second integral, we let 4 ´ x2 = u. Then ´2xdx = du; thus
ż

3x
?
4 ´ x2

dx = ´
3

2

ż

u´ 1
2 du = ´

3

2

1

1 ´ 1
2

u
1
2 + C = ´3(4 ´ x2)

1
2 + C .

For the third integral, first we observe that
ż

3x2
?
4 ´ x2

dx =

ż

3(x2 ´ 4)
?
4 ´ x2

dx+

ż

12
?
4 ´ x2

dx = ´3

ż

?
4 ´ x2 dx+ 12 arcsin x

2
.

Let x = 2 sinu. Then dx = 2 cosu du; thus
ż

?
4 ´ x2 dx =

ż

b

4(1 ´ sin2 u) ¨ 2 cosu du =

ż

4 cos2 u du =

ż [
2 + 2 cos(2u)

]
du

= 2u+ sin(2u) + C = 2u+ 2 sinu cosu+ C

= 2 arcsin x
2
+ x

c

1 ´
x2

4
+ C = 2 arcsin x

2
+
x

?
4 ´ x2

2
+ C .



Therefore,
ż

3x2
?
4 ´ x2

dx = 6 arcsin x
2

´
3

2
x

?
4 ´ x2 + C .

Remark 8.3. One should add
ż

x
?
a2 ´ x2

dx = ´
?
a2 ´ x2 + C and

ż

x
?
a2 + x2

dx =
?
a2 + x2 + C

into the table of integrations.

Example 8.4. Find the indefinite integral
ż

dx

1 + ex
.

Let u = 1 + ex. Then du = exdx which implies that dx =
du

u´ 1
. Therefore,

ż

dx

1 + ex
=

ż

du

u(u ´ 1)
=

ż ( 1

u ´ 1
´

1

u

)
du = ln |u ´ 1| ´ ln |u| + C

= x ´ ln(1 + ex) + C .

Another way of finding the integral is by observing that

1

1 + ex
=

1 + ex

1 + ex
´

ex

1 + ex
= 1 ´

d
dx
(1 + ex)

1 + ex
;

thus using the formula d

dx
ln |f(x)| =

f 1(x)

f(x)
, we find that

ż

dx

1 + ex
= x ´ ln(1 + ex) + C .

8.2 Integration by Parts - 分部積分
Suppose that u, v are two differentiable functions of x. Then the product rule implies that

d

dx
(uv) =

du

dx
v + u

dv

dx
.

Therefore, if du
dx
v and u

dv

dx
are Riemann integrable (on the interval of interests),
ż

du

dx
v dx+

ż

u
dv

dx
dx = (uv)(x) + C .

Symbolically, we write du

dx
v dx ad v du and u

dv

dx
dx as u dv, the formula above implies

that
ż

udv = uv ´

ż

vdu .



Theorem 8.5: Integration by Parts
If u and v are functions of x and have continuous derivatives, then

ż

u dv = uv ´

ż

v du .

Example 8.6. Find the indefinite integral
ż

lnx dx. Recall that we have shown that

ż

lnx dx = x lnx ´ x+ C

using the Riemann sum. Let u = lnx and v = x (so that dv = dx). Then integration by
parts shows that

ż

lnx dx = x lnx ´

ż

x d(lnx) = x lnx ´

ż

x ¨
1

x
dx = x lnx ´

ż

dx = x lnx ´ x+ C .

Example 8.7. Find the indefinite integral
ż

x cosx dx. Recall that we have shown that

ż

x cosx dx = x sinx+ cosx+ C

using the Riemann sum. Let u = x and v = sinx (so that dv = cosx dx). Then integration
by parts shows that

ż

x cosx dx = x sinx ´

ż

sinx dx = x sinx+ cosx+ C .

Principles of applying integration by parts: Choose u and v such that v du has simpler
form than u dv, and this is usually achieved by

1. finding u such that the derivative of u is a function simpler than u, or

2. finding v such that the derivative of v is more complicate than v.

Example 8.8. Find the indefinite integral
ż

xex dx.

Let u = x and v = ex (so that dv = exdx). Then integration by parts shows that
ż

xex dx = xex ´

ż

ex dx = (x ´ 1)ex + C .



Example 8.9. Find the indefinite integral
ż

xr lnx dx, where r is a real number.

Suppose first that r ‰ ´1. Let u = lnx and v =
1

r + 1
xr+1. Then integration by parts

shows that
ż

xr lnx dx =
1

r + 1
xr+1 lnx ´

ż

1

r + 1
xr+1 ¨

1

x
dx =

1

r + 1
xr+1 lnx ´

1

r + 1

ż

xr dx

=
1

r + 1
xr+1 lnx ´

1

(r + 1)2
xr+1 + C .

Now if r = ´1. Let u = v = lnx. Then integration by parts implies that
ż

x´1 lnx dx = (lnx)2 ´

ż

lnx ¨
1

x
dx = (lnx)2 ´

ż

x´1 lnx dx

which implies that
ż

x´1 lnx dx =
1

2
(lnx)2 + C .

Therefore,

ż

xr lnx dx =

$

’

&

’

%

1

r + 1
xr+1 lnx ´

1

(r + 1)2
xr+1 + C if r ‰ ´1 ,

1

2
(lnx)2 + C if r = ´1 .

Example 8.10. Find the indefinite integral
ż

x2 cosx dx.
Let u = x2 and v = sinx (so that dv = cosx dx). Then integration by parts shows that

ż

x2 cosx dx = x2 sinx ´

ż

sinx ¨ 2x dx = x2 sinx ´ 2

ż

x sinx dx .

Integrating by parts again, we find that
ż

x sinx dx = ´x cosx+
ż

cosx dx = ´x cosx+ sinx+ C ;

thus we obtain the
ż

x2 cosx dx = x2 sinx+ 2x cosx ´ 2 sinx+ C .

Example 8.11. Find the indefinite integrals
ż

eax sin(bx) dx and
ż

eax cos(bx) dx, where
a, b are non-zero constants.



Let u = sin(bx) (or u = cos(ax)) and v = a´1eax (so that dv = eax dx). Then
ż

eax sin(bx) dx =
1

a
eax sin(bx) ´

b

a

ż

eax cos(bx) dx ,
ż

eax cos(bx) dx =
1

a
eax cos(bx) + b

a

ż

eax cos(bx) dx .

The two identities above further imply that
ż

eax sin(bx) dx =
1

a
eax sin(bx) ´

b

a

ż

eax cos(bx) dx

=
1

a
eax sin(bx) ´

b

a

[1
a
eax cos(bx) + b

a

ż

eax sin(bx) dx
]

=
1

a
eax sin(bx) ´

b

a2
eax cos(bx) ´

b2

a2

ż

eax sin(bx) dx ;

thus
ż

eax sin(bx) dx =
1

a2 + b2
[
aeax sin(bx) ´ beax cos(bx)

]
+ C . (8.2.1)

Similarly,
ż

eax cos(bx) dx =
1

a2 + b2
[
aeax cos(bx) + beax sin(bx)

]
+ C . (8.2.2)

Remark 8.12. By the Euler identity (5.9.1),
ż

eax sin(bx) dx and
ż

eax cos(bx) dx are the

real and imaginary part of the integral
ż

eaxeibx dx. By the fact that eaxeibx = e(a+ib)x and

pretending that
ż

ecx dx =
1

c
ecx + C for complex number c, we find that

ż

eaxeibx dx =
1

a+ ib
e(a+ib)x + C =

1

a+ ib
eax

[
cos(bx) + i sin(bx)

]
+ C

=
a ´ ib

a2 + b2
eax

[
cos(bx) + i sin(bx)

]
+ C

=
eax

a2 + b2
[
a cos(bx) + b sin(bx) + i

(
a sin(bx) ´ b cos(bx)

)]
+ C ;

thus we conclude (8.2.1) and (8.2.2).

Example 8.13. Find the indefinite
ż

xneax dx,
ż

xn sin(ax) dx and
ż

xn cos(ax) dx, where
a ą 0 is a constant.

Let u = xn and v = a´1eax (so that dv = eax dx), v = ´a´1 cos(ax) (so that dv = sin(ax))
and v = a´1 sin(ax) (so that dv = cos(ax)) in these three cases. Then

ż

xneax dx =
1

a
xneax ´

ż

1

a
eax ¨ nxn´1 dx =

1

a
xneax ´

n

a

ż

xn´1eax dx .



Moreover,
ż

xn sin(ax) dx = ´
1

a
xn cos(ax) + n

a

ż

xn´1 cos(ax) dx ,
ż

xn cos(ax) dx =
1

a
xn sin(ax) ´

n

a

ż

xn´1 sin(ax) dx .

The two identities above further imply that the following recurrence relations
ż

xn sin(ax) dx = ´
1

a
xn cos(ax) + n

a2
xn´1 sin(ax) ´

n(n ´ 1)

a2

ż

xn´2 cos(ax) dx ,
ż

xn cos(ax) dx =
1

a
xn sin(ax) + n

a2
xn´1 cos(ax) ´

n(n ´ 1)

a2

ż

xn´2 sin(ax) dx .

Example 8.14. Using integration by parts, we have
ż

cosn x dx =

ż

cosn´1 x d(sinx) = sinx cosn´1 x ´

ż

sinx d(cosn´1 x)

= sinx cosn´1 x+ (n ´ 1)

ż

sin2 x cosn´2 x dx

= sinx cosn´1 x+ (n ´ 1)

ż

(1 ´ cos2 x) cosn´2 x dx

= sinx cosn´1 x+ (n ´ 1)

ż

cosn´2 x dx ´ (n ´ 1)

ż

cosn x dx ;

thus rearranging terms, we conclude that
ż

cosn x dx =
sinx cosn´1 x

n
+
n ´ 1

n

ż

cosn´2 x dx . (8.2.3)

Similarly,
ż

sinn x dx = ´
cosx sinn´1 x

n
+
n ´ 1

n

ż

sinn´2 x dx . (8.2.4)

Theorem 8.15: Wallis’s Formulas
If n is a non-negative integer, then

ż π
2

0

sin2n+1 x dx =

ż π
2

0

cos2n+1 x dx =
(2nn!)2

(2n+ 1)!

and
ż π

2

0

sin2n x dx =

ż π
2

0

cos2n x dx =
(2n)!

(2nn!)2
¨
π

2
.



Proof. Note that (8.2.3) implies that
ż π

2

0

cosn x dx =
sinx cosn´1 x

n

ˇ

ˇ

ˇ

x=π
2

x=0
+
n ´ 1

n

ż π
2

0

cosn´2 x dx =
n ´ 1

n

ż π
2

0

cosn´2 x dx .

Therefore,
ż π

2

0

cos2n+1 x dx =
2n

2n+ 1

ż π
2

0

cos2n´1 x dx =
2n

2n+ 1
¨
2n ´ 2

2n ´ 1

ż π
2

0

cos2n´3 x dx = ¨ ¨ ¨

=
2n

2n+ 1
¨
2n ´ 2

2n ´ 1
¨
2n ´ 4

2n ´ 3
¨ ¨ ¨

2

3

ż π
2

0

cosx dx =
2

3
¨
4

5
¨ ¨ ¨

2n

2n+ 1

=
2242 ¨ ¨ ¨ (2n)2

(2n+ 1)!
=

(2nn!)2

(2n+ 1)!

and
ż π

2

0

cos2n x dx =
2n ´ 1

2n

ż π
2

0

cos2n´2 x dx =
2n ´ 1

2n
¨
2n ´ 3

2n ´ 2

ż π
2

0

cos2n´4 x dx = ¨ ¨ ¨

=
2n ´ 1

2n
¨
2n ´ 3

2n ´ 2
¨
2n ´ 5

2n ´ 4
¨ ¨ ¨

1

2

ż π
2

0

cos0 x dx =
1

2
¨
3

4
¨ ¨ ¨

2n ´ 1

2n
¨
π

2

=
(2n)!

2242 ¨ ¨ ¨ (2n)2
¨
π

2
=

(2n)!

(2nn!)2
¨
π

2
.

The substitution x =
π

2
´ u shows that

ż π
2

0

sinn x dx =

ż π
2

0

cosn x dx for all non-negative integers n ,

so we conclude the theorem.

Theorem 8.16: Stirling’s Formula

lim
nÑ8

n!

nn+0.5e´n
=

?
2π.

Proof. Let In =
ż π

2

0
sinn x dx. Then Wallis’s formula shows that

I2n =
(2n)!

(2nn!)2
¨
π

2
and I2n+1 =

(2nn!)2

(2n+ 1)!
.

Moreover, since sin2n+2 x ď sin2n+1 x ď sin2n x on
[
0,
π

2

]
, we also have I2n+2 ď I2n+1 ď I2n

for all n ě 0. Therefore,
I2n+2

I2n
ď
I2n+1

I2n
ď 1 @n ě 0 .



Note that

I2n+2

I2n
=
I2(n+1)

I2n
=

(2(n+ 1))!

22(n+1)((n+ 1)!)2

(2n)!

22n(n!)2

=
2n+ 1

2(n+ 1)
;

thus lim
nÑ8

I2n+2

I2n
= 1. As a consequence, the Squeeze Theorem implies that lim

nÑ8

I2n+1

I2n
= 1 .

Let sn =
n!

nn+0.5e´n
. Then the fact that the function y =

(
1 +

1

x

)x+0.5 is decreasing on
(0,8) (left as an exercise) and (5.4.3) show that sn ě sn+1 ě 0 for all n P N. Therefore,
the completeness of the real number (see Theorem 9.20) implies that lim

nÑ8
sn = s exists.

Moreover,

I2n+1

I2n
=

22n(n!)2

(2n+ 1)!

(2n)!

22n(n!)2
π

2

=
24n(n!)4

(2n)!(2n+ 1)!
¨
2

π

=
24n(snn

n+0.5e´n)4

s2n(2n)2n+0.5e´2ns2n+1(2n+ 1)2n+1.5e´2n´1
¨
2

π

=
s4n

s2ns2n+1

e

2π
(1 +

1

2n
)´2n´1.5 ;

thus (5.4.3) implies that

1 = lim
nÑ8

I2n+1

I2n
= lim

nÑ8

s4n
s2ns2n+1

¨
1

2π
=
s2

2π
.

The theorem is then concluded by the fact that s ě 0.

8.3 Trigonometric Integrals
In this section, we are concerned with the integrals

ż

sinm x cosn x dx and
ż

secm x tann x dx ,

where m,n are non-negative integers.

8.3.1 The integral of sinm x cosn x
‚ The case when one of m and n is odd

Suppose m = 2k + 1 or n = 2ℓ+ 1. Write
ż

sin2k+1 x cosn x dx =

ż

cosn x(1 ´ cos2 x)k sinx dx = ´

ż

cosn x(1 ´ cosx x)k d(cosx)



and
ż

sinm x cos2ℓ+1 x dx =

ż

sinm x(1 ´ sin2 x)ℓ cosx dx =

ż

sinm x(1 ´ sin2 x)ℓ d(sinx)

so that the integral can be obtained by integrating polynomials.

Example 8.17. Find the indefinite integral
ż

sin3 x cos4 x dx.
Let u = cosx. Then du = ´ sinx dx; thus

ż

sin3 x cos4 x dx =

ż

(1 ´ cos2 x) cos4 x sinx dx = ´

ż

(1 ´ u2)u4 du

= ´
1

5
u5 +

1

7
u7 + C = ´

1

5
cos5 x+ 1

7
cos7 x+ C .

We also write
ż

sin3 x cos4 x dx =

ż

(1 ´ cos2 x) cos4 x sinx dx = ´

ż

(1 ´ cos2 x) cos4 x d(cosx)

= ´
1

5
cos5 x+ 1

7
cos7 x+ C .

‚ The case when m and n are both even

First we talk about how to integrate cosn x. We have shown the recurrence relation (8.2.3)
in previous section, and there are other ways of finding the integral of cosn x without using
integration by parts. The case when n = 2ℓ+ 1 can be dealt with the previous case, so we
focus on the case n = 2ℓ. Make use of the half angle formula

cos2 x =
1 + cos(2x)

2
,

we can write
ż

cos2ℓ x dx =

ż (1 + cos(2x)
2

)ℓ

dx =
ℓ
ÿ

i=0

Cℓ
i

2ℓ

ż

cosi(2x) dx (u=2x)
=

ℓ
ÿ

i=0

Cℓ
i

2ℓ+1

ż

cosi u du

which is a linear combination of integrals of the form
ż

cosi u du, while the power i is at most

half of n. Keeping on applying the half angle formula for even powers of cosine, eventually
integral

ż

cosi u du will be reduced to sum of integrals of cosine with odd powers (which

can be evaluated by the previous case).



Example 8.18. Find the indefinite integral
ż

cos6 x dx.
By the half angle formula,
ż

cos6 x dx =

ż (1 + cos(2x)
2

)3

dx =
1

8

ż [
1 + 3 cos(2x) + 3 cos2(2x) + cos3(2x)

]
dx

=
1

8

ż [
1 + 3 cos(2x) + 3

2

(
1 + cos(4x)

)
+
(
1 ´ sin2(2x)

)
cos(2x)

]
dx

=
1

8

ż (5
2
+ 4 cos(2x) + 3

2
cos(4x)

)
dx ´

1

16

ż

sin2(2x) d
(

sin(2x)
)

=
1

8

[5x
2

+ 2 sin(2x) + 3

8
sin(4x)

]
´

1

48
sin3(2x) + C .

Now suppose that m = 2k and n = 2ℓ. Make use of the half angle formulas

sin2 x =
1 ´ cos(2x)

2
and cos2 x =

1 + cos(2x)
2

to write
ż

sin2k x cos2ℓ x dx =
1

2k+ℓ

ż (
1 ´ cos(2x)

)k(
1 + cos(2x)

)ℓ
dx .

Expanding parenthesis, the integral above becomes the linear combination of integrals of

the form
ż

cosi(2x) dx.

Example 8.19. Find the indefinite integral
ż

sin2 x cos4 x dx.
By the half angle formula,

ż

sin2 x cos4 x dx =

ż

1 ´ cos(2x)
2

(1 + cos(2x)
2

)2

dx

=
1

8

ż [
1 ´ cos(2x)

][
1 + 2 cos(2x) + cos2(2x)

]
dx

=
1

8

ż [
1 + cos(2x) ´ cos2(2x) ´ cos3(2x)

]
dx

=
1

8

ż (1 ´ cos(4x)
2

+ sin2(2x) cos(2x)
]
dx

=
1

8

[x
2

´
sin(4x)

8

]
+

1

48
sin3(2x) + C .

8.3.2 The integral of secm x tann x

Rule of thumb: make use of d

dx
tanx = sec2 x and d

dx
secx = secx tanx.



‚ The case when m is even

Suppose that m = 0 and n ě 2. Then we obtain the recurrence relation
ż

tann x dx =

ż

tann´2 x tan2 x dx =

ż

tann´2(sec2 x ´ 1) dx

=

ż

tann´2 d(tanx) ´

ż

tann´2 x dx =
1

n ´ 1
tann´1 x ´

ż

tann´2 x dx .

Suppose that m = 2k is even and positive. Using the substitution u = tanx, we have
ż

sec2k x tann x dx =

ż

sec2(k´1) x tann x sec2 x dx =

ż

(1 + tan2 x)k´1 tann x d(tanx)

which can be obtained by integrating polynomials.

‚ The case when n is odd

Suppose that n = 2ℓ+ 1 is odd and m ě 1. Then
ż

secm x tan2ℓ+1 x dx =

ż

secm´1 x tan2ℓ secx tanx dx =

ż

secm´1 x(sec2 x ´ 1)ℓ d(secx)

which can be obtained by integrating polynomials.

‚ The case when m is odd and n is even

Suppose that m = 2k + 1 and n = 2ℓ. Then
ż

sec2k+1 x tan2ℓ x dx =

ż

sec2k+1 x(sec2 x ´ 1)ℓ dx ;

thus it suffices to know how to compute
ż

secm x dx.
Using integration by parts,

ż

secm x dx =

ż

secm´2 x d(tanx) = tanx secm´2 x ´

ż

tanx d(secm´2 x)

= tanx secm´2 x ´ (m ´ 2)

ż

tan2 x secm´2 x dx

= tanx secm´2 x ´ (m ´ 2)

ż

(sec2 x ´ 1) secm´2 x dx

thus rearranging terms we obtain the recurrence relation
ż

secm x dx =
m ´ 2

m ´ 1
tanx secm´2 x+

m ´ 2

m ´ 1

ż

secm´2 x dx .



Example 8.20. Find the indefinite integral
ż

sec4(3x) tan3(3x) dx.
By the discussion above,

ż

sec4(3x) tan3(3x) dx =
1

3

ż

sec2(3x) tan3(3x)d(tan(3x))

=
1

3

ż [
tan2(3x) + 1

]
tan3(3x)d(tan(3x))

=
1

3

[1
6

tan6(3x) +
1

4
tan4(3x)

]
+ C .

Example 8.21. Find the indefinite integral
ż ?

a2 + x2 dx.
By the substitution of variable x = a tan θ (so that dx = a sec2 θdθ), we find that

ż

?
a2 + x2 dx =

ż

a2 sec3 θ dθ = a2
(1
2

tan θ sec θ + 1

2

ż

sec θ dθ
)

=
a2

2

(
tan θ sec θ + ln | sec θ + tan θ|

)
+ C

=
a2

2

(x
a

¨

?
a2 + x2

a
+ ln

ˇ

ˇ

ˇ

x+
?
a2 + x2

a

ˇ

ˇ

ˇ

)
+ C

=
x

?
a2 + x2

2
+
a2

2
ln
(
x+

?
a2 + x2

)
+ C . (8.3.1)

8.3.3 Other techniques of integration involving trigonometric func-
tions

‚ Integration by substitution (for integrand with special structures):

Example 8.22. Find the indefinite integral
ż cos3 x

?
sinx

dx.
Let u = sinx. Then du = cosx dx; thus

ż cos3 x
?

sinx
dx =

ż

(1 ´ u2)
?
u

du =

ż (
u´ 1

2 ´ u
3
2

)
du

=
1

1 ´ 1
2

u
1
2 ´

1

1 + 3
2

u
5
2 + C = 2

?
sinx ´

5

2
sin 5

2 x+ C .

Example 8.23. Find the indefinite integral
ż secx

tan2 x
dx.

Rewrite the integrand into a fraction of sine and cosine, we find that
ż secx

tan2 x
dx =

ż cosx
sin2 x

dx =

ż

1

sin2 x
d(sinx) = ´ sin´1 x+ C = ´ cscx+ C .



Example 8.24. Find the indefinite integral
ż tan3 x

?
secx dx.

Let u = secx. Then du = secx tanx dx; thus
ż tan3 x

?
secx dx =

ż

(sec2 x ´ 1) secx tanx
sec 3

2 x
dx =

ż

u2 ´ 1

u
3
2

du =

ż (
u

1
2 ´ u´ 3

2

)
du

=
2

3
u

3
2 + 2u´ 1

2 + C =
2

3
sec 3

2 x+ 2 cos 1
2 x+ C .

‚ When the angular variable are different, making use of the sum and difference formula:

Example 8.25. Find the indefinite integral
ż

sin3(5x) cos(4x) dx.
Using the sum and difference formula

sin θ cosϕ =
1

2

[
sin(θ + ϕ) + sin(θ ´ ϕ)

]
, sin θ sinϕ =

1

2

[
cos(θ ´ ϕ) ´ sin(θ + ϕ)

]
,

we find that
ż

sin3(5x) cos(4x) dx =
1

2

ż

sin2(5x)
[

sin(9x) + sinx
]
dx

=
1

4

ż

sin(5x)
[

cos(4x) ´ cos(14x) + cos(4x) ´ cos(6x)
]
dx

=
1

8

ż [
2 sin(9x) + 2 sinx ´ sin(19x) + sin(9x) ´ sin(11x) + sinx

]
dx

=
1

8

[
´

1

3
cos(9x) ´ 3 cosx+ 1

19
cos(19x) + 1

11
cos(11x)

]
+ C .

8.4 Partial Fractions - 部份分式
In this section, we are concerned with the integrals

ż

N(x)

D(x)
dx, where N,D are polynomial

functions.
Write N(x) = D(x)Q(x) +R(x), where Q,R are polynomials such that the degree of R

is less than the degree of D (such an R is called a remainder). Then N(x)

D(x)
= R(x) +

R(x)

D(x)
.

Since it is easy to find the indefinite integral of R, it suffices to consider the case when the
degree of the numerator is less than the degree of the denominator.

W.L.O.G., we assume that N and D no common factor, deg(N) ă deg(D), and the
leading coefficient of D is 1. Since D is a polynomial with real coefficients,

D(x) =
( m
ź

j=1

(x+ qj)
rj
)( n

ź

j=1

(x2 + bjx+ cj)
dj
)
,



where rj, dj P N, qj ‰ qk for all j ‰ k, bj ‰ bk or cj ‰ ck for all j ‰ k, and b2j ´4cj ă 0 for all

1 ď j ď m. In other words, ´qj are zeros of D with multiplicity rj, and
´bj ˘ i

b

4cj ´ b2j

2
are zeros of D with multiplicity dj, here i =

?
´1. Therefore,

N(x)

D(x)
=

m
ÿ

j=1

[ rj
ÿ

ℓ=1

Ajℓ

(x+ qj)ℓ

]
+

n
ÿ

j=1

[ rj
ÿ

ℓ=1

Bjℓx+ Cjℓ

(x2 + bjx+ cj)ℓ

]
(8.4.1)

for some constants Ajℓ, Bjℓ and Cjℓ. Note that there are
m
ř

j=1

rj+2
n
ř

j=1

dj ” deg(D) constants

to be determined, and this can be done by the comparison of coefficients after the reduction
of common denominator.

Remark 8.26. In this remark we “show” that a rational function N/D with deg(N) ă

deg(D) can always be written as the sum of partial fractions (8.4.1). Suppose that α is a
zero of D with multiplicity k so that D(x) = (x´ α)kf(x), where f(x) is a polynomial and
f(α) ‰ 0. Since

N(x)

D(x)
´

N(α)

(x ´ α)kf(α)
=
N(x)f(α) ´ f(x)N(α)

(x ´ α)kf(x)f(α)
=

g(x)

(x ´ α)kf(x)
,

where g(x) = N(x) ´ f(x)
N(α)

f(α)
. Since g vanishes at x = α, g(x) = (x ´ α)mh(x) for some

polynomial h satisfying h(α) ‰ 0 (and we remark that here m is not necessarily less than

k). Therefore, with β denoting the constant N(α)

f(α)
, we obtain that

N(x)

D(x)
´

β

(x ´ α)k
=

(x ´ α)mh(x)

(x ´ α)kf(x)
=

h1(x)

(x ´ α)k1f(x)
,

where k1 ě 0 and h1(α) ‰ 0 if k1 ą 0. We note that f and h1 are both polynomials satisfying
degh1 ă k1 + deg(f) and f(α) ‰ 0. Applying the process continuously, we obtain that

N(x)

D(x)
=

k
ÿ

i=1

Ck

(x ´ α)k
+
N1(x)

D1(x)

for some polynomials N1, D1(= f) with deg(N1) ă deg(D1) = deg(D)´k and some sequence
of constants C1, C2, ¨ ¨ ¨ , Ck, where D1(α) ‰ 0. This explains the presence of the first sum on
the right-hand side of (8.4.1)

(
and also shows how to find the coefficient Ajrj in the highest

order term 1

(x+ qj)rj
for each j

)
.



Example 8.27. Write 5x2 + 20x+ 6

x3 + 2x2 + x
in the form of (8.4.1).

Note that x3 +2x2 + x = x(x2 +2x+1) = x(x+1)2; thus to write the rational function
above in the form of (8.4.1), we must have

5x2 + 20x+ 6

x3 + 2x2 + x
=
A

x
+

B

x+ 1
+

C

(x+ 1)2

for some constant A,B,C.
Multiplying both sides of the equality above by x(x+ 1)2, we find that

5x2 + 20x+ 6 = A(x+ 1)2 +Bx(x+ 1) + Cx = (A+B)x2 + (2A+B + C)x+ A ;

thus A,B,C satisfy

A+B = 5

2A+B + C = 20

A = 6 .

Therefore, A = 6, B = ´1 and C = 9; thus
5x2 + 20x+ 6

x3 + 2x2 + x
=

6

x
´

1

x+ 1
+

9

(x+ 1)2
.

Example 8.28. Write 1

x4 + 1
in the form of (8.4.1).

Note that x4 + 1 = (x2 +
?
2x+ 1)(x2 ´

?
2x+ 1), so

1

x4 + 1
=

Ax+B

x2 +
?
2x+ 1

+
Cx+D

x2 ´
?
2x+ 1

.

Multiplying both sides of the equality above by x4 + 1, we have

1 = (Ax+B)(x2 ´
?
2x+ 1) + (Cx+D)(x2 +

?
2x+ 1)

= (A+ C)x3 + (´
?
2A+B +

?
2C +D)x2 + (A ´

?
2B + C +

?
2D)x+ (B +D) ;

thus comparing the coefficients, we find that A,B,C,D satisfy

A+ C = 0

´
?
2A+B +

?
2C +D = 0

A ´
?
2B + C +

?
2D = 0

B +D = 1 .



Therefore, the first and the third equations imply that A = ´C and B = D; thus the second
and the fourth equation shows that A = ´C =

1

2
?
2

and B = D =
1

2
. As a consequence,

1

x4 + 1
=

1

2
?
2

[ x+
?
2

x2 +
?
2x+ 1

+
´x+

?
2

x2 ´
?
2x+ 1

]
.

In order to find the integral of N(x)

D(x)
, by writing N(x)

D(x)
in the form of (8.4.1), it suffices

to find the integral of Bjℓx+ Cjℓ

(x2 + bjx+ cj)ℓ
for

ż

Ajℓ

(x+ qj)ℓ
dx =

$

&

%

Ajℓ

1 ´ ℓ
(x+ qj)

1´ℓ + C if ℓ ‰ 1 ,

Ajℓ ln |x+ qj| + C if ℓ = 1 .

Note that

Bjℓx+ Cjℓ

(x2 + bjx+ c)ℓ
=
Bjℓ

2

2x+ bj
(x2 + bjx+ cj)ℓ

+
(
Cjℓ ´

bjBjℓ

2

) 1

(x2 + bjx+ cj)ℓ

and
ż

2x+ bj
(x2 + bjx+ cj)ℓ

dx =

$

&

%

1

1 ´ ℓ
(x2 + bjx+ cj)

1´ℓ + C if ℓ ‰ 1 ,

ln(x2 + bjx+ cj) + C if ℓ = 1 ;

thus to find the integral of Bjℓx+ Cjℓ

(x2 + bjx+ cj)ℓ
, it suffices to compute

ż

1

(x2 + bjx+ cj)ℓ
dx.

Nevertheless, with a denoting the number
4cj ´ b2j

4
,

ż

1

(x2 + bjx+ cj)ℓ
dx =

ż

1[(
x ´

bj
2

)2
+

4cj´b2j
4

]ℓ dx =

ż

1[(
x ´

bj
2

)2
+ a2

]ℓ d(x ´
bj
2

)

which can be computed through the substitution x ´
bj
2
= a tanu:

ż

1[(
x ´

bj
2

)2
+ a2

]ℓ d(x ´
bj
2

)
= a1´2ℓ

ż

cos2ℓ´2 u du .

Example 8.29. Find the indefinite integral
ż

dx

x4 + 1
.



Using the conclusion from Example 8.28, we find that

ż

dx

x4 + 1
=

1

2
?
2

ż [ x+
?
2

x2 +
?
2x+ 1

+
´x+

?
2

x2 ´
?
2x+ 1

]
dx

=
1

2
?
2

ż [1
2

¨
2x+

?
2

x2 +
?
2x+ 1

´
1

2
¨

2x ´
?
2

x2 ´
?
2x+ 1

]
dx

+
1

2
?
2

ż [1
2

¨

?
2

x2 +
?
2x+ 1

+
1

2
¨

?
2

x2 ´
?
2x+ 1

]
dx

=
1

4
?
2

ż [
2x+

?
2

x2 +
?
2x+ 1

+

?
2(

x+ 1?
2

)2
+ ( 1?

2
)2

´
2x´

?
2

x2 ´
?
2x+ 1

+

?
2(

x´ 1?
2

)2
+ ( 1?

2
)2

]
dx

=
1

4
?
2

[
ln x

2 +
?
2x+ 1

x2 ´
?
2x+ 1

+ 2 arctan(
?
2x+ 1) + 2 arctan(

?
2x ´ 1)

]
+ C .

Example 8.30. Find the indefinite integral
ż secx

tan3 x
dx.

Let u = secx. Then du = secx tanx; thus
ż secx

tan3 x
dx =

ż secx tanx
tan4 x

dx =

ż

du

(u2 ´ 1)2
=

ż

du

(u+ 1)2(u ´ 1)2
.

Write 1

(u+ 1)2(u´ 1)2
is the form of (8.4.1):

1

(u+ 1)2(u ´ 1)2
=

A

u+ 1
+

B

(u+ 1)2
+

C

u ´ 1
+

D

(u ´ 1)2
,

where A,B,C,D satisfy

A(u+ 1)(u ´ 1)2 +B(u ´ 1)2 + C(u ´ 1)(u+ 1)2 +D(u+ 1)2 = 1 .

Therefore, A,B,C,D satisfy

A+ C = 0

´A+B + C +D = 0

´A ´ 2B ´ C + 2D = 0

A+B ´ C +D = 1



which implies that A = B = ´C = D =
1

4
. As a consequence,

ż

du

(u+ 1)2(u ´ 1)2
=

1

4

ż [ 1

u+ 1
+

1

(u+ 1)2
´

1

u ´ 1
+

1

u ´ 1)2

]
du

=
1

4

[
ln |u+ 1| ´

1

u+ 1
´ ln |u ´ 1| ´

1

u ´ 1

]
+ C

=
1

4

[
ln
ˇ

ˇ

ˇ

u+ 1

u ´ 1

ˇ

ˇ

ˇ
´

2u

u2 ´ 1

]
+ C ;

thus
ż secx

tan3 x
dx =

1

4

[
ln
ˇ

ˇ

ˇ

secx+ 1

secx ´ 1

ˇ

ˇ

ˇ
´

2 secx
tan2 x

]
+ C .

Example 8.31. Find the indefinite integral
ż ?

tanx dx.

Let u =
?

tanx. Then u2 = tanx which implies that 2udu = sec2 x dx or 2udu

1 + u4
= dx.

Therefore,
ż

?
tanx dx =

ż

2u2

1 + u4
du =

1
?
2

ż [ u

u2 ´
?
2u+ 1

´
u

u2 +
?
2u+ 1

]
du

=
1

2
?
2

ln
ˇ

ˇ

ˇ

u2 ´
?
2u+ 1

u2 +
?
2u+ 1

ˇ

ˇ

ˇ
+

1

2

ż [ 1

u2 ´
?
2u+ 1

+
1

u2 +
?
2u+ 1

]
du

=
1

2
?
2

ln
ˇ

ˇ

ˇ

u2 ´
?
2u+ 1

u2 +
?
2u+ 1

ˇ

ˇ

ˇ
+

?
2

2
arctan(

?
2u ´ 1) + arctan(

?
2u+ 1) + C

=
1

2
?
2

ln
ˇ

ˇ

ˇ

tanx ´
?
2 tanx+ 1

tanx+
?
2 tanx+ 1

ˇ

ˇ

ˇ
+

?
2

2
arctan

?
2 tanx

1 ´ tanx + C ,

where we have use the fact that

arctanx+ arctan y = arctan x+ y

1 ´ xy
+ C

to conclude the last equality.

Example 8.32. Find the indefinite integral
ż

dx

(1 + xn)
1
n

, where n is a positive integer.

Let 1 + x´n = un. Then xn =
1

un ´ 1
and ´x´n´1 dx = un´1 du; thus

ż

dx

(1 + xn)
1
n

=

ż

dx

x(1 + x´n)
1
n

=

ż

´xn

(1 + x´n)
1
n

(´x´n´1) dx = ´

ż

un´2

un ´ 1
du



which is the indefinite integral of a rational function of u and we know how to compute it.
In particular, when n = 4,

u2

u4 ´ 1
=

u2

(u ´ 1)(u+ 1)(u2 + 1)
=

1

4
¨

1

u ´ 1
´

1

4
¨

1

u+ 1
+

1

2
¨

1

u2 + 1
;

thus
ż

u2

u4 ´ 1
du =

1

4
ln |u ´ 1| ´

1

4
ln |u+ 1| +

1

2
arctanu+ C

which further implies that
ż

dx

(1 + x4)
1
4

=
1

4
ln
ˇ

ˇ

ˇ

(1 + x´4)
1
4 ´ 1

(1 + x´4)
1
4 + 1

ˇ

ˇ

ˇ
+

1

2
arctan

[
(1 + x´4)

1
4

]
+ C .

‚ The substitution of t = tan x
2

In Section 5.3 we have introduced the substitution t = tan x
2

to find the anti-derivative of
trigonometric functions. We recall that if t = tan x

2
, then

sinx =
2t

1 + t2
, cosx =

1 ´ t2

1 + t2
and dx =

2dt

1 + t2
.

Using this substitution, the anti-derivative of rational functions of sine and cosine can be
computed via the integration of rational functions.

Example 8.33. Find the indefinite integral
ż secx

tan3 x
dx.

Rewriting the integrand, we have
ż

secx
tan3 x

dx =

ż

cos2 x
sin3 x

dx .

Let t = tan x
2

. Then sin x =
2t

1 + t2
, cos x =

1 ´ t2

1 + t2
and dx =

2dt

1 + t2
; thus

ż

secx
tan3 x

dx =

ż (1´t2)2

(1+t2)2

(2t)3

(1+t2)3

2dt

1 + t2
=

1

4

ż

(1 ´ t2)2

t3
dt =

1

4

ż (
t´3 ´ 2t´1 + t

)
dt

=
1

4

[
´

1

2
t´2 ´ 2 ln |t| +

1

2
t2
]
+ C

=
1

8

[
tan2 x

2
´ cot2 x

2

]
´

1

2
ln
ˇ

ˇ

ˇ
tan x

2

ˇ

ˇ

ˇ
+ C .



Example 8.34. Find the indefinite integral
ż

1

2 + sinx dx.

Let t = tan x
2

. Then sin x =
2t

1 + t2
, cos x =

1 ´ t2

1 + t2
and dx =

2dt

1 + t2
; thus

ż

1

2 + sinx dx =

ż

1

2 + 2t
1+t2

2dt

1 + t2
=

ż

dt

t2 + t+ 1
=

ż

dt(
t+ 1

2

)2
+
(?

3
2

)2
=

2
?
3

arctan t+
1
2

?
3
2

+ C =
2

?
3

arctan 2t+ 1
?
3

+ C

=
2

?
3

arctan
(

2
?
3

tan x
2
+

1
?
3

)
+ C .

8.5 Improper Integrals - 瑕積分

Recall that given a non-negative continuous function f : [a, b] Ñ R, the area of the region

enclosed by the graph of f , the x-axis and lines x = a, x = b is given by
ż b

a
f(x) dx.What

happened when

1. the function under consideration is non-negative and continuous on the whole real line
and we would like to know, for example, the area of the region enclosed by the graph
of f and the x-axis and is on the right-hand (or left-hand) side of the line x = c?

2. the function under consideration blows up at a point c P [a, b]; that is, lim
xÑc˘

f(x)

diverges to 8 or ´8 (so that f is not continuous at c but everywhere else) and we
would like to know the area of the region enclosed by the graph of f , the x-axis and
lines x = a and x = b?

Note that the definition of a definite integral
ż b

a
f(x) dx requires that the interval [a, b] be

finite and f be bounded. Therefore,
ż 8

a
f(x) dx,

ż b

´8

f(x) dx and
ż b

a
f(x) dx when f is

unbounded are meaningless in the sense of Riemann integrals. How do we compute the area
of those unbounded regions?



Definition 8.34: Improper Integrals with Infinite Integration Limits

1. If f is Riemann integrable on the interval [a, b] for all a ă b, then
ż 8

a

f(x) dx ” lim
bÑ8

ż b

a

f(x) dx .

2. If f is Riemann integrable on the interval [a, b] for all a ă b, then
ż b

´8

f(x) dx ” lim
aÑ´8

ż b

a

f(x) dx .

3. If f is Riemann integrable on the interval [a, b] for all a ă b, then
ż 8

´8

f(x) dx ”

ż c

´8

f(x) dx+

ż 8

c

f(x) dx ,

where c is any real number.
In the first two cases, the improper integral converges when the limit exists. Other-
wise, the improper integral diverges. If the limits, as b approaches 8 (or a approaches
´8), approaches 8 or ´8, then the improper integral diverges to 8 or ´8. In the
third case, the improper integral on the left converges when both of the improper
integrals on the right converges, and diverges when either of the improper integrals
on the right diverges. The improper integral on the left diverges to 8 (or ´8) if
it diverges and the improper integrals on the right is 8 + 8, 8 + C or C + 8 (or
(´8) + (´8), (´8) + C or C + (´8)).

Example 8.35. Evaluate
ż 8

0
e´x dx and

ż 8

0

1

x2 + 1
dx.

Since an anti-derivative of the function y = e´x and y =
1

x2 + 1
is y = ´e´x and

y = arctanx, the Fundamental Theorem of Calculus implies that
ż 8

0

e´x dx = lim
bÑ8

ż b

0

e´x dx = lim
bÑ8

(´e´x)
ˇ

ˇ

ˇ

x=b

x=0
= lim

bÑ8
(1 ´ e´b) = 1 ´ lim

bÑ8
e´b = 1

and
ż 8

0

1

x2 + 1
dx = lim

bÑ8

ż b

0

1

x2 + 1
dx = lim

bÑ8
arctanx

ˇ

ˇ

ˇ

x=b

x=0
= lim

bÑ8
arctan b = π

2
.

Example 8.36. Evaluate
ż 8

1
(1 ´ x)e´x dx.

Let u = 1 ´ x and v = ´e´x (so that dv = e´x dx). For any real number b, integration



by parts implies that
ż b

1

(1 ´ x)e´x dx =
[
(1 ´ x)(´e´x)

]ˇ
ˇ

ˇ

x=b

x=1
´

ż b

1

(´e´x)(´dx) = ´(1 ´ b)e´b ´

ż b

1

e´x dx

= ´(1 ´ b)e´b + e´x
ˇ

ˇ

ˇ

x=b

x=1
= ´(1 ´ b)e´b + e´b ´ e´1 = be´b ´ e´1 .

Therefore,
ż 8

1

(1 ´ x)e´x dx = lim
bÑ8

ż b

1

(1 ´ x)e´x dx = lim
bÑ8

(be´b ´ e´1) = ´e´1 .

Example 8.37. Evaluate
ż 8

´8

ex

1 + e2x
dx.

To evaluate the integral above, we evaluate the two integrals
ż 8

0

ex

1 + e2x
dx and

ż 0

´8

ex

1 + e2x
dx .

By the substitution of variable u = ex, we find that du = ex dx; thus
ż

ex

1 + e2x
dx =

ż

1

1 + u2
du = arctanu+ C = arctan(ex) + C .

Therefore,
ż 8

0

ex

1 + e2x
dx = lim

bÑ8

ż b

0

ex

1 + e2x
dx = lim

bÑ8
arctan(ex)

ˇ

ˇ

ˇ

x=b

x=0

= lim
bÑ8

[
arctan(eb) ´ arctan 1

]
=
π

4

and similarly,
ż 0

´8

ex

1 + e2x
dx = lim

aÑ´8

ż 0

a

ex

1 + e2x
dx = lim

aÑ´8
arctan(ex)

ˇ

ˇ

ˇ

x=0

x=a

= lim
aÑ´8

[
arctan 1 ´ arctan(ea)

]
=
π

4
.

The two integrals above implies that
ż 8

´8

ex

1 + e2x
dx =

π

4
+
π

4
=
π

2
.

Example 8.38. The improper integral
ż 8

0
x dx diverges to 8, and the improper integral

ż 8

´8

(sinx ´ 1) dx diverges to ´8. The improper integral
ż 8

0
sinx dx diverges, but not

diverges to 8 or ´8, and the improper integrals
ż 8

´8

x dx diverges but not diverges to 8

or ´8.



Example 8.39. The improper integral
ż 8

0

sinx
x

dx converges although it is not obvious
what its value is. In fact,

ż 8

0

sinx
x

dx =
π

2
.

Theorem 8.40

1. If f is Riemann integrable on the interval [a, b] for all a ă b, then
ż 8

a

f(x) dx =

ż c

a

f(x) dx+

ż 8

c

f(x) dx @ a ă c ,

provided that the improper integrals on both sides converge or diverge to 8 (or
´8).

2. If f is Riemann integrable on the interval [a, b] for all a ă b, then
ż b

´8

f(x) dx =

ż c

´8

f(x) dx+

ż b

c

f(x) dx @ c ă b ,

provided that the improper integrals on both sides converge or diverge to 8 (or
´8).

3. If f is Riemann integrable on the interval [a, b] for all a ă b and
ż 8

´8

f(x) dx

converges or diverges to 8 (or ´8), then
ż a

´8

f(x) dx+

ż 8

a

f(x) dx =

ż b

´8

f(x) dx+

ż 8

b

f(x) dx @ a, b P R .

Proof. We only prove 1 and 3, for the proof of 2 is similar to the proof of 1.

1. By the properties of the definite integrals, for a ă c we have
ż b

a

f(x) dx =

ż c

a

f(x) dx+

ż b

c

f(x) dx ;

thus
ż 8

a

f(x) dx = lim
bÑ8

ż b

a

f(x) dx = lim
bÑ8

[ ż c

a

f(x) dx+

ż b

c

f(x) dx
]

=

ż c

a

f(x) dx+ lim
bÑ8

ż b

c

f(x) dx =

ż c

a

f(x) dx+

ż 8

c

f(x) dx .



3. If
ż 8

´8

f(x) dx converges or diverges to 8 (or ´8), then both improper integrals
ż 8

c
f(x) dx and

ż c

´8

f(x) dx converge or diverge to 8 (or ´8). Therefore,

ż b

´8

f(x) dx+

ż 8

b

f(x) dx =

ż a

´8

f(x) dx+

ż b

a

f(x) dx+

ż 8

b

f(x) dx

=

ż a

´8

f(x) dx+

ż 8

a

f(x) dx .

Definition 8.41: Improper integrals with Infinite Discontinuities

1. If f is Riemann integrable on [a, c] for all a ă c ă b, and f has an infinite
discontinuity at b; that is, lim

xÑb´
f(x) = 8 or ´ 8, then

ż b

a

f(x) dx ” lim
cÑb´

ż c

a

f(x) dx .

2. If f is Riemann integrable on [c, b] for all a ă c ă b, and f has an infinite
discontinuity at a; that is, lim

xÑa+
f(x) = 8 or ´ 8, then

ż b

a

f(x) dx ” lim
cÑa+

ż b

c

f(x) dx .

3. Suppose that a ă c ă b. If f is Riemann integrable on [a, c´ϵ] and [c+ϵ, b] for all
0 ă ϵ ! 1, and f has an infinite discontinuity at c; that is lim

xÑc+
f(x) = 8 or ´8

and lim
xÑc´

f(x) = 8 or ´ 8, then
ż b

a

f(x) dx ”

ż c

a

f(x) dx+

ż b

c

f(x) dx .

The convergence and divergence of the improper integrals with infinite discontinuities

are similar to the statements in Definition 8.34.

Example 8.42. Evaluate
ż 1

0
x´ 1

3 dx.

We observe that the integrand has an infinite discontinuity at 0. Therefore,
ż 1

0

x´ 1
3 dx = lim

aÑ0+

ż 1

a

x´ 1
3 dx = lim

aÑ0+

3

2
x

2
3

ˇ

ˇ

ˇ

x=1

x=a
= lim

aÑ0+

3

2
(1 ´ a

2
3 ) =

3

2
.

Example 8.43. Evaluate
ż 2

0
x´3 dx.



We observe that the integrand has an infinite discontinuity at 0. Therefore,
ż 2

0

x´3 dx = lim
aÑ0+

ż 2

a

x´3 dx = lim
aÑ0+

(´x´2

2

)ˇ
ˇ

ˇ

x=2

x=a
= lim

aÑ0+

(́ 1

8
+

1

2a2

)
= 8 ;

thus the improper integral
ż 2

0
x´3 dx diverges to 8.

Example 8.44. Evaluate
ż 2

´1
x´3 dx.

Since the integrand has an infinite discontinuity at 0,
ż 2

´1

x´3 dx =

ż 0

´1

x´3 dx+

ż 2

0

x´3 dx .

We have shown in previous example that the second integral on the right-hand side diverges
to 8. Similarly, the first integral on the right-hand side diverges to ´8 since

ż 0

´1

x´3 dx = lim
bÑ0´

ż b

´1

x´3 dx = lim
bÑ0´

´x´2

2

ˇ

ˇ

ˇ

x=b

x=´1
= lim

bÑ0´

(́ 1

2b2
+

1

2

)
= ´8 ;

thus the improper integral
ż 2

´1
x´3 dx diverges (but not diverges to 8 or ´8).

Remark 8.45. Even though y = ´
x´2

2
is an anti-derivative of the function y = x´3, you

cannot apply the “Fundamental Theorem of Calculus” to conclude that
ż 2

´1

x´3 dx =
x´2

´2

ˇ

ˇ

ˇ

x=2

x=´1
= ´

1

8
+

1

2
=

3

8

since y = x´3 is not Riemann integrable on [´1, 2].

Similar to Theorem 8.40, we also have the following
Theorem 8.46

If f is Riemann integrable on [a, c] for all a ă c ă b, and f has an infinite discontinuity
at a or b, then

ż b

a

f(x) dx =

ż c

a

f(x) dx+

ż b

c

f(x) dx @ a ă c ă b ,

provided that the improper integrals on both sides converge or diverge to 8 (or ´8).



We can also consider improper integral
ż b

a
f(x) dx in which a = ´8 or b = 8, and f

has an infinite discontinuity at c for a ă c ă b. In this case, we define
ż 8

a

f(x) dx =

ż d

a

f(x) dx+

ż 8

d

f(x) dx @ d ą c ,

ż b

´8

f(x) dx =

ż d

´8

f(x) dx+

ż b

d

f(x) dx @ d ă c ,

and etc. In other words, when the integrand and the domain of integration are unbounded,
we divide the integral into improper integrals of one type and compute those integrals
separately, pretending that the summing rule

ż b

a

f(x) dx =

ż c1

a

f(x) dx+

ż c2

c1

f(x) dx+ ¨ ¨ ¨ +

ż cn

cn´1

f(x) dx+

ż b

cn

f(x) dx

also holds for improper integrals.

Example 8.47. Evaluate
ż 8

0

dx
?
x(x+ 1)

.

We observe that the integrand has an infinite discontinuity at 0, and the domain of
integration is unbounded. Therefore,

ż 8

0

dx
?
x(x+ 1)

=

ż 1

0

dx
?
x(x+ 1)

+

ż 8

1

dx
?
x(x+ 1)

.

By the substitution u =
?
x, du =

dx

2
?
x

; thus
ż

dx
?
x(x+ 1)

=

ż

2du

u2 + 1
= 2 arctanu+ C = 2 arctan

?
x+ C .

Therefore,
ż 1

0

dx
?
x(x+ 1)

= lim
aÑ0+

ż 1

a

dx
?
x(x+ 1)

= lim
aÑ0+

2 arctan
?
x
ˇ

ˇ

ˇ

x=1

x=a

= lim
aÑ0+

(
2 ¨

π

4
´ 2 arctan

?
a
)
=
π

2

and
ż 8

1

dx
?
x(x+ 1)

= lim
bÑ8

ż b

1

dx
?
x(x+ 1)

= lim
bÑ8

2 arctan
?
x
ˇ

ˇ

ˇ

x=b

x=1

= lim
bÑ8

(
2 arctan

?
b ´ 2 ¨

π

4

)
= π ´

π

2
=
π

2
.

As a consequence,
ż 8

0

dx
?
x(x+ 1)

=
π

2
+
π

2
= π .



Definition 8.48

Let
ż b

a
f(x) dx, where a, b could be infinite, be an improper integral.

1. The improper integral
ż b

a
f(x) dx is said to be absolutely convergent or converge

absolutely if
ż b

a

ˇ

ˇf(x)
ˇ

ˇ dx converges.

2. The improper integral
ż b

a
f(x) dx is said to be conditionally convergent or con-

verge conditionally if
ż b

a
f(x) dx converges but

ż b

a

ˇ

ˇf(x)
ˇ

ˇ dx diverges (to 8).

Remark 8.49. Even though it is not required in the definition that an absolutely convergent
improper integral has to converge, it is in fact true an absolutely convergent improper
integral converges.

Example 8.50. The improper integral
ż 8

0

sinx
x

dx is conditionally convergent but not
absolutely convergent. To see that the improper integral is not absolutely convergent, we
note that if n P N,

ż 2nπ

0

ˇ

ˇ

ˇ

sinx
x

ˇ

ˇ

ˇ
dx =

n
ÿ

k=1

ż 2kπ

2(k´1)π

ˇ

ˇ

ˇ

sinx
x

ˇ

ˇ

ˇ
dx =

n
ÿ

k=1

ż 2π

0

ˇ

ˇ

ˇ

sin
[
x+ 2(k ´ 1)π

]
x+ 2(k ´ 1)π

ˇ

ˇ

ˇ
dx

=
n
ÿ

k=1

ż 2π

0

| sinx|
ˇ

ˇx+ 2(k ´ 1)π
ˇ

ˇ

dx =
n
ÿ

k=1

ż 2π

0

| sinx|

2kπ
dx ě

2

π

n
ÿ

k=1

1

k
;

thus by the fact that
2n
ÿ

k=1

1

k
= 1 +

1

2
+
(1
3
+

1

4

)
+
(1
5
+

1

6
+

1

7
+

1

8

)
+ ¨ ¨ ¨ +

( 1

2n´1 + 1
+

1

2n´1 + 2
+ ¨ ¨ ¨ +

1

2n

)
ě 1 +

1

2
+
(1
4
+

1

4

)
+
(1
8
+

1

8
+

1

8
+

1

8

)
+ ¨ ¨ ¨ +

( 1

2n
+

1

2n
+ ¨ ¨ ¨ +

1

2n
looooooooooomooooooooooon

2n´1 terms

)
= 1 +

1

2
+

1

2
+ ¨ ¨ ¨ +

1

2
loooooooomoooooooon

n terms

=
n

2
+ 1 ě

n

2
,

we find that
ż 2n+1π

0

ˇ

ˇ

ˇ

sinx
x

ˇ

ˇ

ˇ
dx ě

2

π

2n
ÿ

k=1

1

k
ě
n

π

which approaches 8 as n Ñ 8.



Theorem 8.51: A special type of improper integral

ż 8

1

dx

xp
=

$

&

%

1

p´ 1
if p ą 1 ,

diverges to 8 if p ď 1 .

‚ Comparison Test for Improper Integrals
In the last part of this section, we consider some criteria which can be used to judge if an

improper integral converges or diverges, without evaluating the exact value of the improper
integral.
Theorem 8.52: Direct Comparison Test

Let f and g be continuous functions and 0 ď g(x) ď f(x) on the interval [a,8).

1. If the improper integral
ż 8

a
f(x) dx converges, then the improper integral

ż 8

a
g(x) dx converges.

2. If the improper integral
ż 8

a
g(x) dx diverges to 8, then the improper integral

ż 8

a
f(x) dx diverges.

Similar result also holds for improper integrals given by other two cases in Definition
8.34 and the case with infinite discontinuities.

Proof. For b ą a, define G(b) =
ż b

a
g(x) dx and F (b) =

ż b

a
f(x) dx. By the Fundamental

Theorem of Calculus, F,G : [a,8) Ñ R is differentiable (hence continuous). Since 0 ď

g(x) ď f(x) on [a,8), for all b ą a we have 0 ď G(b) ď F (b), and F,G are monotone
increasing.

1. If the improper integral
ż 8

a
f(x) dx converges, the lim

bÑ8
F (b) = M exists. Since F is

monotone increasing, F (b) ď M for all b ą a; thus G(b) ď M for all b ą a. By the
monotonicity of G, lim

bÑ8
G(b) exists.

2. If the improper integral
ż 8

a
g(x) dx diverges to 8, lim

bÑ8
G(b) = 8; thus the fact that

G(b) ď F (b) implies that lim
bÑ8

F (b) = 8.

Example 8.53. Consider the improper integral
ż 8

1
e´x2

dx. Note that e´x2
ď e´x for all



x P [1,8). Since
ż 8

1

e´x dx = lim
bÑ8

ż b

1

e´x dx = lim
bÑ8

(´e´x)
ˇ

ˇ

ˇ

x=b

x=1
= lim

bÑ8
(e´b ´ e´1) = ´e´1 ,

by Theorem 8.52 we find that the improper integral
ż 8

1
e´x2

dx converges.

Example 8.54. Consider the improper integral
ż 8

1

sin2 x

x2
dx. Note that sin2 x

x2
ď

1

x2
for all

x P [1,8). Since
ż 8

1

1

x2
dx = lim

bÑ8

ż b

1

1

x2
dx = lim

bÑ8

(
´

1

x

)ˇ
ˇ

ˇ

x=b

x=1
= lim

bÑ8

(1
b

´ 1
)
= ´1 ,

by Theorem 8.52 we find that the improper integral
ż 8

1
e´x2

dx converges.

Example 8.55 (The Gamma Function). The Gamma function Γ : (0,8) Ñ R is defined
by

Γ(x) =

ż 8

0

tx´1e´t dt .

We note that for each x P R, the integrand f(t) = tx´1e´t is positive on [0,8).

1. If x ě 1, the function y = tx´1e´ t
2 is differentiable on [0,8) and has a maximum at

the point t = 2(x ´ 1). Therefore,

0 ď f(t) ď 2x´1(x ´ 1)x´1e´ t
2 @ t ě 0 .

By the fact that
ż 8

0

e´ t
2 dt = lim

bÑ8

ż b

0

e´ t
2 dt = lim

bÑ8

(
´ 2e´ t

2

)ˇ
ˇ

ˇ

t=b

t=0
= lim

bÑ8

(
2 ´ 2e´ b

2

)
= 2,

we find that the improper integral
ż 8

0
tx´1e´t dt converges.

2. If 0 ă x ă 1, the function f has an infinite discontinuity at 0. Therefore,
ż 8

0

tx´1e´t dt =

ż 1

0

tx´1e´t dt+

ż 8

1

tx´1e´t dt .

Again, the function y = tx´1e´ t
2 is bounded from above by 2x´1(x ´ 1)x´1; thus the



same reason as above show that the improper integral
ż 8

1
tx´1e´t dt converges.

On the other hand, note that f(t) ď tx´1 for all t P [0, 1]. By the fact that
ż 1

0

tx´1 dt = lim
aÑ0+

ż 1

a

tx´1 dx = lim
aÑ0+

tx

x

ˇ

ˇ

ˇ

t=1

t=a
= lim

aÑ0+

1 ´ ax

x
=

1

x
,

we find that the improper integral
ż 1

0
tx´1e´t dt converges. Therefore, the improper

integral
ż 8

0
tx´1e´t dt converges.

3. If x ď 0, then tx´1e´t ě tx´1e´1 for all t P [0, 1]. By the fact that
ż 1

0

tx´1e´1 dt = lim
aÑ0+

ż 1

a

tx´1e´1 dt = 8 ,

Theorem 8.52 implies that the improper integral
ż 1

0
tx´1e´t dt diverges to 8. This

implies that the improper integral
ż 8

0
tx´1e´t dt diverges to 8 as well.

Theorem 8.56: Limit Comparison Test
Let f and g be positive continuous functions on the interval [a,8). If the limit

lim
xÑ8

f(x)

g(x)
= L for some 0 ă L ă 8, then

ż 8

a

f(x) dx converges if and only if
ż 8

a

g(x) dx converges.

Similar result also holds for improper integrals given by other two cases in Definition
8.34 and the case with infinite discontinuities.

Proof. By the fact lim
xÑ8

f(x)

g(x)
= L, there exists M ą a such that

ˇ

ˇ

ˇ

f(x)

g(x)
´ L

ˇ

ˇ

ˇ
ă
L

2
whenever x ą M .

Therefore,
0 ă

L

2
g(x) ă f(x) ă

3L

2
g(x) whenever x ą M .

By the direct comparison test,
ż 8

M

f(x) dx converges if and only if
ż 8

M

g(x) dx converges.



The theorem is then concluded since
ż M

a
f(x) dx and

ż M

a
g(x) dx are both finite.

Example 8.57. Consider the improper integral
ż 8

1

1 + e´x

x
dx. Since lim

xÑ8

(1 + e´x)/x

1/x
= 1,

the limit comparison test implies that
ż 8

1

1 + e´x

x
dx converges if and only if

ż 8

1

dx

x
converges.

By Theorem 8.51, we find that the integral
ż 8

1

dx

x
diverges; thus the improper integral

ż 8

1

1 + e´x

x
dx diverges.

Example 8.58. Consider the improper integral
ż π

4

0

dx

x+ tanx . Note that this is an improper
integral with infinite discontinuity at x = 0. Since

lim
xÑ0+

x+ tanx
x

= 1 + lim
xÑ0+

tanx
x

= 1 + lim
xÑ0+

sinx
x cosx = 2 ,

the limit comparison test implies that
ż π

4

0

dx

x+ tanx converges if and only if
ż π

4

0

dx

x
converges.

Since the improper integral
ż π

4

0

dx

x
diverges (to 8), we must have

ż π
4

0

dx

x+ tanx diverges.

Example 8.59. Determine the convergence of the improper integral
ż 8

0

dx
3
?
x4 ´ x2

.

Note that 1
3
?
x4 ´ x2

= x´ 2
3 (x+ 1)´ 1

3 (x ´ 1)´ 1
3 . In the interval [0,8), the integrand has

singular points at 0 and 1. Write
ż 8

0

dx
3
?
x4 ´ x2

=

ż 1
2

0

dx
3

?
x4 ´ x2

+

ż 1

1
2

dx
3
?
x4 ´ x2

+

ż 2

1

dx
3

?
x4 ´ x2

+

ż 8

2

dx
3
?
x4 ´ x2

. (8.5.1)

1. Let f(x) = ´x´ 2
3 (x+1)´ 1

3 (x´1)´ 1
3 and g(x) = x´ 2

3 . Then f, g are positive continuous
on

[
a,

1

2

]
for all a ą 0. Moreover,

lim
xÑ0+

f(x)

g(x)
= lim

xÑ0+

[
´(x+ 1)´ 1

3 (x ´ 1)´ 1
3

]
= 1 ą 0 ,



and
ż 1

2

0

g(x) dx = lim
aÑ0+

ż 1
2

a

x´ 2
3 dx = lim

aÑ0+
3x

1
3

ˇ

ˇ

ˇ

x= 1
2

x=a
=

3
3
?
2

which shows that the improper integral
ż 1

2

0
g(x) dx converges. Therefore, the limit

comparison test implies that
ż 1

2

0
f(x) dx = ´

ż 1
2

0

dx
3
?
x4 ´ x2

converges.

2. Let f(x) = ´x´ 2
3 (x + 1)´ 1

3 (x ´ 1)´ 1
3 and g(x) = ´(x ´ 1)

1
3 . Then f, g are positive

continuous on
[1
2
, b
]

for all 1

2
ă b ă 1. Moreover,

lim
xÑ1´

f(x)

g(x)
= lim

xÑ1´
x´ 2

3 (x+ 1)´ 1
3 = 2´ 1

3 ą 0 ,

and
ż 1

1
2

g(x) dx = ´ lim
bÑ1´

ż b

1
2

(x ´ 1)´ 1
3 dx = ´ lim

bÑ1´

3

2
(x ´ 1)

2
3

ˇ

ˇ

ˇ

x=b

x= 1
2

=
3

2 3
?
4

which shows that the improper integral
ż 1

1
2

g(x) dx converges. Therefore, the limit

comparison test implies that
ż 1

1
2

f(x) dx = ´

ż 1

1
2

dx
3
?
x4 ´ x2

converges.

3. Similar to the previous case, we let f(x) = x´ 2
3 (x+1)´ 1

3 (x´1)´ 1
3 and g(x) = (x´1)

1
3 .

Then f, g are positive continuous on [a, 2] for all 1 ă a ă 2. Moreover,

lim
xÑ1+

f(x)

g(x)
= lim

xÑ1+
x´ 2

3 (x+ 1)´ 1
3 = 2´ 1

3 ą 0 ,

and
ż 2

1

g(x) dx = lim
aÑ1+

ż 2

a

(x ´ 1)´ 1
3 dx = ´ lim

aÑ1+

3

2
(x ´ 1)

2
3

ˇ

ˇ

ˇ

x=2

x=a
=

3

2

which shows that the improper integral
ż 2

1
g(x) dx converges. Therefore, the limit

comparison test implies that
ż 2

1
f(x) dx =

ż 2

1

dx
3
?
x4 ´ x2

converges.

4. Let f(x) = x´ 2
3 (x+1)´ 1

3 (x´ 1)´ 1
3 and g(x) = x´ 4

3 . Then f, g are positive continuous
on [2, b] for all b ą 2. Moreover,

lim
xÑ8

f(x)

g(x)
= lim

xÑ8

x´ 2
3 (x+ 1)´ 1

3 (x ´ 1)´ 1
3

x´ 4
3

= lim
xÑ8

3

d

x2

(x ´ 1)(x+ 1)
= 1 ą 0 ,



and
ż 8

2

g(x) dx = lim
bÑ8

ż b

2

x´ 4
3 dx = ´ lim

bÑ8
3x´ 1

3

ˇ

ˇ

ˇ

x=b

x=2
= 3

which shows that the improper integral
ż 8

2
g(x) dx converges. Therefore, the limit

comparison test implies that
ż 8

2
f(x) dx =

ż 8

2

dx
3
?
x4 ´ x2

converges.

Since the four improper integrals on the right-hand side of (8.5.1) converges, we find that

the improper integral
ż 8

0

dx
3
?
x4 ´ x2

converges.

8.5.1 The Laplace transform（補充，不考）
Definition 8.60: Laplace Transform

Let f : [0,8) Ñ R be continuous. The Laplace transform of f , denoted by L (f), is
the function defined by

L (f)(s) =

ż 8

0

e´stf(t) dt
(
= lim

RÑ8

ż R

0

e´stf(t)dt
)
,

and the domain of L (f) is the set consisting of all numbers s for which the integral
converges.

Remark 8.61. In general, the Laplace transform of f can be defined, without assuming

that f is continuous on [0,8), as long as the integral
ż 8

0
e´stf(t) dt makes sense. Moreover,

if f is continuous and satisfies

ˇ

ˇf(t)
ˇ

ˇ ď Meαt @ t P [0,8) , (8.5.2)

then L (f)(s) exists for all s ą α. A function f is said to be of exponential order α if there
exist M ą 0 such that the growth condition (8.5.2) holds.

Example 8.62. Let f : [0,8) Ñ R be given by f(t) = tp for some p ą ´1. Recall that the

Gamma function Γ : (0,8) Ñ R is defined by

Γ(x) =

ż 8

0

e´ttx´1 dt .



We note that if ´1 ă p ă 0, f is not of exponential order a for all a P R; however, the
Laplace transform of f still exists. In fact, for s ą 0,

L (f)(s) = lim
RÑ8

ż R

0

e´sttp dt = lim
RÑ8

ż sR

0

e´t
( t
s

)pdt

s
=

Γ(p+ 1)

sp+1
.

In particular, if p = n P N Y t0u, then

L (f)(s) =
n!

sn+1
@ s ą 0 .

Example 8.63. Let g : [0,8) Ñ R be given by g(t) = eat sin(bt) for some b ‰ 0. Using
(8.2.1), we find that

ż

e(a´s)t sin(bt) dt = 1

(s ´ a)2 + b2

[
(a ´ s)e(a´s)t sin(bt) ´ be(a´s)t cos(bt)

]
+ C .

Therefore, for s ą a,

L (g)(s) =

ż 8

0

e(a´s)t sin(bt) dt

= lim
bÑ8

1

(s ´ a)2 + b2

[
(a ´ s)e(a´s)t sin(bt) ´ be(a´s)t cos(bt)

]ˇ
ˇ

ˇ

t=b

t=0

=
b

(s ´ a)2 + b2
.

Similarly, if h(t) = eat cos(bt), using (8.2.2) we find that for s ą a,

L (h)(s) =

ż 8

0

e(a´s)t cos(bt) dt

= lim
bÑ8

1

(s ´ a)2 + b2

[
(a ´ s)e(a´s)t cos(bt) + be(a´s)t sin(bt)

]ˇ
ˇ

ˇ

t=b

t=0

=
s ´ a

(s ´ a)2 + b2
.

Theorem 8.65: Linearity of the Laplace transform

Let f, g : [0,8) Ñ R be functions whose Laplace transform exist for s ą α and c be
a constant. Then for s ą α,

1. L (f + g)(s) = L (f)(s) + L (g)(s). 2. L (cf)(s) = cL (f)(s).



Theorem 8.66
Suppose that f : [0,8) Ñ R is a function such that f, f 1, f 11, ¨ ¨ ¨ , f (n´1) are continuous
of exponential order α, and f (n) is piecewise continuous. Then L (f (n))(s) exists for
all s ą α, and

L (f (n))(s) = snL (f)(s)´sn´1f(0)´sn´2f 1(0)´¨ ¨ ¨´sf (n´2)(0)´f (n´1)(0) . (8.5.3)

Proof. We prove by induction. Suppose that f is continuously differentiable on [0,8) and
is of exponential order α. Then for s ą α,

ż 8

0

e´stf 1(t) dt = lim
bÑ8

ż b

0

e´stf 1(t) dt = lim
bÑ8

[
e´stf(t)

ˇ

ˇ

ˇ

t=b

t=0
+ s

ż b

0

e´stf(t) dt
]

= s

ż 8

0

e´stf(t) dt
]

´ f(0) + lim
bÑ8

e´sbf(b) = sL (f)(s) ´ f(0)

which shows that (8.5.3) holds for n = 1 and all continuously differentiable f .
Now suppose that (8.5.3) holds for all k-times continuously differentiable function f .

Then if s ą α and f is (k + 1)-times continuously differentiable function on [0,8),

L (f (k+1))(s) =L
(
(f 1)(k)

)
(s)

= skL (f 1)(s)´ sk´1f 1(0)´ sk´2(f 1) 1(0)´ ¨ ¨ ¨ ´ s(f 1)(n´2)(0)´ (f 1)(n´1)(0)

= sk
[
sL (f)(s)´f(0)

]
´ sk´1f 1(0)´ sk´2f 11(0)´ ¨ ¨ ¨ ´ sf (n´1)(0)´f (n)(0)

= sk+1L (f)(s)´ skf(0)´ sk´1f 1(0)´ sk´2f 11(0)´ ¨ ¨ ¨ ´ sf (n´1)(0)´f (n)(0)

which implies that (8.5.3) holds for the case n = k + 1. The theorem is then concluded by
induction.

‚ Applications in solving the ordinary differential equations

Let a0, a1, ¨ ¨ ¨ , an´1, y0, y1, ¨ ¨ ¨ , yn´1 be given numbers, and g : [0,8) Ñ R be a continuous
function of exponential order. The idea of solving an ordinary differential equation (here y
is the unknown function to be solved) of the form

any
(n) + an´1y

(n´1) + ¨ ¨ ¨ + a1y
1 + a0y = g(s) , (8.5.4a)

y(0) = y0, y
1(0) = y1, ¨ ¨ ¨ , y(n´1)(0) = yn´1 , (8.5.4b)

using the method of the Laplace transform is based on the following facts:



1. The Laplace transform is a one-to-one mapping in the sense that if f and g are
continuous function such that L (f) = L (g) for s ą α, then f = g on [0,8).

2. The solution of (8.5.4) is of exponential order α (so that the Laplace transform of
derivatives of y can be computed using Theorem 8.66).

Under these two facts, we then take the Laplace transform of (8.5.4a) and apply Theorem
8.65 and 8.66 to obtain, by letting Y (s) = L (y)(s), that

an
[
snY (s) ´ sn´1y0 ´ sn´2y1 ´ ¨ ¨ ¨ ´ syn´2 ´ yn´1

]
+ an´1

[
sn´1Y (s) ´ sn´2y0 ´ sn´3y1 ´ ¨ ¨ ¨ ´ syn´3 ´ yn´2

]
+ an´2

[
sn´2Y (s) ´ sn´3y0 ´ sn´4y1 ´ ¨ ¨ ¨ ´ syn´4 ´ yn´3

]
+ ¨ ¨ ¨ + a1

[
sY (s) ´ y0

]
+ a0Y (s) = L (g)(s) ;

thus

Y (s) =
1

ansn + an´1sn´1 + an´2sn´2 + ¨ ¨ ¨ + a1s+ a0
ˆ

ˆ

[
L (g)(s) + y0(ans

n´1 + an´1s
n´2 + ¨ ¨ ¨ + a2s+ a1)

+ y1(ans
n´2 + an´1s

n´2 + ¨ ¨ ¨ + a3s+ a2) + ¨ ¨ ¨ ¨ ¨ ¨ + yn´2(ans+ an´1) + yn´1

]
=

1

ansn + an´1sn´1 + an´2sn´3 + ¨ ¨ ¨ + a1s+ a0

[
L (g)(s) +

n´1
ÿ

j=0

yj

n´j´1
ÿ

ℓ=0

an´ℓs
n´j´ℓ´1

]
.

The final step is to identify which function gives the Laplace transform above.

Example 8.64. Find the function y satisfying

y 11 + 2y 1 + 5y = sin t , y(0) = 1 , y 1(0) = 0 .

Using the result in Example 8.63 and Theorem 8.66, with Y denoting L (y) we find that

s2Y (s) ´ s+ 2
[
sY (s) ´ 1

]
+ 5Y (s) =

1

s2 + 1
@ s ą a

for some a. Therefore,

Y (s) =
1

s2 + 2s+ 5

( 1

s2 + 1
+ s+ 2

)
=

s+ 2

(s+ 1)2 + 22
+

1

(s2 + 2s+ 5)(s2 + 1)
.



Writing the last term as the sum of partial fractions, we have
1

(s2 + 2s+ 5)(s2 + 1)
=

1

10

( s

s2 + 2s+ 5
´

s ´ 2

s2 + 1

)
;

thus

Y (s) =
s+ 2

(s+ 1)2 + 22
+

1

10

s

(s+ 1)2 + 22
´

1

10

s ´ 2

s2 + 1

=
11

10

s+ 1

(s+ 1)2 + 22
+

9

20

2

(s+ 1)2 + 22
´

1

10

s

s2 + 1
+

1

5

1

s2 + 1
.

Therefore, Fact 1 and Example 8.63 imply that

y(t) =
11

10
e´t cos(2t) + 9

20
e´t sin(2t) ´

1

10
cos t+ 1

5
sin t .

8.6 Exercise
Problem 8.1. Find the following indefinite integrals.

1.
ż

x cscx cotx dx 2.
ż

?
1 + lnx
x lnx dx 3.

ż

x sin2 x dx 4.
ż

exp( 3
?
x) dx

5.
ż

x arcsinx dx 6.
ż

x arctanx dx 7.
ż

x2 arctanx dx 8.
ż

ln(x2 ´ 1) dx

9.
ż

sin
?
ax dx 10.

ż

x tan2 x dx 11.
ż

x5e´x3
dx 12.

ż

x lnx
?
x2 ´ 1

dx

13.
ż

?
xe

?
x dx 14.

ż arctan
?
x

?
x

dx 15.
ż ln(x+ 1)

x2
dx 16.

ż

dx

x4
?
x2 ´ 2

17.
ż ?

tanx dx 18.
ż

x sin2 x cosx dx

Problem 8.2. The function y = ex
2 and y = x2ex

2 don’t have elementary anti-derivatives,
but y = (2x2 + 1)ex

2 does. Find the indefinite integral
ż

(2x2 + 1)ex
2
dx.

Problem 8.3. Obtain a recursive formula for
ż

xp(axn + b)q dx and use this relation to

find the indefinite integral
ż

x3(x7 + 1)4 dx.

Problem 8.4. Obtain a recursive formula for
ż

xm(lnx)n dx and use this relation to find

the indefinite integral
ż

x4(lnx)3 dx.



Problem 8.5. Find the area of the crescent-shaped region (called a lune) bounded by arcs
of circles with radii r and R. (See the figure)

Problem 8.6. Complete the following.

1. Let f : [a, b] Ñ [c, d] be a continuously differentiable increasing function. Suppose
that f has an inverse f´1. Show that

ż b

a

f(x) dx+

ż d

c

f´1(y) dy = bf(b) ´ af(a) . (8.6.1)

2. How about if f is decreasing?

3. Use (8.6.1) to compute
ż 1

0
arcsinx dx and

ż 1

0
arctanx dx.

4. Let F be an anti-derivative of a continuously differentiable function f with inverse
f´1. Find an anti-derivative of f´1 in terms of f and F .

Problem 8.7. For n P N Y t0u, the Legendre polynomial of degree n, denoted by Pn, is
defined by

Pn(x) =
1

2nn!

dn

dxn
(x2 ´ 1)n .

1. Show that
ż 1

´1
Pn(x)Pm(x) dx = 0 if m ‰ n.

2. Show that
ż 1

´1
Pn(x)

2 dx =
2

2n+ 1
for all n P N Y t0u.

3. Show that
ż 1

´1
xmPn(x) dx = 0 if m ă n.

4. Evaluate
ż 1

´1
xnPn(x) dx.



Problem 8.8. Let α1, α2, ¨ ¨ ¨ , αn be distinct real numbers, and

g(x) =
n
ź

k=1

(x ´ αk) ” (x ´ α1)(x ´ α2) ¨ ¨ ¨ (x ´ αn) .

Use the partial fraction expansion to prove Newton’s formula

αk
1

g 1(α1)
+

αk
2

g 1(α2)
+ ¨ ¨ ¨ +

αk
n

g 1(αn)
=

"

0 for k = 0, 1, 2, ¨ ¨ ¨ , n ´ 2 ,

1 for k = n ´ 1 .

Hint: By partial fraction, for k ă n ´ 1

xk

(x ´ α2)(x ´ α3) ¨ ¨ ¨ (x ´ αn)
=

A2

x ´ α2

+
A3

x ´ α3

+ ¨ ¨ ¨ +
An

x´ αn
.

Show that Aj =
αk
j (αj ´ α1)

g 1(αj)
and conclude from here. Do the same for the case k = n ´ 1.

Problem 8.9. Find at least two ways to compute the following integrals.

1.
ż

x´ 1

x2 ´ 4x´ 5
dx 2.

ż

3x2 ´ 2

x3 ´ 2x´ 1
dx 3.

ż

1 + 4 cotx
4 ´ cotx dx

4.
ż

1

x(x4 + 1)
dx 5.

ż

4

tanx´ secx dx 6.
ż

2

x6 + x
dx

Problem 8.10. Find the following indefinite integrals using the techniques of partial frac-
tions.

1.
ż

x

x4 ´ 1
dx 2.

ż

x

x4 + 4x2 + 3
dx 3.

ż

x´ 1

x2 ´ 4x+ 5
dx 4.

ż

x3 + 1

x3 ´ x2
dx

5.
ż

1

x6 + 1
dx 6.

ż

1

(x´ 2)(x2 + 4)
dx 7.

ż

1

x+ 4 + 4
?
x+ 1

dx 8.
ż

1

x
?
4x+ 1

dx

9.
ż

1

x2
?
4x+ 1

dx 10.
ż

1

x+ 3
?
x
dx 11.

ż

1

1 + 2ex ´ e´x
dx 12.

ż

1

e3x ´ ex
dx

13.
ż sinx cosx

sin4 x+ cos4 x
dx 14.

ż

1

3 ´ 2 sinx dx 15.
ż

1

1 + sin θ + cos θ dθ

Problem 8.11. Determine if the following improper integral converges or not.

1.
ż 8

0

dx
3
?
x4 ´ x2

2.
ż 8

1

dx

x(lnx)α 3.
ż 8

1

lnx
xα

dx 4.
ż 8

10

dx

x(ln lnx)α

5.
ż π

0

dx
?
x+ sinx 6.

ż π

0

dx

x´ sinx 7.
ż ln 2

0
x´2e´ 1

x dx 8.
ż 1

0

e´
?
x

?
x
dx



9.
ż 8

1

dx
?
ex ´ x

10.
ż 8

´8

dx

ex + e´x
11.

ż 8

π

1 + sinx
x2

dx 12.
ż 1

´1
ln |x| dx.

Problem 8.12. Compute
ż 1

0

ln(x+ 1)

x2 + 1
dx.

Hint: Let I(t) =
ż 1

0

ln(tx+ 1)

x2 + 1
dx. Use the fact that d

dt

ż 1

0

ln(tx+ 1)

x2 + 1
dx =

ż 1

0

B

B t

ln(tx+ 1)

x2 + 1
dx ,

where B

B t
f(x, t) is the derivative of f w.r.t. t variable by treating x as a constant.

Problem 8.13. Compute
ż 1

0

x´ 1

lnx dx.

Hint: Let I(t) =
ż 1

0

xt ´ 1

lnx dx. Use the fact that d

dt
I(t) =

ż 1

0

B

B t

xt ´ 1

lnx dx.

Problem 8.14. Compute
ż 8

0

sinx
x

dx.

Hint: Let I(t) =
ż 8

0

e´tx sinx
x

dx. Use the fact that I 1(t) =
ż 8

0

B

B t

e´tx sinx
x

dx and use the

fact that lim
tÑ8

I(t) = 0.



Chapter 9

Infinite Series

9.1 Sequences
Definition 9.1: Sequence

A sequence of real numbers (or simply a real sequence) is a function f : N Ñ R.
The collection of numbers

␣

f(1), f(2), f(3), ¨ ¨ ¨
(

are called terms of the sequence and
the value of f at n is called the n-th term of the sequence. We usually use fn to
denote the n-th term of a sequence f : N Ñ R, and this sequence is usually denoted
by tfnu8

n=1 or simply tfnu.

Example 9.2. Let f : N Ñ R be the sequence defined by f(n) = 3 + (´1)n. Then f is a
real sequence. Its terms are t2, 4, 2, 4, ¨ ¨ ¨ u.

Example 9.3. A sequence can also be defined recursively. For example, let tanu8
n=1 be

defined by
an+1 =

?
2an , a1 =

?
2 .

Then a2 =
a

2
?
2, a3 =

b

2
a

2
?
2, and etc. The general form of an is given by

an = 2
1
2
+ 1

4
+ 1

8
+¨¨¨+ 1

2n = 2
2n´1
2n .

There are also sequences that are defined recursively but it is difficult to obtain the
general form of the sequence. For example, let tbnu8

n=1 be defined by

bn+1 =
a

2 + bn , b1 =
?
2 .

Then b2 =
a

2 +
?
2, b3 =

b

2 +
a

2 +
?
2, and etc.
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Remark 9.4. Occasionally, it is convenient to begin a sequence with the 0-th term or even
the k-th term. In such cases, we write tanu8

n=0 and tanu8
n=k to denote the sequences.

Similar to the concept of the limit of functions, we would like to consider the limit
of sequences; that is, we would like to know to which value the n-th term of a sequence
approaches as n become larger and larger.
Definition 9.5

A sequence of real numbers tanu8
n=1 is said to converge to L if for every ε ą 0, there

exists N ą 0 such that

|an ´ L| ă ε whenever n ě N .

Such an L (must be a real number and) is called a limit of the sequence. If tanu8
n=1

converges to L, we write an Ñ x as n Ñ 8.
A sequence of real number tanu8

n=1 is said to be convergent if there exists L P R
such that tanu8

n=1 converges to L. If no such L exists we say that tanu8
n=1 does not

converge or simply diverges.

Motivation: Intuitively, we expect that a sequence of real numbers tanu8
n=1 converges to

a number L if “outside any open interval containing L there are only finitely many an
1s”.

The statement inside “ ” can be translated into the following mathematical statement:

@ ε ą 0,#
␣

n P N
ˇ

ˇ an R (L ´ ε, L+ ε)
(

ă 8 , (9.1.1)

where #A denotes the number of points in the set A. One can easily show that the conver-
gence of a sequence defined by (9.1.1) is equivalent to Definition 9.5.

In the definition above, we do not exclude the possibility that there are two different
limits of a convergent sequence. In fact, this is never the case because of the following

Proposition 9.6
If tanu8

n=1 is a sequence of real numbers, and an Ñ a and an Ñ b as n Ñ 8, then
a = b. (若收斂則極限唯一).

We will not prove this proposition and treat it as a fact.

‚ Notation: Since the limit of a convergent sequence is unique, we use lim
nÑ8

an to denote
this unique limit of a convergent sequence tanu8

n=1.



Theorem 9.7
Let L be a real number, and f : [1,8) Ñ R be a function of a real variable such that
lim
xÑ8

f(x) = L. If tanu8
n=1 is a sequence such that f(n) = an for every positive integer

n, then
lim
nÑ8

an = L .

Example 9.8. The limit of the sequence tenu8
n=1 defined by en =

(
1 +

1

n

)n is e.

When a sequence tanu8
n=1 is given by evaluating a differentiable function f : [1,8) Ñ R

on N, sometimes we can use L’Hôspital’s rule to find the limit of the sequence.

Example 9.9. The limit of the sequence tanu8
n=1 defined by an =

n2

2n ´ 1
is

lim
xÑ8

x2

2x ´ 1
= lim

xÑ8

2x

2x ln 2
= lim

xÑ8

2

2x(ln 2)2
= 0 .

There are cases that a sequence cannot be obtained by evaluating a function defined on
[1,8). In such cases, the limit of a sequence cannot be computed using L’Hôspital’s rule
and it requires more techniques to find the limit.

Example 9.10. The limit of the sequence tsnu8
n=1 defined by sn =

n!

nn+
1
2 e´n

is
?
2π; that

is,

lim
nÑ8

n!
?
2πnnne´n

= 1 . (9.1.2)

Similar to Theorem 1.14, we have the following
Theorem 9.11

Let tanu8
n=1 and tbnu8

n=1 be sequences of real numbers such that lim
nÑ8

an = L and

lim
nÑ8

bn = K. Then

1. lim
nÑ8

(an ˘ bn) = L ˘ K.

2. lim
nÑ8

(anbn) = LK. In particular, lim
nÑ8

(can) = cL if c is a real number.

3. lim
nÑ8

an
bn

=
L

K
if K ‰ 0.



Theorem 9.12: Squeeze Theorem
Let tanu8

n=1, tbnu8
n=1 and tcnu8

n=1 be sequences of real numbers such that an ď cn ď bn

for all n ě N . If lim
nÑ8

an = lim
nÑ8

bn = L, then lim
nÑ8

cn = L.

Theorem 9.13: Absolute Value Theorem
Let tanu8

n=1 be a sequence of real numbers. If lim
nÑ8

|an| = 0, then lim
nÑ8

an = 0.

Proof. Let tbnu8
n=1 and tcnu8

n=1 be sequence of real numbers defined by bn = ´|an| and
cn = |an|. Then bn ď an ď cn for all n P N. Since lim

nÑ8
|an| = 0, Theorem 9.11 implies that

lim
nÑ8

bn = lim
nÑ8

cn = 0 and the Squeeze Theorem further implies that lim
nÑ8

an = 0.

Definition 9.14: Monotonicity of Sequences

A sequence tanu8
n=1 Ď R is said to be

1. (monotone) increasing if an+1 ě an for all n P N;

2. (monotone) decreasing if an+1 ď an for all n P N;

3. monotone if tanu8
n=1 is an increasing sequence or a decreasing sequence.

Example 9.15. The sequence tsnu8
n=2 defined in Example 9.10 is a monotone decreasing

sequence.

Definition 9.16: Boundedness of Sequences
Let tanu8

n=1 be a sequence of real numbers.

1. tanu8
n=1 is said to be bounded（有界的）if there exists M P R such that

|an| ď M for all n P N.

2. tanu8
n=1 is said to be bounded from above（有上界）if there exists B P R,

called an upper bound of the sequence, such that an ď B for all n P N. Such
a number B is called an upper bound of the sequence.

3. tanu8
n=1 is said to be bounded from below（有下界）if there exists A P R,

called a lower bound of the sequence, such that A ď an for all n P N. Such a
number A is called a lower bound of the sequence.



Example 9.17. The sequence tanu8
n=1 defined by an = n is bounded from below by 0 by

not bounded from above.

Proposition 9.18

A convergent sequence of real numbers is bounded（數列收斂必有界）.

Proof. Let tanu8
n=1 be a convergent sequence with limit L. Then by the definition of limits

of sequences, there exists N ą 0 such that

an P (L ´ 1, L+ 1) @n ě N.

Let M = max
␣

|a1|, |a2|, ¨ ¨ ¨ , |aN´1|, |L| + 1
(

. Then |an| ď M for all n P N.

Remark 9.19. A bounded sequence might not be convergent. For example, let tanu8
n=1 be

defined by an = 3 + (´1)n. Then

a1 = a3 = a5 = ¨ ¨ ¨ = a2k´1 = ¨ ¨ ¨ = 2 and a2 = a4 = a6 = ¨ ¨ ¨ = a2k = ¨ ¨ ¨ = 4 .

Therefore, the only possible limits are t2, 4u; however, by the fact that

#
␣

n P N
ˇ

ˇ an R (1, 3)
(

= #
␣

n P N
ˇ

ˇ an R (3, 5)
(

= 8 ,

we find that 2 and 4 are not the limit of tanu8
n=1. Therefore, tanu8

n=1 does not converge.

‚ Completeness of Real Numbers:
One important property of the real numbers is that they are complete. The complete-

ness axiom for real numbers states that “every bounded sequence of real numbers has a least
upper bound and a greatest lower bound”; that is, if tanu8

n=1 is a bounded sequence of
real numbers, then there exists an upper bound M and a lower bound m of tanu8

n=1 such
that there is no smaller upper bound nor greater lower bound of tanu8

n=1.
Theorem 9.20: Monotone Sequence Property (MSP)

Let tanu8
n=1 be a monotone sequence of real numbers. Then tanu8

n=1 converges if and
only if tanu8

n=1 is bounded.

Proof. It suffices to show the “ð” direction.
Without loss of generality, we can assume that tanu8

n=1 is increasing and bounded. By
the completeness of real numbers, there exists a least upper bound M for the sequence
tanu8

n=1.



Let ε ą 0 be given. Since M is the least upper bound for tanu8
n=1, M ´ε is not an upper

bound; thus there exists N P N such that aN ą M ´ ε. Since tanu8
n=1 is increasing, an ě aN

for all n ě N . Therefore,
M ´ ε ă an ď M @n ě N

which implies that
|an ´ M | ă ε @n ě N .

The statement above shows that tanu8
n=1 converges to M .

Remark 9.21. A sequence of real numbers tanu8
n=1 is called a Cauchy sequence if for

every ε ą 0 there exists N ą 0 such that

|an ´ am| ă ε whenever n,m ě N .

A convergent sequence must be a Cauchy sequence. Moreover, the completeness of real
numbers is equivalent to that “every Cauchy sequence of real number converges”.

9.2 Series and Convergence
An infinite series is the “sum” of an infinite sequence. If tanu8

n=1 is a sequence of real
numbers, then

8
ÿ

k=1

ak = a1 + a2 + ¨ ¨ ¨ + an + ¨ ¨ ¨

is an infinite series (or simply series). The numbers a1, a2, a3, ¨ ¨ ¨ are called the terms of
the series. For convenience, the sum could begin the index at n = 0 or some other integer.
Definition 9.22

The series
8
ř

k=1

ak is said to be convergent or converge to S if the sequence of the partial

sum, denoted by tSnu8
n=1 and defined by

Sn ”

n
ÿ

k=1

ak = a1 + a2 + ¨ ¨ ¨ + an,

converges to S. Sn is called the n-th partial sum of the series
8
ř

k=1

ak.

When the series converges, we write S =
8
ř

k=1

ak and
8
ř

k=1

ak is said to be convergent.

If tSnu8
n=1 diverges, the series is said to be divergent or diverge. If lim

nÑ8
Sn = 8 (or

´8), the series is said to diverge to 8 (or ´8).



Example 9.23. The n-th partial sum of the series
8
ř

k=1

1

k(k + 1)
is

Sn =
n
ÿ

k=1

1

k(k + 1)
=

n
ÿ

k=1

(1
k

´
1

k + 1

)
=

(
1 ´

1

2

)
+
(1
2

´
1

3

)
+ ¨ ¨ ¨ +

( 1
n

´
1

n+ 1

)
= 1 ´

1

n+ 1
;

thus the series
8
ř

k=1

1

k(k + 1)
converges to 1, and we write

8
ř

k=1

1

k(k + 1)
= 1.

Example 9.24. The n-th partial sum of the series
8
ř

k=1

2

4k2 ´ 1
is

n
ÿ

k=1

2

4k2 ´ 1
=

n
ÿ

k=1

2

(2k ´ 1)(2k + 1)
=

n
ÿ

k=1

( 1

2k ´ 1
´

1

2k + 1

)
=

(
1 ´

1

3

)
+
(1
3

´
1

5

)
+ ¨ ¨ ¨ +

( 1

2n ´ 1
´

1

2n+ 1

)
= 1 ´

1

2n+ 1
;

thus the series
8
ř

k=1

2

4k2 ´ 1
converges to 1, and we write

8
ř

k=1

2

4k2 ´ 1
= 1.

The series in the previous two examples are series of the form

n
ÿ

k=1

(bk ´ bk+1) = (b1 ´ b2) + (b2 ´ b3) + ¨ ¨ ¨ + (bn ´ bn+1) + ¨ ¨ ¨ ,

and are called telescoping series. A telescoping series converges if and only if lim
nÑ8

bn con-
verges.

Example 9.25. The series
8
ř

k=1

rk, where r is a real number, is called a geometric series

(with ratio r). Note that the n-th partial sum of the series is

Sn =
n
ÿ

k=1

rk = 1 + r + r2 + ¨ ¨ ¨ + rn =

$

&

%

1 ´ rn+1

1 ´ r
if r ‰ 1 ,

n+ 1 if r = 1 .

Therefore, the geometric series converges if and only if the common ratio r satisfies |r| ă 1.



Theorem 9.26

Let
8
ř

k=1

ak and
8
ř

k=1

be convergent series, and c is a real number. Then

1.
8
ř

k=1

cak = c
8
ř

k=1

ak.

2.
8
ř

k=1

(ak + bk) =
8
ř

k=1

ak +
8
ř

k=1

bk.

3.
8
ř

k=1

(ak ´ bk) =
8
ř

k=1

ak ´
8
ř

k=1

bk.

Theorem 9.27: Cauchy Criteria

A series
8
ř

k=1

ak converges if and only if for every ε ą 0, there exists N ą 0 such that
ˇ

ˇ

ˇ

n+ℓ
ÿ

k=n

ak

ˇ

ˇ

ˇ
ă ε whenever n ě N, ℓ ě 0 .

Proof. Let Sn be the n-th partial sum of the series
8
ř

k=1

ak. Then by Remark 9.21,
8
ř

k=1

ak converges ô tSnu8
n=1 is a convergent sequence

ô tSnu8
n=1 is a Cauchy sequence

ô for every ε ą 0, there exists N ą 0 such that
|Sn ´ Sm| ă ε whenever n,m ě N

ô for every ε ą 0, there exists N ą 0 such that
|an + an+1 + ¨ ¨ ¨ + an+ℓ| ă ε whenever n ě N and ℓ ě 0.

Corollary 9.28: n-th Term Test

If the series
8
ř

k=1

ak converges, then lim
kÑ8

ak = 0.

Remark 9.29. It is not true that lim
nÑ8

an = 0 implies the convergence of
8
ř

k=1

ak. For example,

we have shown in Example 8.50 that the harmonic series
8
ř

k=1

1

k
diverges to 8 while we know

that lim
nÑ8

1

n
= 0.



Corollary 9.30: n-th term test for divergence

Let tanu8
n=1 be a sequence. If lim

nÑ8
an ‰ 0 or does not exist, then the series

8
ř

k=1

ak

diverges.

9.3 The Integral Test and p-Series
9.3.1 The integral test

Suppose that the sequence tanu8
n=1 is obtained by evaluating a non-negative continuous

decreasing function f : [1,8) Ñ R on N; that is, f(n) = an. Then
ż n+1

1

f(x) dx ď Sn ”

n
ÿ

k=1

ak ď a1 +

ż n

1

f(x) dx . (9.3.1)

Since the sequence of partial sums tSnu8
n=1 of the series

8
ř

k=1

ak is increasing, the complete-

ness of real numbers implies that tSnu8
n=1 converges if and only if the improper integral

ż 8

1
f(x) dx converges.

Theorem 9.31
Let f : [1,8) Ñ R be a non-negative continuous decreasing function. The series

8
ř

k=1

f(k) converges if and only if the improper integral
ż 8

1
f(x) dx converges.

Example 9.32. The series
8
ř

k=1

1

k2 + 1
converges since

ż 8

1

dx

x2 + 1
= lim

bÑ8

ż b

1

dx

x2 + 1
= lim

bÑ8
arctanx

ˇ

ˇ

ˇ

x=b

x=1
= lim

bÑ8
(arctan b ´ arctan 1) =

π

4

and the function f(x) =
1

x2 + 1
is non-negative continuous and decreasing on [1,8).

Example 9.33. The series
8
ř

k=1

k

k2 + 1
diverges since

ż 8

1

x

x2 + 1
dx = lim

bÑ8

ż b

1

x

x2 + 1
dx = lim

bÑ8

ln(x2 + 1)

2

ˇ

ˇ

ˇ

x=b

x=1
=

1

2
lim
bÑ8

[
ln(b2 + 1) ´ ln 2

]
= 8

and the function f(x) =
x

x2 + 1
is non-negative continuous and decreasing on [1,8).



Example 9.34. The series
8
ř

k=2

1

k ln k converges since

ż 8

2

dx

x lnx = lim
bÑ8

ż b

2

dx

x lnx
(x=eu)
= lim

bÑ8

ż ln b

ln 2

eudu

eu ln eu = lim
bÑ8

ż ln b

ln 2

du

u
= lim

bÑ8
lnu

ˇ

ˇ

ˇ

u=ln b

u=ln 2

= lim
bÑ8

(ln ln b ´ ln ln 2) = 8

and the function f(x) =
1

x lnx is non-negative continuous and decreasing on [2,8).

9.3.2 p-series

A series of the form
8
ÿ

k=1

1

kp
= 1 +

1

2p
+

1

3p
+ ¨ ¨ ¨

is called a p-series. The series is a function of p, and this function is usually called the
Riemann zeta function; that is,

ζ(s) ”

8
ÿ

n=1

1

ns
.

A harmonic series is the p-series with p = 1, and a general harmonic series is of the form
8
ÿ

k=1

1

ak + b
.

By Theorem 8.51 and 9.31, the p-series converges if and only if p ą 1.

Remark 9.35. It can be shown that
8
ř

k=1

1

k2
=
π2

6
. In fact, for all integer k ě 2, the number

8
ř

k=1

1

nk
can be computed by hand (even though it is very time consuming).

Remark 9.36. Using (9.3.1), we find that

ln(n+ 1) ď

n
ÿ

k=1

1

k
ď 1 + lnn @n P N .

Therefore, the sequence tanu8
n=1 defined by

an =
n
ÿ

k=1

1

k
´ lnn



is bounded. Moreover,

an ´ an+1 =
n
ÿ

k=1

1

k
´ lnn ´

n+1
ÿ

k=1

1

k
+ ln(n+ 1) = ln

(
1 +

1

n

)
´

1

n+ 1
.

Since the derivative of the function f(x) = ln(1 + x) ´
x

x+ 1
is positive on [0, 1], we find

that f is increasing on [0, 1]; thus

ln
(
1 +

1

n

)
´

1

n+ 1
= f

( 1
n

)
ě f(0) = ln 1 ´

0

1
= 0 @n P N

which shows that an ě an+1. Therefore, tanu8
n=1 is monotone decreasing and bounded from

below (by 0). The completeness of real numbers then implies the convergence of the sequence
tanu8

n=1. The limit

lim
nÑ8

( n
ÿ

k=1

1

k
´ lnn

)
is called Euler’s constant. Euler’s constant is approximated 0.5772.

9.3.3 Error estimates

Similar to (9.3.1), under the same setting we have

Sn +

ż 8

n+1

f(x) dx ď S ď Sn +

ż 8

n

f(x) dx @n P N . (9.3.2)

The inequality above shows the following
Theorem 9.37: Bounds for the Remainder in the Integral Test

Let f : [1,8) Ñ R be a non-negative continuous decreasing function such that the

series S =
8
ř

k=1

f(k) converges. Then the remainder Rn = S´Sn, where Sn =
n
ř

k=1

f(k),

satisfies the inequality
ż 8

n+1

f(x) dx ď Rn ď

ż 8

n

f(x) dx .

Example 9.38. Estimate the sum of the series
8
ř

n=1

1

n2
using the inequalities in (9.3.2) and

n = 10.
Since

ż 8

n

1

x2
dx = lim

bÑ8

´1

x

ˇ

ˇ

ˇ

x=b

x=n
=

1

n
,



using (9.3.2) we find that

S10 +
1

11
ď

8
ÿ

k=1

1

k2
ď S10 +

1

10
.

Computing S10, we obtain that

S10 = 1 +
1

4
+

1

9
+ ¨ ¨ ¨ +

1

81
+

1

100
« 1.54977 ;

thus

1.64068 ď

8
ÿ

k=1

1

k2
ď 1.64977 .

9.4 Comparisons of Series

When the sequence tanu8
n=1 is not obtained by an = f(n) for some decreasing function

f : [1,8) Ñ R, the convergence of the series
8
ř

k=1

ak cannot be judged by the convergence

of the improper integral
ż 8

1
f(x) dx. To determine the convergence of this kind of series,

usually one uses comparison tests.

9.4.1 Direct Comparison Test
Theorem 9.39

Let tanu8
n=1, tbnu8

n=1 be sequences of real numbers, and 0 ď an ď bn for all n P N.

1. If
8
ř

k=1

bk converges, then
8
ř

k=1

ak converges.

2. If
8
ř

k=1

ak diverges, then
8
ř

k=1

ak diverges.

Proof. Let Sn and Tn be the n-th partial sum of the series
8
ř

k=1

ak and
8
ř

k=1

bk, respectively;
that is,

Sn =
n
ÿ

k=1

ak and Tn =
n
ÿ

k=1

bk .

Then by the assumption that 0 ď an ď bn for all n P N, we find that 0 ď Sn ď Tn for all
n P N, and tSnu8

n=1 and tTnu8
n=1 are monotone increasing sequences.



1. If
8
ř

k=1

bk converges, lim
nÑ8

Tn = T exists; thus 0 ď Sn ď Tn ď T for all n P N. Since

tSnu8
n=1 is increasing, the monotone sequence property shows that lim

nÑ8
Sn exists; thus

8
ř

k=1

ak converges.

2. If
8
ř

k=1

ak diverges, lim
nÑ8

Sn = 8; thus by the fact that Sn ď Tn for all n P N, we find

that lim
nÑ8

Tn = 8. Therefore,
8
ř

k=1

bk diverges (to 8).

Remark 9.40. It does not require that 0 ď an ď bn for all n P N for the direct comparison
test to hold. The condition can be relaxed by that “0 ď an ď bn for all n ě N” for some N
since the sum of the first N ´ 1 terms does not affect the convergence of the series.

Example 9.41. The series
8
ř

k=1

1 + sin k
k2

converges since 1 + sinn
n2

ď
2

n2
for all n P N and the

p-series
8
ř

k=1

2

k2
converges.

Example 9.42. The series
8
ř

k=1

1

2 + 3k
converges since 1

2 + 3n
ď

1

3n
for all n P N and the

geometric series
8
ř

k=1

1

3k
converges.

Example 9.43. The series
8
ř

k=1

1

2 +
?
k

diverges since 1

2 +
?
n

ě
1

3
?
n

for all n P N and the

p-series
8
ř

k=1

1

3
?
k
=

1

3

8
ř

k=1

1
?
k

diverges.

One can also use the fact that 1

2 +
?
n

ě
1

n
for all n ě 4 and

8
ř

k=1

1

k
diverges to conclude

that
8
ř

k=1

1

2 +
?
k

diverges.

9.4.2 Limit Comparison Test
Theorem 9.44

Let tanu8
n=1, tbnu8

n=1 be sequences of real numbers, an, bn ą 0 for all n P N, and

lim
nÑ8

an
bn

= L ,

where L is a non-zero real number. Then
8
ř

k=1

ak converges if and only if
8
ř

k=1

bk con-
verges.



Proof. We first note that if L ‰ 0, then L ą 0 since an
bn

ą 0 for all n P N. By the fact that

lim
nÑ8

an
bn

= L, there exists N ą 0 such that
ˇ

ˇ

ˇ

an
bn

´ L
ˇ

ˇ

ˇ
ă
L

2
whenever n ě N . In other words,

L

2
ă
an
bn

ă
3L

2
for all n ě N ; thus

0 ă an ă
3L

2
bn and 0 ă bn ă

2

L
an whenever n ě N .

By Theorem 9.39 and Remark 9.40, we find that
8
ř

k=1

ak converges if and only if
8
ř

k=1

bk

converges.

Remark 9.45. 1. If lim
nÑ8

an
bn

= 0, then the convergence of
8
ř

k=1

bk implies the convergence of
8
ř

k=1

ak, but not necessary the reverse direction.

2. The condition “an, bn ą 0 for all n P N” can be relaxed by “an and bn are sign-definite
for n ě N , where a sequence tcnu8

n=1 is called sign-definite for n ě N if cn ą 0 for all
n ě N or cn ă 0 for all n ě N .

Example 9.46. Recall that in Example 9.42 and 9.43 we have shown that the series
8
ř

k=1

1

2 + 3k
converges and the series

8
ř

k=1

1

2 +
?
k

diverges using the direct comparison test.

Note that since

lim
nÑ8

1

2 + 3n

1

3n

= 1 and lim
nÑ8

1

2 +
?
n

1
?
n

= 1 ,

using the convergence of the p-series and the limit comparison test we can also conclude

that
8
ř

k=1

1

2 + 3k
converges and

8
ř

k=1

1

2 +
?
k

diverges.

Example 9.47. The general harmonic series
8
ř

k=1

1

ak + b
diverges for the following reasons:

1. if a = 0, then clearly
8
ř

k=1

1

b
diverges.

2. if a ‰ 0, then
8
ř

k=1

1

ak
diverges and lim

nÑ8

1

ak
1

ak + b

= 1.



9.5 The Ratio and Root Tests
9.5.1 The Ratio Test
Theorem 9.48: Ratio Test

Let
8
ř

k=1

ak be a series with positive terms.

1. The series
8
ř

k=1

ak converges if lim
nÑ8

an+1

an
ă 1.

2. The series
8
ř

k=1

ak diverges (to 8) if lim
nÑ8

an+1

an
ą 1.

Proof. Suppose that lim
nÑ8

an+1

an
= L exists. Define r = L+ 1

2
.

1. Assume that L ă 1. Then for ε = 1 ´ L

2
, there exists N ą 0 such that

ˇ

ˇ

ˇ

an+1

an
´ L| ă

1 ´ L

2
whenever n ě N ;

thus
0 ă

an+1

an
ă r whenever n ě N .

Note that 0 ă r ă 1, and the inequality above implies that if n ě N , an+1 ă ran.
Therefore,

0 ă an ď aNr
n´N for all n ě N .

Now, since the series
8
ř

k=1

aNr
k converges, the comparison test implies that

8
ř

k=1

ak con-
verges as well.

2. Assume that L ą 1. Then for ε = L´ 1

2
, there exists N ą 0 such that

ˇ

ˇ

ˇ

an+1

an
´ L| ă

L ´ 1

2
whenever n ě N ;

thus
r ă

an+1

an
whenever n ě N .

Note that r ą 1, and the inequality above implies that if n ě N , an+1 ą ran.
Therefore,

0 ă aNr
n´N ď an for all n ě N .



Now, since the series
8
ř

k=1

aNr
k´N diverges, the comparison test implies that

8
ř

k=1

ak

diverges as well.

Remark 9.49. When lim
nÑ8

an+1

an
= 1, the convergence or divergence of

8
ř

n=1

ak cannot be
concluded. For example, the p-series could converge or diverge depending on how large p
is, but no matter what p is,

lim
nÑ8

(n+ 1)p

np
= 1 .

Example 9.50. The series
8
ř

k=1

2k

k!
converges since

lim
nÑ8

2n+1/(n+ 1)!

2n/n!
= lim

nÑ8

2

n+ 1
= 0 ă 1 .

Example 9.51. The series
8
ř

k=1

k22k+1

3k
converges since

lim
nÑ8

(n+ 1)22n+2/3n+1

n22n+1/3n
= lim

nÑ8

2

3

(n+ 1)2

n2
=

2

3
ă 1 .

Example 9.52. The series
8
ř

k=1

kk

k!
diverges since

lim
nÑ8

(n+ 1)n+1/(n+ 1)!

nn/n!
= lim

nÑ8

(
1 +

1

n

)n

= e ą 1 .

9.5.2 The Root Test
Theorem 9.53: Root Test

Let
8
ř

k=1

ak be a series with positive terms.

1. The series
8
ř

k=1

ak converges if lim
nÑ8

n
?
an ă 1.

2. The series
8
ř

k=1

ak diverges (to 8) if lim
nÑ8

n
?
an ą 1.

Proof. Suppose that lim
nÑ8

n
?
an = L exists. Define r = L+ 1

2
.



1. Assume that L ă 1. Then for ε = 1 ´ L

2
, there exists N ą 0 such that

ˇ

ˇ
n
?
an ´ L

ˇ

ˇ ă
1 ´ L

2
whenever n ě N ;

thus
0 ă n

?
an ă r whenever n ě N

or equivalently,
0 ă an ď rn whenever n ě N .

By the fact that 0 ă r ă 1, the series
8
ř

k=1

rk converges; thus the comparison test

implies that
8
ř

k=1

ak converges as well.

2. Left as an exercise.

Remark 9.54. When lim
nÑ8

n
?
an = 1, the convergence or divergence of

8
ř

n=1

ak cannot be
concluded. For example, the p-series could converge or diverge depending on how large p
is, but no matter what p is,

lim
nÑ8

n
?
np =

(
lim
nÑ8

n
?
n
)p

= 1 .

Example 9.55. The series
8
ř

k=1

e2k

kk
converges since

lim
nÑ8

(e2n
nn

) 1
n
= lim

nÑ8

e2

n
= 0 ă 1 .

We also note that the convergence of this series can be obtained through the ratio test:

lim
nÑ8

e2(n+1)/(n+ 1)n+1

e2n/nn
= lim

nÑ8

e2

n+ 1

(
1 +

1

n

)´n

= 0 ă 1 .

Example 9.56. The series
8
ř

k=1

k22k+1

3k
converges since

lim
nÑ8

(n22n+1

3n

) 1
n
= lim

nÑ8

2(2n2)
1
n

3
=

2

3
ă 1 .

Example 9.57. The series
8
ř

k=1

kk

k!
diverges since

lim
nÑ8

(nn

n!

) 1
n
= lim

nÑ8

( nn

?
2πnnne´n

?
2πnnne´n

n!

) 1
n
= lim

nÑ8

( en
?
2πn

) 1
n
= e ą 1 ,

here we have used Stirling’s formula (9.1.2) to compute the limit.



Remark 9.58. Observe from Example 9.51, 9.52, 9.56 and 9.57, we see that as long as
lim
nÑ8

an+1

an
and lim

nÑ8

n
?
an exists, then the limits are the same. This is in fact true in general,

but we will not prove it since this is not our focus.

9.6 Absolute and Conditional Convergence
In the previous three sections we consider the convergence of series whose terms do not have
different signs. How about the convergence of series like

8
ÿ

k=1

(´1)k+1

kp
,

8
ÿ

k=1

sin k
kp

and etc.

In the following two sections, we will focus on how to judge the convergence of a series that
has both positive and negative terms.
Definition 9.59

An infinite series
8
ř

k=1

ak is said to be absolutely convergent or converge absolutely if the

series
8
ř

k=1

|ak| converges. An infinite series
8
ř

k=1

ak is said to be conditionally convergent

or converge conditionally if
8
ř

k=1

ak converges but
8
ř

k=1

|ak| diverges (to 8).

Example 9.60. The series
8
ř

k=1

(´1)k

kp
converge absolutely for p ą 1 but does not converge

absolutely for p ď 1 since the p-series
8
ř

k=1

1

kp
converges for p ą 1 and diverges for p ď 1.

Example 9.61. The series
8
ř

k=1

sin k
kp

converges absolutely for p ą 1 since

0 ď

ˇ

ˇ

ˇ

sinn
np

ˇ

ˇ

ˇ
ď

1

np
@n P N

and the p-series
8
ř

k=1

1

kp
converges for p ą 1.

Theorem 9.62
An absolutely convergent series is convergent.（絕對收斂則收斂）



Proof. Let
8
ř

k=1

ak be an absolutely convergent series, and ε ą 0 be given. Since
8
ř

k=1

|ak|

converges, the Cauchy criteria implies that there exists N ą 0 such that

ˇ

ˇ

ˇ

n+p
ÿ

k=n

|ak|

ˇ

ˇ

ˇ
ă ε whenever n ě N and p ě 0 .

Therefore, if n ě N and p ě 0,

ˇ

ˇ

ˇ

n+p
ÿ

k=n

ak

ˇ

ˇ

ˇ
ď

n+p
ÿ

k=n

|ak| ă ε �

thus the Cauchy criteria implies that
8
ř

k=1

ak converges.

Corollary 9.63: Ratio and Root Tests

The series
8
ř

k=1

ak converges if lim
nÑ8

|an+1|

|an|
ă 1 or lim

nÑ8

n
a

|an| ă 1.

Example 9.64. The series
8
ř

k=1

(´1)k2k

k!
converges since

lim
nÑ8

ˇ

ˇ

ˇ

(´1)n+12n+1

(n+ 1)!

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(´1)n2n

n!

ˇ

ˇ

ˇ

= lim
nÑ8

2n+1

(n+ 1)!
2n

n!

= lim
nÑ8

2

n+ 1
= 0 ă 1

which shows the absolute convergence of the series the series
8
ř

k=1

(´1)k2k

k!
.

Example 9.65. The series
8
ř

k=1

(´1)k+1k!

1 ¨ 3 ¨ 5 ¨ ¨ ¨ ¨ ¨ (2k + 1)
converges since

lim
nÑ8

ˇ

ˇ

ˇ

(´1)n+2(n+ 1)!

1 ¨ 3 ¨ 5 ¨ ¨ ¨ ¨ ¨ (2n+ 3)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(´1)n+1n!

1 ¨ 3 ¨ 5 ¨ ¨ ¨ ¨ ¨ (2n+ 1)

ˇ

ˇ

ˇ

= lim
nÑ8

(n+ 1)!

1 ¨ 3 ¨ 5 ¨ ¨ ¨ ¨ ¨ (2n+ 3)

n!

1 ¨ 3 ¨ 5 ¨ ¨ ¨ ¨ ¨ (2n+ 1)

= lim
nÑ8

n+ 1

2n+ 3
=

1

2
ă 1

which shows the absolute convergence of the series
8
ř

k=1

(´1)k+1k!

1 ¨ 3 ¨ 5 ¨ ¨ ¨ ¨ ¨ (2k + 1)
.



Example 9.66. Consider the series
8
ř

k=1

(k2 sin k)k
(k!)k

. Since

lim
nÑ8

[ n2n

(n!)n

] 1
n
= lim

nÑ8

n2

n!
= lim

nÑ8

n

n ´ 1

1

(n ´ 2)!
= 0 ă 1 ,

the series
8
ř

k=1

k2k

(k!)k
converges absolutely. By the fact that

ˇ

ˇ

ˇ

(n2 sinn)n
(n!)n

ˇ

ˇ

ˇ
ď

(n2)n

(n!)n
@n P N ,

the comparison test implies that the series
8
ř

k=1

(k2 sin k)k
(k!)k

converges absolutely.

9.6.1 Alternating Series

In the previous two sections we consider the convergence of series whose terms do not have
different signs. How about the convergence of series like

8
ÿ

k=1

(´1)k+1

k
,

8
ÿ

k=1

sin k
k

and etc.

In the following two sections, we will focus on how to judge the convergence of a series that
has both positive and negative terms.
Theorem 9.67: Dirichlet’s Test

Let tanu8
n=1, tpnu8

n=1 be sequences of real numbers such that

1. the sequence of partial sums of the series
8
ř

k=1

ak is bounded; that is, there exists

M P R such that
ˇ

ˇ

ˇ

n
ř

k=1

ak

ˇ

ˇ

ˇ
ď M for all n P N.

2. tpnu8
n=1 is a decreasing sequence, and lim

nÑ8
pn = 0.

Then
8
ř

k=1

akpk converges.

Proof. Let ε ą 0 be given. Since tpnu8
n=1 is decreasing and lim

nÑ8
pn = 0, there exists N ą 0

such that
0 ď pn ă

ε

2M + 1
whenever n ě N .



Define Sn =
n
ř

k=1

ak. Then if n ě N and ℓ ě 0,

ˇ

ˇ

ˇ

n+ℓ
ÿ

k=n

akpk

ˇ

ˇ

ˇ
=
ˇ

ˇ(Sn ´ Sn´1)pn + (Sn+1 ´ Sn)pn+1 + (Sn+2 ´ Sn+1)pn+2 + ¨ ¨ ¨

+ (Sn+ℓ´1 ´ Sn+ℓ´2)pn+ℓ´1 + (Sn+ℓ ´ Sn+ℓ´1)pn+ℓ

ˇ

ˇ

=
ˇ

ˇ´Sn´1pn + Sn(pn ´ pn+1) + Sn+1(pn+1 ´ pn+2) + ¨ ¨ ¨ + Sn+ℓ´1(pn+ℓ´1 ´ pn+ℓ)

+ Sn+ℓpn+ℓ

ˇ

ˇ

ď |Sn´1pn| + |Sn(pn ´ pn+1)| + |Sn+1(pn+1 ´ pn+2)| + ¨ ¨ ¨ + |Sn+ℓ(pn+ℓ´1 ´ pn+ℓ)|

+ |Sn+ℓ+1pn+ℓ|

ď Mpn +M(pn ´ pn+1) +M(pn+1 ´ pn+2) + ¨ ¨ ¨ +M(pn+ℓ´1 ´ pn+ℓ) +Mpn+ℓ

= 2Mpn ă
2Mε

2M + 1
ă ε .

The convergence of
8
ř

k=1

akpk then follows from the Cauchy criteria (Theorem 9.27).

Corollary 9.68

Let tpnu8
n=1 be a decreasing sequence of real numbers. If lim

nÑ8
pn = 0, then

8
ř

k=1

(´1)kpk

and
8
ř

k=1

(´1)k+1pk converge.

Example 9.69. The series
8
ř

k=1

(´1)k+1

kp
converges conditionally for 0 ă p ď 1 since

1.
8
ř

k=1

(´1)k+1

kp
converges due the fact that

ˇ

ˇ

ˇ

n
ÿ

k=1

(´1)k+1
ˇ

ˇ

ˇ
ď 1 and

! 1

np

)8

n=1
is decreasing and converges to 0 .

2.
8
ř

k=1

ˇ

ˇ

ˇ

(´1)k+1

kp

ˇ

ˇ

ˇ
diverges for it is a p-series with 0 ă p ď 1.

Similarly,
8
ř

k=1

(´1)k

ln(k + 1)
converges conditionally.

Example 9.70. The series
8
ř

k=1

sin k
kp

converges for p ą 0 since



1.
n
ř

k=1

sin k =
cos 1

2 ´ cos 2k+1
2

2 sin 1
2

;
(

thus
ˇ

ˇ

ˇ

n
ř

k=1

sin k
ˇ

ˇ

ˇ
ď

1

sin 1
2

)
.

2.
␣ 1

np

(8

n=1
is decreasing and lim

nÑ8

1

np
= 0.

We remark here that
8
ř

k=1

sin k
k

=
π ´ 1

2
. In fact,

8
ř

k=1

sin(kx)
k

is the Fourier series of the

function π ´ x

2
.

‚ Alternating Series Remainder

Theorem 9.71
Let tanu8

n=1, tpnu8
n=1 be sequences of real numbers satisfying conditions in Theorem

9.67. If
ˇ

ˇ

ˇ

n
ř

k=1

ak

ˇ

ˇ

ˇ
ď M for all n P N, then

ˇ

ˇ

ˇ

8
ÿ

k=1

akpk ´

n
ÿ

k=1

akpk

ˇ

ˇ

ˇ
=
ˇ

ˇ

ˇ

8
ÿ

k=n+1

akpk

ˇ

ˇ

ˇ
ď 2Mpn+1 .

Moreover, if ak = (´1)k, then

ˇ

ˇ

8
ÿ

k=1

(´1)k+1pk ´

n
ÿ

k=1

(´1)k+1pk
ˇ

ˇ ď pn+1 @n P N .

Sketch of Proof. Let Sn =
n
ř

k=1

ak. According to the proof of the Abel test, we have

ˇ

ˇ

ˇ

n+ℓ
ÿ

k=n

akpk

ˇ

ˇ

ˇ
ď |Sn´1|pn + |Sn|(pn ´ pn+1) + |Sn+1|(pn+1 ´ pn+2) + ¨ ¨ ¨ + |Sn+ℓ|(pn+ℓ´1 ´ pn+ℓ)

+ |Sn+ℓ+1|pn+ℓ . (9.6.1)

Note that for the general case, by the fact that |Sn| ď M for all n P N and tpnu8
n=1 is

decreasing, we conclude that for all ℓ ě 0,
ˇ

ˇ

ˇ

n+ℓ
ÿ

k=n

akpk

ˇ

ˇ

ˇ
ď 2Mpn @n P N ;

thus if n P N,
ˇ

ˇ

ˇ

8
ÿ

k=1

akpk ´

n
ÿ

k=1

akpk

ˇ

ˇ

ˇ
= lim

ℓÑ8

ˇ

ˇ

ˇ

n+1+ℓ
ÿ

k=1

akpk ´

n
ÿ

k=1

akpk

ˇ

ˇ

ˇ
= lim

ℓÑ8

ˇ

ˇ

ˇ

n+1+ℓ
ÿ

k=n+1

akpk

ˇ

ˇ

ˇ
ď 2Mpn+1 .



For the case of alternating series, we note that terms of tSnu8
n=1 are t1, 0, 1, 0, 1, ¨ ¨ ¨ u;

thus (9.6.1) implies that
ˇ

ˇ

8
ÿ

k=1

(´1)k+1pk ´

n
ÿ

k=1

(´1)k+1pk
ˇ

ˇ ď pn+1 @n P N .

Example 9.72. Approximate the sum of the series
8
ř

k=1

(´1)k+1 1

k!
by its first six terms, we

obtain that
6
ÿ

k=1

(´1)k+1 1

k!
=

1

1!
´

1

2!
+

1

3!
´

1

4!
+

1

5!
´

1

6!
« 0.63194 .

Moreover, by Theorem 9.71, we find that

ˇ

ˇ

ˇ

8
ÿ

k=1

(´1)k+1 1

k!
´

6
ÿ

k=1

(´1)k+1 1

k!

ˇ

ˇ

ˇ
ď

1

7!
=

1

5040
« 0.0002 .

Example 9.73. Determine the number of terms required to approximate the sum of the

series
8
ř

k=1

(´1)k+1

k4
with an error of less than 0.0001.

By Theorem 9.71,

ˇ

ˇ

ˇ

8
ÿ

k=1

(´1)k+1

k4
´

n
ÿ

k=1

(´1)k+1

k4

ˇ

ˇ

ˇ
ď

1

(n+ 1)4
;

thus choosing n such that 1

(n+ 1)4
ď 0.0001 (that is, n ě 9), we obtain that

ˇ

ˇ

ˇ

8
ÿ

k=1

(´1)k+1

k4
´

n
ÿ

k=1

(´1)k+1

k4

ˇ

ˇ

ˇ
ď 0.001 @n ě 9 .

9.7 Taylor Polynomials and Approximations

Suppose that f : (a, b) Ñ R is (n + 1)-times continuously differentiable; that is, dkf

dxk
is

continuous on (a, b) for 1 ď k ď n + 1, then for x P (a, b), the Fundamental Theorem of



Calculus and integration-by-parts imply that

f(x) ´ f(c) =

ż x

c

f 1(t) dt = f 1(t)(t ´ x)
ˇ

ˇ

ˇ

t=x

t=c
´

ż x

c

f 11(t)(t ´ x) dt

= ´f 1(c)(c ´ x) ´

ż x

c

f 11(t)(t ´ x) dt

= f 1(c)(x ´ c) ´

[
f 11(t)

(t´ x)2

2

ˇ

ˇ

ˇ

t=x

t=c
´

ż x

c

f 12(t)
(t´ x)2

2
dt
]

= f 1(c)(x ´ c) ´

[
´
f 11(c)

2
(c ´ x)2 ´

ż x

c

f 12(t)
(t´ x)2

2
dt
]

= f 1(c)(x ´ c) +
f 11(c)

2
(x ´ c)2 +

ż x

c

f 12(t)
(t´ x)2

2
dt

= ¨ ¨ ¨ ¨ ¨ ¨

= f 1(c)(x ´ c) +
f 11(c)

2
(x ´ c)2 + ¨ ¨ ¨ +

f (n)(c)

n!
(x ´ c)n

+ (´1)n
ż x

c

f (n+1)(t)
(t´ x)n

n!
dt ,

where the last equality can be shown by induction. Therefore,

f(x) =
n
ÿ

k=0

f (k)(c)

k!
(x ´ c)k + (´1)n

ż x

c

f (n+1)(t)
(t ´ x)n

n!
dt . (9.7.1)

Definition 9.74
If f has n derivatives at c, then the polynomial

Pn(x) =
n
ÿ

k=0

f (k)(c)

k!
(x ´ c)k

is called the n-th (order) Taylor polynomial for f at c. The n-th Taylor polynomial
for f at 0 is also called the n-th (order) Maclaurin polynomial for f .

Example 9.75. The n-th Maclaurin polynomial for the function f(x) = ex is

Pn(x) =
n
ÿ

k=0

f (k)(0)

k!
xk =

n
ÿ

k=0

1

k!
xk = 1 + x+

x2

2!
+
x3

3!
+ ¨ ¨ ¨ +

xn

n!
.



Example 9.76. The n-th Maclaurin polynomial for the function f(x) = ln(1 + x) is given
by

Pn(x) =
n
ÿ

k=0

f (k)(0)

k!
xk =

n
ÿ

k=1

f (k)(0)

k!
xk =

n
ÿ

k=1

(´1)k´1(k ´ 1)!

k!
xk =

n
ÿ

k=1

(´1)k´1

k
xk

= x ´
x2

2
+
x3

3
´
x4

4
+ ¨ ¨ ¨ +

(´1)n´1

n
xn ,

here we have used g(k)(x) = (´1)k´1(k ´ 1)!(x+ 1)´k to compute g(k)(0).
The n-th Taylor polynomial for the function g(x) = lnx at 1 is given by

Qn(x) =
n
ÿ

k=0

g(k)(1)

k!
(x ´ 1)k =

n
ÿ

k=1

g(k)(1)

k!
(x ´ 1)k =

n
ÿ

k=1

(´1)k´1(k ´ 1)!

k!
(x ´ 1)k

=
n
ÿ

k=1

(´1)k´1

k
(x ´ 1)k

= (x ´ 1) ´
(x ´ 1)2

2
+

(x ´ 1)3

3
´

(x ´ 1)4

4
+ ¨ ¨ ¨ +

(´1)n´1

n
(x ´ 1)n ,

here we have used g(k)(x) = (´1)k´1(k ´ 1)!x´k to compute g(k)(1). We note that Qn(x) =

Pn(x ´ 1) (and g(x) = f(x ´ 1)).

Example 9.77. The (2n)-th Maclaurin polynomial for the function f(x) = cosx is given
by

P2n(x) =
2n
ÿ

k=0

f (k)(0)

k!
xk = 1 +

2n
ÿ

k=1

f (k)(0)

k!
xk = 1 +

n
ÿ

k=1

f (2k´1)(0)

(2k ´ 1)!
x2k´1 +

n
ÿ

k=1

f (2k)(0)

(2k)!
x2k

= 1 +
n
ÿ

k=1

f (2k)(0)

(2k)!
x2k = 1 ´

x2

2
+
x4

4!
´
x6

6!
+ ¨ ¨ ¨ +

(´1)n

(2n)!
x2n ,

here we have used f (k)(x) = cos
(
x +

kπ

2

)
to compute f (k)(0). We also note that P2n(x) =

P2n+1(x) for all n P N.
The (2n ´ 1)-th Maclaurin polynomial for the function g(x) = sinx is given by

Q2n´1(x) =
2n´1
ÿ

k=0

g(k)(0)

k!
xk =

2n´1
ÿ

k=1

g(k)(0)

k!
xk =

n
ÿ

k=1

g(2k´1)(0)

(2k ´ 1)!
x2k´1 +

n
ÿ

k=1

g(2k)(0)

(2k)!
x2k

=
n
ÿ

k=1

g(2k´1)(0)

(2k ´ 1)!
x2k´1 = x ´

x3

3!
+
x5

5!
´
x7

7!
+ ¨ ¨ ¨ +

(´1)n´1

(2n ´ 1)!
x2n´1 ,

here we have used g(k)(x) = sin
(
x+

kπ

2

)
to compute g(k)(0). We also note that Q2n´1(x) =

Q2n(x) for all n P N.



9.7.1 Remainder of Taylor Polynomials

To measure the accuracy of approximating a function value f(x) by the Taylor polynomial,
we look for the difference Rn(x) ” f(x) ´ Pn(x), where Pn is the n-th Taylor polynomial
for f (centered at a certain number c). The function Rn is called the remainder associated
with the approximation Pn.

‚ Integral form of the remainder

By (9.7.1), we find that if Pn is the n-th Taylor polynomial for f at c, then

Rn(x) = (´1)n
ż x

c

f (n+1)(t)
(t ´ x)n

n!
dt . (9.7.2)

Example 9.78. Consider the function f(x) = exp(x) = ex. If Pn is the n-th Maclaurin
polynomial for f , the remainder Rn associated with Pn is given by

Rn(x) = (´1)n
ż x

0

f (n+1)(t)
(t ´ x)n

n!
dt = (´1)n

ż x

0

et
(t ´ x)n

n!
dt .

Therefore, if x ą 0,
ˇ

ˇ

ˇ
ex ´

n
ÿ

k=0

xk

k!

ˇ

ˇ

ˇ
=
ˇ

ˇ

ˇ

ż x

0

et
(t ´ x)n

n!
dt
ˇ

ˇ

ˇ
ď

ż x

0

et
(x ´ t)n

n!
dt ď

ż x

0

ex
xn

n!
dt =

exxn+1

n!
. (9.7.3)

Note that for each x ą 0, the series
8
ř

k=0

ex
xn+1

n!
converges since

lim
nÑ8

ex
x(n+1)+1

(n+ 1)!

ex
xn+1

n!

= lim
nÑ8

x

n+ 1
= 0 ;

thus the n-th term test shows that lim
nÑ8

ex
xn+1

n!
= 0. Therefore, for each x ą 0,

lim
nÑ8

ˇ

ˇ

ˇ
ex ´

n
ÿ

k=0

xk

k!

ˇ

ˇ

ˇ
= 0

or equivalently,

ex =
8
ÿ

k=0

xk

k!
= 1 + x+

x2

2!
+
x3

3!
+ ¨ ¨ ¨ +

xn

n!
+ ¨ ¨ ¨ .



In particular, if x = 1, (9.7.3) implies that

ˇ

ˇ

ˇ
e ´

n
ÿ

k=0

1

k!

ˇ

ˇ

ˇ
ď

e

n!
;

thus
ˇ

ˇ

ˇ
e ´

17
ř

k=0

1

k!

ˇ

ˇ

ˇ
ă 10´8.

Example 9.79. Consider the function f(x) = cosx and its (2n)-th Maclaurin polynomial
P2n in Example 9.77. If x ą 0,

ˇ

ˇf(x) ´ P2n(x)
ˇ

ˇ =
ˇ

ˇf(x) ´ P2n+1(x)
ˇ

ˇ ď

ˇ

ˇ

ˇ

ż x

0

f (2n+2)(t)
(t ´ x)2n+1

(2n+ 1)!
dt
ˇ

ˇ

ˇ
ď

ż x

0

(x ´ t)2n+1

(2n+ 1)!
dt

=
´(x ´ t)2n+2

(2n+ 2)!

ˇ

ˇ

ˇ

t=x

t=0
=

x2n+2

(2n+ 2)!
,

while if x ă 0,

ˇ

ˇf(x) ´ P2n(x)
ˇ

ˇ =
ˇ

ˇf(x) ´ P2n+1(x)
ˇ

ˇ ď

ˇ

ˇ

ˇ

ż x

0

f (2n+2)(t)
(t ´ x)2n+1

(2n+ 1)!
dt
ˇ

ˇ

ˇ
ď

ż 0

x

(t ´ x)2n+1

(2n+ 1)!
dt

=
(t ´ x)2n+2

(2n+ 2)!

ˇ

ˇ

ˇ

t=x

t=0
=

(´x)2n+2

(2n+ 2)!
.

Therefore,
ˇ

ˇ

ˇ
cosx ´

n
ÿ

k=0

(´1)k

(2k)!
x2k

ˇ

ˇ

ˇ
ď

|x|2n+2

(2n+ 2)!
@x P R . (9.7.4)

Similarly,
ˇ

ˇ

ˇ
sinx ´

n
ÿ

k=0

(´1)k

(2k + 1)!
x2k+1

ˇ

ˇ

ˇ
ď

|x|2n+3

(2n+ 3)!
@x P R . (9.7.5)

Moreover, by the fact that

lim
nÑ8

|x|2(n+1)+2

[2(n+ 1) + 2]!

|x|2n+2

(2n+ 2)!

= lim
nÑ8

x2

(2n+ 3)(2n+ 4)
= 0 ă 1

and

lim
nÑ8

|x|2(n+1)+3

[2(n+ 1) + 3]!

|x|2n+3

(2n+ 3)!

= lim
nÑ8

x2

(2n+ 4)(2n+ 5)
= 0 ă 1



the ratio test implies that
8
ř

k=0

|x|2n+2

(2n+ 2)!
and

8
ř

k=0

|x|2n+3

(2n+ 3)!
converge; thus for each x P R,

lim
nÑ8

|x|2n+2

(2n+ 2)!
= lim

nÑ8

|x|2n+3

(2n+ 3)!
= 0 ;

thus

cosx =
8
ÿ

k=0

(´1)k

(2k)!
x2k = 1 ´

x2

2!
+
x4

4!
+ ¨ ¨ ¨ +

(´1)n

(2n)!
x2n + ¨ ¨ ¨ ,

sinx =
8
ÿ

k=0

(´1)k

(2k + 1)!
x2k+1 = x ´

x3

3!
+
x5

5!
+ ¨ ¨ ¨ +

(´1)n

(2n+ 1)!
x2n+1 + ¨ ¨ ¨ .

Using (9.7.4), we conclude that

ˇ

ˇ

ˇ
cos(0.1) ´

3
ÿ

k=0

(´1)k

(2k)!
(0.1)2k

ˇ

ˇ

ˇ
ď

0.18

8!
;

thus cos(0.1) «
3
ř

k=0

(´1)k

(2k)!
(0.1)2k « 0.995004165 which is accurate to nine decimal points.

Remark 9.80. By Example 9.78 and 9.79, conceptually we can explain why the Euler
identity eiθ = cos θ + i sin θ for all θ P R. Recall that the (2n)-th Maclaurin polynomial for
exp, cos, sin are

P e
2n(x) = 1 + x+

x2

2!
+ ¨ ¨ ¨ +

x2n

(2n)!
,

P c
2n(x) = 1 ´

x2

2!
+
x4

4!
+ ¨ ¨ ¨ +

(´1)n

(2n)!
x2n ,

P s
2n(x) = x ´

x3

3!
+
x5

5!
+ ¨ ¨ ¨ +

(´1)n´1

(2n ´ 1)!
x2n´1 .

Substitution x = iθ, we find that

P e
2n(iθ) = P c

2n(θ) + iP s
2n(θ) @ θ P R .

Passing n Ñ 8, by the fact that the remainders Rn(x) for exp, sin and cos all converges to
zero as n Ñ 8 for each x P R (and even x P C), we conclude that

eiθ = cos θ + i sin θ @ θ P R .



‚ Lagrange form of the remainder

Theorem 9.81: Taylor’s Theorem

Let f : (a, b) Ñ R be (n + 1)-times differentiable, and c P (a, b). Then for each
x P (a, b), there exists ξ between x and c such that

f(x) = f(c) + f 1(c)(x ´ c) +
f 11(c)

2
(x ´ c)2 + ¨ ¨ ¨ +

f (n)(c)

n!
(x ´ c)n +Rn(x) , (9.7.6)

where Lagrange form of the remainder Rn(x) is given by

Rn(x) =
f (n+1)(ξ)

(n+ 1)!
(x ´ c)n+1 .

Proof. We first show that if h : (a, b) Ñ R is m-times differentiable, and c P (a, b). Then for
all d P (a, b) and d ‰ c there exists ξ between c and d such that

h(d) ´
m
ř

k=0

h(k)(c)

k!
(d ´ c)k

(d ´ c)m+1
=

1

m+ 1

h 1(ξ) ´
m´1
ř

k=0

(h 1)(k)(c)

k!
(ξ ´ c)k

(ξ ´ c)m
. (9.7.7)

Let F (x) = h(x) ´
m
ř

k=0

h(k)(c)

k!
(x ´ c)k and G(x) = (x ´ c)m. Then F,G are continuous on

[c, d] (or [d, c]) and differentiable on (c, d) (or (d, c)), and G 1(x) ‰ 0 for all x ‰ c. Therefore,
the Cauchy Mean Value Theorem implies that there exists ξ between c and d such that

F (d) ´ F (c)

G(d) ´ G(c)
=
F 1(ξ)

G 1(ξ)
,

and (9.7.7) is exactly the explicit form of the equality above.
Now we apply (9.7.7) successfully for h = f , f 1, f 11, ¨ ¨ ¨ and f (n) and find that

f(d) ´
n
ř

k=0

f (k)(c)

k!
(d ´ c)k

(d ´ c)n+1
=

1

n+ 1

f 1(d1) ´
n´1
ř

k=0

(f 1)(k)(c)

k!
(d1 ´ c)k

(d1 ´ c)n

=
1

n+ 1
¨
1

n

f 11(d2) ´
n´2
ř

k=0

(f 11)(k)(c)

k!
(d2 ´ c)k

(d2 ´ c)n´1

= ¨ ¨ ¨ ¨ ¨ ¨

=
1

(n+ 1)!

f (n)(dn) ´ f (n)(c)

dn ´ c
=

1

(n+ 1)!
f (n+1)(ξ) ;



thus
f(d) ´

n
ÿ

k=0

f (k)(c)

k!
(d ´ c)k =

1

(n+ 1)!
f (n+1)(ξ)(d ´ c)n+1 .

(9.7.6) then follows from the equality above since d P (a, b) is given arbitrary.

Example 9.82. In Example 9.76 we compute the Taylor polynomial Qn for the function
y = ln(1 + x). Note that the Taylor Theorem implies that

ln(1 + x) = Pn(x) +Rn(x) ,

where
Rn(x) =

1

(n+ 1)!

(
dn+1

dxn+1

ˇ

ˇ

ˇ

x=ξ
ln(1 + x)

)
xn+1 =

(´1)n

n+ 1
(1 + ξ)´n´1xn+1

for some ξ between 0 and x.

1. If ´1 ă x ă 0, then Rn(x) =
´1

n+ 1

(
´x

1 + ξ

)n+1

ă 0; thus

ln(1 + x) ď x ´
x2

2
+
x3

3
´
x4

4
+ ¨ ¨ ¨ +

(´1)n

n
xn @x P (´1, 0) and n P N .

2. If x ą 0, then

(a) Rn(x) ă 0 if n is odd; thus

ln(1 + x) ď x ´
x2

2
+
x3

3
´
x4

4
+ ¨ ¨ ¨ +

1

2k + 1
x2k+1 @x ą 0 and k P N .

(b) Rn(x) ą 0 if n is even; thus

ln(1 + x) ě x ´
x2

2
+
x3

3
´
x4

4
+ ¨ ¨ ¨ +

´1

2k
x2k @x ą 0 and k P N .

Example 9.83. In this example we show that

ln(1 + x) =
8
ÿ

k=1

(´1)k´1xk

k
= x ´

x2

2
+
x3

3
+ ¨ ¨ ¨ +

(´1)n´1xn

n
+ ¨ ¨ ¨ @x P (0, 1] . (9.7.8)

Note that Taylor’s Theorem implies that for all x ą ´1, there exists ξ between 0 and x such

that the remainder associated with Pn(x) =
n
ř

k=1

(´1)k´1xk

k
is given by

Rn(x) =
(´1)n

n+ 1
(1 + ξ)´n´1xn+1 .



Note that since ξ is between 0 and x, we always have

0 ă
x

1 + ξ
ă 1 @x P (0, 1] ;

thus |Rn(x)| ď
1

n+ 1
for all x P (´1, 1] and (9.7.8) is concluded because

lim
nÑ8

ˇ

ˇRn(x)
ˇ

ˇ = 0 .

Example 9.84. In this example we compute ln 2. Note that using (9.7.8) we find that

ln 2 = 1 ´
1

2
+

1

3
´

1

4
+ ¨ ¨ ¨ +

(´1)n´1

n
+Rn(1) ,

where
Rn(1) =

1

(n+ 1)!

( dn+1

dxn+1

ˇ

ˇ

ˇ

x=ξ
ln(1 + x)

)
1n+1 =

(´1)n

n+ 1
(1 + ξ)´(n+1)

for some ξ between 0 and 1. Since ξ could be very closed to 0, in this case the best we can
estimate Rn(1) is

ˇ

ˇRn(1)
ˇ

ˇ ď
1

n+ 1
.

Therefore, to evaluate ln 2 accurate to eight decimal point, it is required that n = 108.
Let c = e

2
« 1.359140914. Then

ln c = ln
(
1 + (c ´ 1)

)
= (c ´ 1) ´

(c ´ 1)2

2
+ ¨ ¨ ¨ +

(´1)n´1

n
(c ´ 1)n +Rn(c ´ 1) ,

where Rn(c ´ 1) is given by

Rn(c ´ 1) =
1

(n+ 1)!

( dn+1

dxn+1

ˇ

ˇ

ˇ

x=ξ
ln(1 + x)

)
(c ´ 1)n+1 =

(´1)n

n+ 1
(1 + ξ)´(n+1)(c ´ 1)n+1

for some ξ between 0 and c ´ 1. Note that
ˇ

ˇRn(c)
ˇ

ˇ ď
(c ´ 1)n+1

n+ 1
;

thus the value

(c ´ 1) ´
(c ´ 1)2

2
+

(c ´ 1)3

3
´

(c ´ 1)4

4
+ ¨ ¨ ¨ +

1

17
(c ´ 1)17

to approximate ln c is accurate to eight decimal points
(
since 1

18
0.418 ă 10´8

)
. On the other

hand, we have ln 2 = 1 ´ ln c, so the value

1 ´ (c ´ 1) +
(c ´ 1)2

2
´

(c ´ 1)3

3
+

(c ´ 1)4

4
+ ¨ ¨ ¨ ´

1

17
(c ´ 1)17

to approximate ln 2 is also accurate to eight decimal points.



9.8 Power Series
Recall that for all x P R, we have shown that

ex =
8
ÿ

k=0

xk

k!
= 1 + x+

x2

2!
+
x3

3!
+ ¨ ¨ ¨ +

xn

n!
+ ¨ ¨ ¨ ,

cosx =
8
ÿ

k=0

(´1)k

(2k)!
x2k = 1 ´

x2

2!
+
x4

4!
+ ¨ ¨ ¨ +

(´1)n

(2n)!
x2n + ¨ ¨ ¨ ,

sinx =
8
ÿ

k=0

(´1)k

(2k + 1)!
x2k+1 = x ´

x3

3!
+
x5

5!
+ ¨ ¨ ¨ +

(´1)n

(2n+ 1)!
x2n+1 + ¨ ¨ ¨ .

The identities above show that the functions y = exp(x), y = cosx, y = sinx can be defined
using series whose terms are multiples of monomials of x. These kind of series are called
power series. To be more precise, we have the following
Definition 9.85: Power Series

Let c be a real number. A power series (of one variable x) centered at c is an infinite
series of the form

8
ÿ

k=0

ak(x ´ c)k = a0 + a1(x ´ c)1 + a2(x ´ c)2 + ¨ ¨ ¨ ,

where ak is independent of x and represents the coefficient of the k-th term.

Theorem 9.86

Let taku8
k=0 be a sequence of real numbers. If

8
ř

k=0

akd
k converges, then

8
ř

k=0

ak(x ´ c)k

converges absolutely for all x P (c ´ |d|, c+ |d|).

Proof. First we note that since
8
ř

k=0

akd
k converges, lim

nÑ8
and

n = 0; thus the boundedness of
convergent sequence implies that there exists M ą 0 such that

|and
n| ď M @n P N .

Suppose that |x ´ c| ă |d|. Then there exists ε ą 0 such that |x ´ c| ă |d| ´ ε. Then

|an||x ´ c|n = |an||d|n
|x ´ c|n

(|d| ´ ε)n

( |d| ´ ε

|d|

)n

ď M
( |d| ´ ε

|d|

)n

.



Therefore, by the convergence of geometric series with ratio between ´1 and 1, the direct
comparison test implies that the series

8
ř

n=0

an(x ´ c)n converges absolutely.

Corollary 9.87
For a power series centered at c, precisely one of the following is true.

1. The series converges only at c.

2. There exists R ą 0 such that the series converges absolutely for |x´ c| ă R and
diverges for |x ´ c| ą R.

3. The series converges absolutely for all x.

Definition 9.88: Radius of Convergence and Interval of Convergence
Let a power series centered at c be given. If the power series converges only at c,
we say that the radius of convergence of the power series is 0. If the power series
converges for |x ´ c| ă R but diverges for |x ´ c| ą R, we say that the radius of
convergence of the power series is R. If the power series converges for all x, we say
that the radius of converges of the power series is 8. The set of all values of x for
which the power series converges is called the interval of convergence of the power
series.

Remark 9.89. The radius of convergence of a power series centered at c is the greatest
lower bound of the set

␣

r ą 0
ˇ

ˇ there exists x P (c ´ r, c+ r) such that the power series diverges
(

.

Example 9.90. Consider the power series
8
ř

k=0

k!xk. Note that for each x ‰ 0,

lim
kÑ8

ˇ

ˇ(k + 1)!xk+1
ˇ

ˇ

ˇ

ˇk!xk
ˇ

ˇ

= lim
kÑ8

(k + 1)|x| = 8 ;

thus the ratio test implies that the power series
8
ř

k=0

k!xk diverges for all x ‰ 0. Therefore,

the radius of convergence of
8
ř

k=0

k!xk is 0, and the interval of convergence of
8
ř

k=0

k!xk is t0u.



Example 9.91. Consider the power series
8
ř

k=0

3(x ´ 2)k. Note that for each x P R,

lim
kÑ8

3|x ´ 2|k+1

3|x ´ 2|k
= lim

kÑ8
|x ´ 2| = |x ´ 2| ;

thus the ratio test implies that the power series
8
ř

k=0

3(x´2)k converges absolutely if |x´2| ă 1

and diverges if |x ´ 2| ą 1. Therefore, the radius of convergence is 1.
To see the interval of convergence, we still need to determine if the power series converges

at end-point 1 or 3. However, the power series clearly does not converge at 1 and 3; thus
the interval of convergence is (1, 3).

Example 9.92. Consider the power series
8
ř

k=1

xk

k2
. Note that for each x P R,

lim
kÑ8

ˇ

ˇ

ˇ

xk+1

(k + 1)2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

xk

k2

ˇ

ˇ

ˇ

= lim
kÑ8

k2|x|

(k + 1)2
= |x| ;

thus the ratio test implies that the power series
8
ř

k=0

xk

k2
converges absolutely if |x| ă 1 and

diverges if |x| ą 1. Therefore, the radius of convergence is 1.

To see the interval of convergence, we note that
8
ř

k=1

1

k2
converges since it is a p-series

with p = 2, and
8
ř

k=1

(´1)k

k2
converges since it converges absolutely (or simply because it is

an alternating series). Therefore, the interval of convergence of the power series is [´1, 1].

Example 9.93. Consider the power series
8
ř

k=1

xk

k
. Note that for each x P R,

lim
kÑ8

ˇ

ˇ

ˇ

xk+1

k + 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

xk

k

ˇ

ˇ

ˇ

= lim
kÑ8

k|x|

k + 1
= |x| ;

thus the ratio test implies that the power series
8
ř

k=0

xk

k
converges absolutely if |x| ă 1 and

diverges if |x| ą 1. Therefore, the radius of convergence is 1.

To see the interval of convergence, we note that
8
ř

k=1

1

k
diverges since it is a p-series with

p = 1, and
8
ř

k=1

(´1)k

k2
converges since it is an alternating series. Therefore, the interval of

convergence of the power series is [´1, 1).



Similarly, the power series
8
ř

k=1

(´1)kxk

k
has interval of convergence (´1, 1].

Example 9.94. Consider the power series
8
ř

k=1

xk

k2
. Note that for each x P R,

lim
nÑ8

ˇ

ˇ

ˇ

xn+1

(n+ 1)2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

xn

n2

ˇ

ˇ

ˇ

= lim
nÑ8

n2|x|

(n+ 1)2
= |x| ;

thus the ratio test implies that the power series
8
ř

k=1

xk

k2
converges absolutely if |x| ă 1 and

diverges if |x| ą 1. Therefore, the radius of convergence is 1.
To see the interval of convergence, we note that

8
ř

k=1

1

k2
converges since it is a p-series with

p = 2, and
8
ř

k=1

(´1)k

k2
also converges since it converges absolutely (or because of Dirichlet’s

test). Therefore, the interval of convergence of the power series is [´1, 1].

Remark 9.95. Even though the examples above all has radius of convergence 1, it is not
necessary that the radius of convergence of a power series is always 1. For example, the
power series

8
ř

k=1

xk

2kk
is obtained by replacing x by x

2
in Example 9.93; thus

8
ÿ

k=1

xk

2kk
converges for x

2
P [´1, 1)

or equivalent, the interval of convergence of
8
ř

k=1

xk

2kk
is [´2, 2); thus the radius of convergence

of this power series is 2.

Example 9.96. The radius of convergence of the power series
8
ř

k=0

(´1)kx2k+1

(2k + 1)!
is 8 since for

all x P R,

lim
kÑ8

ˇ

ˇ

ˇ

(´1)k+1x2(k+1)+1

[2(k + 1) + 1]!

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(´1)kx2k+1

(2k + 1)!

ˇ

ˇ

ˇ

= lim
kÑ8

ˇ

ˇ

ˇ

(´1)k+1x2k+3

(2k + 3)!

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(´1)kx2k+1

(2k + 1)!

ˇ

ˇ

ˇ

= lim
kÑ8

x2

(2k + 3)(2k + 2)
= 0 .

‚ Differentiation and Integration of Power Series

Let taku8
k=0 be a sequence of real numbers and c P R. If the power series

8
ř

k=0

ak(x ´ c)k

converges in an interval (c´r, c+r), we can ask ourselves whether the function f : (c´r, c+r)



defined by f(x) =
8
ř

k=0

ak(x´c)k is differentiable or not. We note that even though the power

series is an infinite sum of differentiable functions (in fact, monomials), it is not clear if the
limiting process d

dx
commutes with

8
ř

k=0

since

lim
nÑ8

lim
hÑ0

nh2 = 0 but lim
hÑ0

lim
nÑ8

nh2 = 8 .

Theorem 9.97: Properties of Functions Defined by Power Series
If the function

f(x) =
8
ÿ

k=0

ak(x ´ c)k = a0 + a1(x ´ c) + a2(x ´ c)2 + ¨ ¨ ¨

has a radius of convergence of R ą 0, then

1. f is differentiable on (c ´ R, c+R) and

f 1(x) =
8
ÿ

k=1

kak(x ´ c)k´1 = a1 + 2a2(x ´ c) + 3a3(x ´ c)2 + ¨ ¨ ¨ .

2. an anti-derivative of f on (c ´ R, c+R) is given by
ż

f(x) dx = C +
8
ÿ

k=0

ak
k + 1

(x ´ c)k+1 = C + a0(x ´ c) +
a1
2
(x ´ c)2 + ¨ ¨ ¨ .

The radius of convergence of the power series obtained by differentiating or integrating
a power series term by term is the same as the original power series.

Remark 9.98. Theorem 9.97 states that, in many ways, a function defined by a power
series behaves like a polynomial; that is, the derivative (or anti-derivative) of a power series
can be obtained by term-by-term differentiation (or integration). However, it is not true for

general functions defined by series of the form
8
ř

k=0

bk(x). For example, we have talked about

(but did not prove) the series
8
ř

k=1

sin kx
k

which is the same as π ´ x

2
on (0, 2π); that is,

8
ÿ

k=1

sin kx
k

=
π ´ x

2
@x P (0, 2π) .



Then
´
1

2
=

d

dx

8
ÿ

k=1

sin kx
k

@x P (0, 2π)

but
d

dx

8
ÿ

k=1

sin kx
k

‰

8
ÿ

k=1

d

dx

sin kx
k

=
8
ÿ

k=1

cos kx @x P (0, 2π)

since the series
8
ř

k=1

cos kx does not converges for all x P (0, 2π).

Example 9.99. Consider the function f defined by power series

f(x) =
8
ÿ

k=1

xk

k
= x+

x2

2
+
x3

3
+ ¨ ¨ ¨ @ x P [´1, 1) .

Then the function
g(x) =

8
ÿ

k=1

xk´1 =
8
ÿ

k=0

xk = 1 + x+ x2 + ¨ ¨ ¨ ,

obtained by term-by-term differentiation, converges for x P (´1, 1), and the function

h(x) =
8
ÿ

k=1

xk+1

k(k + 1)
=

8
ÿ

k=2

xk

k(k ´ 1)
=
x2

2
+
x3

6
+
x4

12
+ ¨ ¨ ¨

obtained by term-by-term differentiation, converges for x P [´1, 1].

Example 9.100. Suppose that x is a function of t satisfying

x 11(t) + x(t) = 0 , x(0) = x 1(0) = 1 .

Assume that x(t) =
8
ř

k=0

akt
k for t P (´R,R) with some radius of convergence R ą 0. Then

Theorem 9.97 implies that

x 11(t) =
8
ÿ

k=2

k(k ´ 1)akt
k´2 =

8
ÿ

k=0

(k + 2)(k + 1)ak+2t
k @ t P (´R,R) ;

thus if t P (´R,R),
8
ÿ

k=0

[
(k + 2)(k + 1)ak+2 + ak

]
tk =

8
ÿ

k=0

(k + 2)(k + 1)ak+2t
k +

8
ÿ

k=0

akt
k = x 11(t) + x(t) = 0 .

The equality above implies that

(k + 2)(k + 1)ak+2 + ak = 0 @ k P N Y t0u .



Therefore,

a2k =
´1

(2k)(2k ´ 1)
a2k´2 =

(´1)2

(2k)(2k ´ 1)(2k ´ 2)(2k ´ 4)
a2k´4 = ¨ ¨ ¨ =

(´1)k

(2k)!
a0 ,

a2k+1 =
´1

(2k + 1)(2k)
a2k´1 =

(´1)2

(2k + 1)(2k)(2k ´ 1)(2k ´ 2)
a2k´3 = ¨ ¨ ¨ =

(´1)k

(2k + 1)!
a1 .

Since x(0) = x 1(0) = 1 implies a0 = a1 = 1, we have

x(t) =
8
ÿ

k=0

[(´1)k

(2k)!
t2k +

(´1)k

(2k + 1)!
t2k+1

]
=

8
ÿ

k=0

(´1)k

(2k)!
t2k +

8
ÿ

k=0

(´1)k

(2k + 1)!
t2k+1 = cos t+ sin t .

Corollary 9.101
For a function defined by power series

f(x) =
8
ÿ

k=0

ak(x ´ c)k

(on a certain interval of convergence), the n-th Taylor polynomial for f at c is the

n-th partial sum
n
ř

k=0

ak(x ´ c)k of the power series.

9.9 Representation of Functions by Power Series
We have shown the following identities:

exp(x) =
8
ÿ

k=0

xk

k!
@x P R ,

sinx =
8
ÿ

k=0

(´1)kx2k+1

(2k + 1)!
@x P R ,

cosx =
8
ÿ

k=0

(´1)kx2k

(2k)!
@x P R ,

ln(1 + x) =
8
ÿ

k=1

(´1)k´1xk

k
@x P (´1, 1] .

In this section, we are interested in finding the power series representation (centered at c)
of functions of the form

f(x) =
1

b ´ x
.



(without differentiating the function). In other words, for a given c P Rztbu we would like
to find taku8

k=0 (which usually depends on c) such that f(x) agrees with the power series
8
ÿ

k=0

ak(x ´ c)k

on a certain interval of convergence without differentiating f . For example, we know that

1

1 ´ x
=

8
ÿ

k=0

xk @x P (´1, 1) ;

thus to “expand the function about 1

2
”; that is, to write the function y =

1

1 ´ x
as a power

series centered at 1

2
, we have

1

1 ´ x
=

1
1

2
´
(
x ´

1

2

) = 2 ¨
1

1 ´ 2
(
x ´

1

2

) = 2
8
ÿ

k=0

[
2
(
x ´

1

2

)]k
if x satisfying 2

ˇ

ˇx ´
1

2

ˇ

ˇ ă 1 .

In other words, we obtain

1

1 ´ x
=

8
ÿ

k=0

2k+1
(
x ´

1

2

)k

@x P (0, 1)

without computing the derivatives of the function y =
1

1 ´ x
at 1

2
.

We emphasize that f is defined on Rztcu and the power series
8
ř

k=0

ak(x ´ c)k converges

only on an interval; thus the function y = f(x) is never the same as the function defined by
power series.

‚ Geometric Power Series

Recall that the geometric series
8
ř

k=0

rk converges if and only if |r| ă 1. The function g(x) =
1

1 ´ x
is defined on Rzt1u, and by the fact that

1 ´ xn+1

1 ´ x
= 1 + x+ x2 + ¨ ¨ ¨ + xn =

n
ÿ

k=0

xk @x ‰ 1 ,

we find that if |x| ă 1, then

lim
nÑ8

n
ÿ

k=0

xk = lim
nÑ8

1 ´ xn+1

1 ´ x
=

1

1 ´ x
;



thus 1

1 ´ x
=

8
ř

k=0

xk on (´1, 1). Therefore, for c ‰ b,

1

b ´ x
=

1

b ´ c
¨

1

1 ´
x´ c

b´ c

=
1

b ´ c

8
ÿ

k=0

(x ´ c

b ´ c

)k

@x satisfying
ˇ

ˇ

ˇ

x ´ c

b ´ c

ˇ

ˇ

ˇ
ă 1 ,

or equivalently,
1

b ´ x
=

8
ÿ

k=0

1

(b ´ c)k+1
(x ´ c)k @x P (c ´ |b ´ c|, c+ |b ´ c|) .

Replacing x by ´x, we find that
1

b+ x
=

8
ÿ

k=0

(´1)k

(b ´ c)k+1
(x+ c)k @x P (´c ´ |b ´ c|,´c+ |b ´ c|) .

Example 9.102. Find a power series representation for f(x) = 1

x
, centered at 1.

To find the power series centered at 1, we rewrite 1

x
=

1

1 + (x´ 1)
; thus

1

x
=

1

1 ´ (1 ´ x)
=

8
ÿ

k=0

(1 ´ x)k =
8
ÿ

k=0

(´1)k(x ´ 1)k @ |x ´ 1| ă 1 .

Example 9.103. Find a power series representation for f(x) = lnx centered at 1.

Note that d

dx
lnx =

1

x
; thus

d

dx
lnx =

8
ÿ

k=0

(´1)k(x ´ 1)k @x P (0, 2) .

Therefore, by Theorem 9.97,

lnx = C +
8
ÿ

k=0

(´1)k

k + 1
(x ´ 1)k+1 = C +

8
ÿ

k=1

(´1)k´1

k
(x ´ 1)k @x P (0, 2) .

To determine the constant C, we let x = 1 and find that ln 1 = C; thus C = 0 and we
conclude that

lnx =
8
ÿ

k=1

(´1)k´1

k
(x ´ 1)k @x P (0, 2) .

We note that the power series converges at x = 2, and Example 9.84 shows that

ln 2 =
8
ÿ

k=1

(´1)k´1

k
.

In other words, the power series
8
ř

k=1

(´1)k´1

k
(x ´ 1)k is continuous at 2



‚ Operations with Power Series

Let f(x) =
8
ř

k=0

ak(x ´ c)k have interval of convergence I1 and g(x) =
8
ř

k=0

bk(x ´ c)k have

interval of convergence I2.

1. f(αx) =
8
ř

k=0

akα
k
(
x ´

c

α

)k on I ”
␣

x P R
ˇ

ˇαx P I1
(

.

2. f(x) + g(x) =
8
ř

k=0

(ak + bk)x
k on I ” I1 X I2.

3. If c = 0 and N P N, then f(xN) =
8
ř

k=0

akx
Nk on I ”

␣

x P R
ˇ

ˇxN P I1
(

.

4. f(x)g(x) =
8
ř

k=0

dk(x ´ c)k on I ” I1 X I2, where dk =
k
ř

j=0

akbj´k.

Example 9.104. Find a power series for f(x) = arctanx centered at 0.

Note that d

dx
arctanx =

1

1 + x2
; thus

d

dx
arctanx =

1

1 + x2
=

8
ÿ

k=0

(´1)kx2k @x P (´1, 1) .

By Theorem 9.97,

arctanx = C +
8
ÿ

k=0

(´1)k

2k + 1
x2k+1 @x P (´1, 1) ,

and the constant C is determined by applying the identity above at x = 0; thus C = arctan 0

and
arctanx =

8
ÿ

k=0

(´1)k

2k + 1
x2k+1 @x P (´1, 1) ,

We note that the power series converges at x = ˘1. Is it true that arctan 1 = 1 ´
1

3
+

1

5
´

1

7
+ ¨ ¨ ¨ ?

In general, suppose that the function f defined by power series
8
ř

k=0

ak(x´c)k has a radius

of convergence R ą 0, and g is a continuous function defined on some interval I such that
f(x) = g(x) for all x P (c ´ R, c + R) Ĺ I. If f is also defined on c + R (or c ´ R), by
Theorem 9.97 it is not clear if lim

xÑc+R
f(x) = g(c + R)

(
or lim

xÑc´R
f(x) = g(c ´ R)

)
. The

following theorem concerns with this issue.



Theorem 9.105: Continuity of Power Series at End-points

Let the radius of convergence of the power series f(x) =
8
ř

k=0

ak(x ´ c)k be r for some
r ą 0.

1. If
8
ř

k=0

akr
k converges, then f is continuous at c+ r; that is,

lim
xÑ(c+r)´

f(x) = f(c+ r) .

2. If
8
ř

k=0

ak(´r)
k converges, then f is continuous at c ´ r; that is,

lim
xÑ(c´r)+

f(x) = f(c ´ r) .

Therefore, it is true that
π

4
= 1 ´

1

3
+

1

5
´

1

7
+

1

9
+ ¨ ¨ ¨ +

(´1)n

2n+ 1
+ ¨ ¨ ¨ .

9.10 Taylor and Maclaurin Series
Definition 9.106

If a function f has derivatives of all orders at x = c, then the series
8
ÿ

k=0

f (k)(c)

k!
(x ´ c)k

is called the Taylor series for f at c. It is also called the Maclaurin series for f if
c = 0.

Theorem 9.107: Convergence of Taylor Series
Let f be a function that has derivatives of all orders at x = c, and Pn be the n-
th Taylor polynomial for f at c. If Rn, the remainder associated with Pn, has the
property that

lim
nÑ8

Rn(x) = 0 @x P I

for some interval I, then the Taylor series for f converges and equals f(x); that is,

f(x) =
8
ÿ

k=0

f (k)(c)

k!
(x ´ c)k @x P I .



Corollary 9.108
Let f be a function that has derivatives of all orders in an open interval I containing
c. If there exists M ą 0 such that

ˇ

ˇf (k)(x)
ˇ

ˇ ď M for all x P I and each k P N, then

f(x) =
8
ÿ

k=0

f (k)(c)

k!
(x ´ c)k @x P I .

Proof. By the Taylor Theorem,

f(x) =
n
ÿ

k=0

f (k)(c)

k!
(x ´ c)k +Rn(x) ,

where

Rn(x) =
f (n+1)(ξ)

(n+ 1)!
(x ´ c)n+1

for some ξ between c and x. Since
ˇ

ˇf (k)(x)
ˇ

ˇ ď M for all x P I and k P N, we find that

ˇ

ˇRn(x)
ˇ

ˇ ď
M

(n+ 1)!
|x ´ c|n+1 @x P I .

Therefore, by the fact that lim
nÑ8

an

n!
= 0 for all a P R (the same reasoning as in Example

9.79), the Squeeze Theorem implies that

lim
nÑ8

Rn(x) = 0 @x P I

and Theorem 9.107 further shows that f(x) =
8
ř

k=0

f (k)(c)

k!
(x ´ c)k.

Example 9.109. Since the k-th derivatives of the sine function is bounded by 1; that is,

ˇ

ˇ

ˇ

dk

dxk
sinx

ˇ

ˇ

ˇ
ď 1 @x P R and k P N ,

Corollary 9.108 implies that for all c P R,

sinx =
8
ÿ

k=0

1

k!
sin

(
c+

kπ

2

)
(x ´ c)k @x P R ,



here we have used dk

dxk
sinx = sin

(
x +

kπ

2

)
to compute the k-th derivative of the sine

function. In particular,

sinx =
8
ÿ

k=0

(´1)k

(2k + 1)!
x2k+1 = x ´

x3

3!
+
x5

5!
+ ¨ ¨ ¨ @ x P R .

Similarly, for all c P R,

cosx =
8
ÿ

k=0

1

k!
cos

(
c+

kπ

2

)
(x ´ c)k @x P R .

Example 9.110. Consider the natural exponential function y = exp(x). Note that for all
real numbers R ą 0, we have

ˇ

ˇ

ˇ

dk

dxk
ex
ˇ

ˇ

ˇ
= ex ď eR @x P (´R,R) and k P N ;

thus Corollary 9.108 implies that

ex =
8
ÿ

k=0

xk

k!
= 1 + x+

x2

2!
+ ¨ ¨ ¨ @x P (´R,R) .

Since the identity above holds for all R ą 0, we conclude that

ex =
8
ÿ

k=0

xk

k!
= 1 + x+

x2

2!
+ ¨ ¨ ¨ @x P R .

Example 9.111 (Binomial Series). In this example we consider the Maclaurin series, called
the binomial series, of the function f(x) = (1 + x)α, where α P R and α ‰ N Y t0u.

We compute the derivative of f and find that

dk

dxk
(1 + x)α = α(α ´ 1)(α ´ 2) ¨ ¨ ¨ (α ´ k + 1)(1 + x)α´k .

Therefore,

f (k)(0) =
dk

dxk

ˇ

ˇ

ˇ

x=0
(1 + x)α = α(α ´ 1)(α ´ 2) ¨ ¨ ¨ (α ´ k + 1)

and the Maclaurin series for f is
8
ÿ

k=0

f (k)(0)

k!
xk =

8
ÿ

k=0

α(α ´ 1)(α ´ 2) ¨ ¨ ¨ (α ´ k + 1)

k!
xk .



To see the radius of convergence of the Maclaurin series above, we use the ratio test and
find that

lim
nÑ8

ˇ

ˇα(α ´ 1)(α ´ 2) ¨ ¨ ¨ (α ´ (n+ 1) + 1)
ˇ

ˇ

(n+ 1)!
|x|n+1

ˇ

ˇα(α ´ 1)(α ´ 2) ¨ ¨ ¨ (α ´ n+ 1)
ˇ

ˇ

n!
|x|n

= lim
nÑ8

|α ´ n|

n+ 1
|x| = |x| ;

thus the radius of convergence of the power series
8
ř

k=0

α(α ´ 1)(α ´ 2) ¨ ¨ ¨ (α ´ k + 1)

k!
xk is 1.

Moreover, by Taylor’s theorem, for each x P (´1, 1) there exists ξ between 0 and x such
that

(1 + x)α =
n
ÿ

k=0

α(α ´ 1)(α ´ 2) ¨ ¨ ¨ (α ´ k + 1)

k!
xk +Rn(x) ,

where
Rn(x) =

α(α ´ 1)(α ´ 2) ¨ ¨ ¨ (α ´ n)

(n+ 1)!
(1 + ξ)α´n´1xn+1 .

Similar to Example 9.76, we have

ˇ

ˇRn(x)
ˇ

ˇ ď

ˇ

ˇα(α ´ 1)(α ´ 2) ¨ ¨ ¨ (α ´ n)
ˇ

ˇ

(n+ 1)!
xα @x P (0, 1);

thus (without detail reasoning) we find that

lim
nÑ8

Rn(x) = 0 @x P (0, 1) .

Therefore,

(1 + x)α =
8
ÿ

k=0

α(α ´ 1)(α ´ 2) ¨ ¨ ¨ (α ´ k + 1)

k!
xk @x P (0, 1) .

In fact,

(1 + x)α =
8
ÿ

k=0

α(α ´ 1)(α ´ 2) ¨ ¨ ¨ (α ´ k + 1)

k!
xk @x P (´1, 1) .

9.11 Exercise
Problem 9.1. Determine whether the sequence tanu8

n=1 converges or diverges. If it con-
verges, find the limit.

(1) an =
lnn

ln(2n) (2) an =
(´1)n+1n

n+
?
n

(3) an = n sin 1

n
(4) an = n ´

?
n+ 1

?
n+ 3



(5) an = n
?
n2 + n (6) an = (3n + 5n)

1
n (7) an =

1
?
n2 ´ 1 ´

?
n2 + n

(8) an =
?
n ln

(
1 +

1

n

)
(9) an =

1 ¨ 3 ¨ 5 ¨ ¨ ¨ ¨ ¨ (2n´ 1)

2nn!
(10) an =

1 ¨ 3 ¨ 5 ¨ ¨ ¨ ¨ ¨ (2n´ 1)

2n(n+ 1)!
.

Problem 9.2. Determine whether the series
8
ř

n=1

an is convergent or divergent. If it is
convergent, find its sum.

(1) an =
1

1 + (23)
n

(2) an = ln
( n2 + 1

2n2 + 1

)
(3) an = e´n +

1

n(n+ 1)

(4) an =
1

n3 ´ n
(5) an =

40n

(2n´ 1)2(2n+ 1)2

Problem 9.3. Find values of x for which the following series converges.

(1)
8
ř

n=1

(´4)n(x ´ 5)n (2)
8
ř

n=1

2n

xn
(3)

8
ř

n=1

sinn x

3n
(4)

8
ř

n=1

enx.

Problem 9.4. Let tanu8
n=1 and tbnu8

n=1 be sequences of real numbers.

(1) Show that if lim
nÑ8

(an + bn) D.N.E. and lim
nÑ8

bn converges, then lim
nÑ8

an D.N.E.

(2) Show that if
8
ř

n=1

(an + bn) diverges and
8
ř

n=1

bn converges, then
8
ř

n=1

an diverges.

Problem 9.5. Let tanu8
n=1 be a sequence of real numbers, and tσnu8

n=1 be a sequence of
real numbers defined by

σn =
a1 + a2 + ¨ ¨ ¨ + an

n
=

1

n

n
ÿ

k=1

ak .

(1) Show that if lim
nÑ8

an = a exists, then lim
nÑ8

σn = a.

(2) Suppose that lim
nÑ8

σn = a exists, is it necessary that lim
nÑ8

an = a?

Problem 9.6. Let tanu8
n=0 be a sequence of real numbers defined recursively by

an+1 =
?
1 + an @n P N Y t0u , a0 = 0 .

Show that tanu8
n=1 converges and find the limit.

Problem 9.7. Let an =
(
1 +

1

n

)n.



(1) Show that if 0 ď a ă b, then

bn+1 ´ an+1

b ´ a
ă (n+ 1)bn .

(2) Deduce that bn
[
(n+ 1)a ´ nb

]
ă an+1.

(3) Use a = 1 +
1

n+ 1
and b = 1 +

1

n
in (2) to show that tanu8

n=1 is (strictly) increasing.

(4) Use a = 1 and b = 1 +
1

2n
in (2) to show that a2n ă 4.

(5) Use (3) and (4) to show that an ă 4.

(6) Deduce that tanu8
n=1 converges.

Problem 9.8. Let a, b be positive real numbers, a ą b. Let two sequence tanu8
n=1 and

tbnu8
n=1 be given by the recursive relation

an+1 =
an + bn

2
, bn+1 =

a

anbn @n P N , a1 =
a+ b

2
, b1 =

?
ab .

Complete the following.

(1) Show (by induction) that an ą an+1 ą bn+1 ą bn for all n P N.

(2) Deduce that tanu8
n=1 and tbnu8

n=1 both converges.

(3) Show that lim
nÑ8

an and lim
nÑ8

bn both exist and are identical.

Problem 9.9. Let tanu8
n=0 be a sequence of real number defined by the recursive relation

an+1 =
1

2 + an
@n ě 0 , a0 =

1

2
.

Complete the following.

(1) Show that the sequence ta2nu8
n=0 is a decreasing sequence; that is, a2n+2 ď a2n for all

n P N Y t0u.

(2) Show that the sequence ta2n+1u8
n=0 is an increasing sequence; that is, a2n+3 ě a2n+1

for all n P N Y t0u.

(3) Show that a2k+1 ď a2ℓ for all k, ℓ P N Y t0u.



(4) Show that the two sequences ta2nu8
n=0 and ta2n+1u8

n=0 converges to the same limit.

(5) Show that tanu8
n=0 converges.

Problem 9.10. The Fibonacci sequence tfnu8
n=1 is a sequence defined recursively by

f1 = 1 , f2 = 1 and fn+2 = fn+1 + fn @n P N .

Show the following.

(1) 1

fn´1fn+1
=

1

fn´1fn
´

1

fnfn+1
for all n ě 2.

(2)
8
ř

n=2

1

fn´1fn+1
= 1.

(3)
8
ř

n=2

fn
fn´1fn+1

= 2.

Problem 9.11. Consider the series
8
ř

n=1

n

(n+ 1)!
.

(1) Find the partial sum S1, S2, S3 and S4. Do you recognize the denominators? Use the
pattern to guess a formula for Sn.

(2) Prove your guess by induction.

(3) Show that the given series is convergent, and find the sum.

Problem 9.12. Determine whether the series
8
ř

n=1

an is convergent or divergent.

(1) an =
1

n1+
1
n

(2) an = ln
(
1 +

1

n2

)
(3) an =

2n + 3n

3n + 4n
(4) an = tan 1

n

(5) an = sinn 1
?
n

(6) an =
arctann
n1.1

(7) an =
[

´ ln
(
e2 +

1

n2

)]n
(8) an =

(
1 ´

1

n

)n2

(9) an =
(
1 +

1

n

)´n2

(10) an =
(n!)2

(2n)!
(11) an =

n! lnn
n(n+ 2)!

(12) an =
n!

nn
(13) an =

(´1)n(3n)!

n!(n+ 1)!(n+ 2)!
(14) an =

1 ¨ 3 ¨ 5 ¨ ¨ ¨ ¨ ¨ (2n´ 1)

2nn!

(15) an = (´1)n
(a

n+
?
n ´

?
n
)

(16) an = (´1)n
(n!)23n

(2n+ 1)!
(17) an =

(´1)n(n!)n

nn2



Problem 9.13. Find all p and q such that
8
ř

k=2

(ln k)q
kp

converges.

Problem 9.14. Show that if
8
ř

k=1

ak is a convergent series of positive terms, then
8
ř

k=1

sin ak
converges.

Problem 9.15. Let S =
8
ř

k=1

1

k2
. Euler found that S =

π2

6
in 1735 AD.

(1) Show that S = 1 +
8
ř

k=1

1

n2(n+ 1)
.

(2) Which of the sums
1000000
ř

k=1

1

k2
or 1 +

1000
ř

k=1

1

k2(k + 1)
should give a better approximation

of S? Explain your answer.

Hint: (1) 1

n2(n+ 1)
=

1

n2
´

1

n(n+ 1)
.

Problem 9.16. Find all real numbers x such that
8
ř

k=1

cos(kx)
ln k converges.

Problem 9.17. Show by example that
8
ř

k=1

akbk may diverge even if
8
ř

k=1

ak and
8
ř

k=1

bk both
converge.

Problem 9.18. Let tanu8
n=1 and tbnu8

n=1 be sequences of real numbers such that an, bn ą 0

for all n ě N . Define
cn = bn ´ bn+1

an+1

an
@n P N . (9.11.1)

1. Show that if there exists a constant r ą 0 such that r ă cn for all n ě N , then
8
ř

k=1

ak

converges.

Hint: Rewrite (9.11.1) as bn = cn +
an+1

an
bn+1 and then obtain

bN = cN +
aN+1

aN
bN+1 = cN +

aN+1

aN

(
cN+1 +

aN+2

aN+1
bN+2

)
= cN +

aN+1

aN
cN+1 +

aN+2

aN
bN+2

= cN +
aN+1

aN
cN+1 +

aN+2

aN

(
cN+2 +

aN+3

aN+2
bN+3

)
= ¨ ¨ ¨

= cN +
aN+1

aN
cN+1 +

aN+2

aN
cN+2 + ¨ ¨ ¨ +

aN+n

aN
cN+n +

aN+n+1

aN
bN+n+1 .

Use the fact that 0 ă r ă cn for all n ě N to conclude that



N+n
ÿ

k=N

ak ď
aNbN
r

@n P N .

Note that then the sequence of partial sum of
8
ř

k=1

ak then is bounded from above
(
by

N´1
ř

k=1

ak +
aNbN
r

)
.

2. Show that if
8
ř

k=1

1

bk
diverges and cn ď 0 for all n ě N , then

8
ř

k=1

ak diverges.

Hint: The fact that cn ď 0 for all n ě N implies that bnan ď bn+1an+1 for all n ě N .
Use this fact to conclude that

aNbN
bn

ď an @n ě N

and then apply the direct comparison test to conclude that
8
ř

k=1

ak diverges.

Problem 9.19. Let
8
ř

k=1

ak be a series with positive terms, and lim
nÑ8

an+1

an
= 1. We know

from class that the ratio test fails when this happens, but there are some refined results
concerning this particular case.

1. (Raabe’s test):

(a) If there exists a constant µ ą 1 such that an+1

an
ă 1´

µ

n
for all n ě N , then

8
ř

k=1

ak

converges.

(b) If there exists a constant 0 ă µ ă 1 such that an+1

an
ą 1 ´

µ

n
for all n ě N , then

8
ř

k=1

ak diverges.

Hint: Consider the sequence tbnu8
n=1 defined by bn = (n´ 1)an ´ nan+1. Then

8
ř

k=1

bk

is a telescoping series. For case (a), show that
␣

nan+1

(8

n=N
is a positive decreasing

sequence and then conclude that
8
ř

k=1

bk converges. Note that bn ě (µ ´ 1)an for all

n ě N . For case (b), show that
␣

nan+1

(8

n=N
is a positive increasing sequence; thus

an ě
NaN+1

n´ 1
for all n ě N + 1 which implies that

8
ř

k=1

ak diverges.

Remark: 注意到 (a) 說的是如果 tanu8
n=1 在某項之後「遞減得夠快」，那麼

8
ř

k=1

ak

收斂。反之，如果 tanu8
n=1「並非遞減得那麼快」，那麼

8
ř

k=1

ak 發散。



2. (Gauss’s test): Suppose that there exist a positive constant ϵ ą 0, a constant µ, and
a bounded sequence tRnu8

n=1 such that

an+1

an
= 1 ´

µ

n
+

Rn

n1+ϵ
for all n ě N .

(a) If µ ą 1, then
8
ř

k=1

ak converges. (b) If µ ď 1, then
8
ř

k=1

ak diverges.

Hint: Show that if µ ą 1 or µ ă 1, one can apply Raabe’s test to conclude Gauss’s
test. For the case µ = 1, let bn = (n´1) ln(n´1) for n ě 2. Using the second result of
Problem 9.18 to show the divergence of

8
ř

k=1

ak (by showing that cn defined by (9.11.1)

is non-positive for all large enough n).

Problem 9.20. Complete the following.

1. Show that
8
ř

k=1

(
1 ´

1
?
k

)k

converges.

2. Show that
8
ř

k=2

log(k + 1) ´ log k
(log k)2 converges.

3. Use Gauss’s test to show that both the general harmonic series
8
ř

k=1

1

ak + b
, where a ‰ 0,

and the series
8
ř

k=1

1
?
k

diverge.

4. Show that
8
ř

k=1

k!

(α+ 1)(α+ 2) ¨ ¨ ¨ (α+ k)
converges if α ą 1 and diverges if α ď 1.

5. Test the following “hypergeometric” series for convergence or divergence:

(a)
8
ř

k=1

α(α+ 1)(α+ 2) ¨ ¨ ¨ (α+ k ´ 1)

β(β + 1)(β + 2) ¨ ¨ ¨ (β + k ´ 1)
=
α

β
+
α(α+ 1)

β(β + 1)
+
α(α+ 1)(α+ 2)

β(β + 1)(β + 2)
+ ¨ ¨ ¨ .

(b) 1 +
α ¨ β

1 ¨ γ
+
α(α+ 1) ¨ β(β + 1)

1 ¨ 2γ ¨ (γ + 1)
+
α(α+ 1)(α+ 2) ¨ β(β + 1)(β + 2)

1 ¨ 2 ¨ 3 ¨ γ(γ + 1)(γ + 2)
+ ¨ ¨ ¨ .

Problem 9.21. Let
8
ř

k=1

ak be a conditionally convergent series. Show that
8
ř

k=1

[
1+sgn(ak)

]
ak

and
8
ř

k=1

[
1 ´ sgn(ak)

]
ak both diverge. Here the sign function sgn is defined by

sgn(a) =

$

&

%

1 if a ą 0 ,
0 if a = 0 ,

´1 if a ă 0 .



Problem 9.22. A permutation of a non-empty set A is a one-to-one function from A onto
A. Let π : N Ñ N be a permutation of N.

1. Suppose that tanu8
n=1 be a convergent sequence of real numbers. Show that

␣

aπ(n)
(8

n=1

is also convergent; that is, show that if tbnu8
n=1 is a sequence defined by bn = aπ(n),

then tbnu8
n=1 also converges.

2. Suppose that
8
ř

k=1

ak is absolutely convergent. Show that
8
ř

k=1

aπ(k) is also absolutely

convergent, and
8
ÿ

k=1

ak =
8
ÿ

k=1

aπ(k) .

3. Suppose that
8
ř

k=1

ak is conditionally convergent. Show that for each r P R, there exists
a permutation π : N Ñ N such that

8
ÿ

k=1

aπ(k) = r .

Problem 9.23. The second Taylor polynomial for a twice-differentiable function f at x = c

is called the quadratic approximation of f at x = c. Find the quadratic approximate of the
following functions at x = 0.

(1) f(x) = ln cos x (2) f(x) = esinx (3) f(x) = tanx (4) f(x) = 1
?
1 ´ x2

(5) f(x) = ex sin2 x (6) f(x) = ex ln(1 + x) (7) f(x) = (arctanx)2

Problem 9.24. Let f have derivatives through order n at x = c. Show that the n-th Taylor
polynomial for f at c and its first n derivatives have the same values that f and its first n
derivatives have at x = c.

Problem 9.25. Complete the following.

(1) Let f, g : [a, b] Ñ R be continuous and g is sign-definite; that is, g(x) ě 0 for all
x P [a, b] or g(x) ď 0 for all x P [a, b]. Show that there exists c P [a, b] such that

f(c)

ż b

a

g(x) dx =

ż b

a

f(x)g(x) dx . (9.11.2)



(2) Let f : [a, b] Ñ R be a function, and c P [a, b]. Prove (by induction) that if f is
(n+ 1)-times continuously differentiable on [a, b], then for all x P [a, b],

f(x) = f(c) + f 1(c)(x ´ c) +
f 11(c)

2!
(x ´ c)2 + ¨ ¨ ¨ +

f (n)(c)

n!
(x ´ c)n

+ (´1)n
ż x

c

f (n+1)(t)
(t ´ x)n

n!
dt

=
n
ÿ

k=0

f (k)(c)

k!
(x ´ c)k + (´1)n

ż x

c

f (n+1)(t)
(t ´ x)n

n!
dt .

(3) Use (9.11.2) to show that if f is (n+1)-times continuously differentiable on [a, b] and
c P [a, b], then for all x P [a, b] there exists a point ξ between x and c such that

f(x) =
n
ÿ

k=0

f (k)(c)

k!
(x ´ c)k +

f (n+1)(ξ)

(n+ 1)!
(x ´ c)n+1 .

(4) Find and explain the difference between the conclusion above and Taylor’s Theorem.

Problem 9.26. Suppose that f is differentiable on an interval centered at x = c and that
g(x) = b0+ b1(x´ c)+ ¨ ¨ ¨+ bn(x´ c)n is a polynomial of degree n with constant coefficients
b0, b1, ¨ ¨ ¨ , bn. Let E(x) = f(x) ´ g(x). Show that if we impose on g the conditions

1. E(c) = 0 (which means “the approximation error is zero at x = c”);

2. lim
xÑc

E(x)

(x´ c)n
= 0 (which means “the error is negligible when compared to (x ´ c)n),

then g is the n-th Taylor polynomial for f at c. Thus, the Taylor polynomial Pn is the
only polynomial of degree less than or equal to n whose error is both zero at
x = c and negligible when compared with (x ´ c)n.

Problem 9.27. Show that if p is an polynomial of degree n, then

p(x+ 1) =
n
ÿ

k=0

p(k)(x)

k!
.

Problem 9.28. In Chapter 3 we considered Newton’s method for approximating a root/
zero r of the equation f(x) = 0, and from an initial approximation x1 we obtained successive
approximations x2, x3, ¨ ¨ ¨ , where

xn+1 = xn ´
f(xn)

f 1(xn)
@n ě 1 .



Show that if f 11 exists on an interval I containing r, xn, and xn+1, and
ˇ

ˇf 11(x)
ˇ

ˇ ď M and
ˇ

ˇf 1(x)
ˇ

ˇ ě K for all x P I, then

|xn+1 ´ r| ď
M

2K
|xn ´ r|2

This means that if xn is accurate to d decimal places, then xn+1 is accurate to
about 2d decimal places. More precisely, if the error at stage n is at most 10´m,

then the error at stage n+ 1 is at most M

2K
10´2m.

Hint: Apply Taylor’s Theorem to write f(r) = P2(r)+R2(r), where P2 is the second Taylor
polynomial for f at xn.

Problem 9.29. Consider a function f with continuous first and second derivatives at x = c.
Prove that if f has a relative maximum at x = c, then the second Taylor polynomial centered
at x = c also has a relative maximum at x = c.

Problem 9.30. Suppose that f : [a, b] Ñ R is three times continuously differentiable,
h =

b´ a

2
and c =

a+ b

2
. Show that there exists ξ P (a, b) such that

f 1(c) =
f(b) ´ f(a)

2h
´
h2

6
f (3)(ξ) .

Hint: Find the difference f(b) ´ f(a) by write f as the sum of its third Taylor polynomial
about c and the corresponding remainder. Apply the Intermediate Value Theorem to deal
with the sum of the remainders. We note that the identity above implies that

ˇ

ˇ

ˇ
f 1(c) ´

f(c+ h) ´ f(c ´ h)

2h

ˇ

ˇ

ˇ
ď
h2

6
max

xP[c´h,c+h]

ˇ

ˇf (3)(x)
ˇ

ˇ .

Problem 9.31. Suppose that f : [a, b] Ñ R is four times continuously differentiable, h =
b´ a

2
and c =

a+ b

2
. Show that there exists ξ P (a, b) such that

f 11(c) =
f(a) ´ 2f(c) + f(b)

h2
´
f (4)(ξ)

12
h2 . (9.11.3)

Hint: Find the sum f(a)+ f(b) by write f as the sum of its third Taylor polynomial about
c and the corresponding remainder. Apply the Intermediate Value Theorem to deal with
the sum of the remainders. We note that the identity above implies that

ˇ

ˇ

ˇ
f 11(c) ´

f(c+ h) ´ 2f(c) + f(c ´ h)

h2

ˇ

ˇ

ˇ
ď
h2

12
max

xP[c´h,c+h]

ˇ

ˇf (4)(x)
ˇ

ˇ .



Problem 9.32. Suppose that f : [a, b] Ñ R is four times continuously differentiable. Show
that

ˇ

ˇ

ˇ

ż b

a

f(x) dx ´
b ´ a

6

[
f(a) + 4f

(a+ b

2

)
+ f(b)

]ˇ
ˇ

ˇ
ď

2h5

45
max
xP[a,b]

ˇ

ˇf (4)(x)
ˇ

ˇ (9.11.4)

through the following steps.

1. Let c = a+ b

2
and h =

b´ a

2
. Write f as the sum of its third Taylor polynomial about

c and the corresponding remainder and conclude that
ż b

a

f(x) dx = 2hf(c) +
h3

3
f 11(c) +

ż b

a

R3(x) dx .

2. Show (by Intermediate Value Theorem) that there exists ξ P (a, b) such that
ż b

a

R3(x) dx =
f (4)(ξ)

24

ż b

a

(x ´ c)4 dx =
f (4)(ξ)

60
h5 . (9.11.5)

3. Use (9.11.3) in (9.11.5) and conclude (9.11.4).

Problem 9.33. Find the interval of convergence of the following power series.

(1)
8
ř

n=1

(
1 +

1

n

)n
xn (2)

8
ř

n=1

(lnn)xn (3)
8
ř

n=1

(?
n+ 1 ´

?
n
)
xn (4)

8
ř

n=1

( n

n+ 1

)n2

xn

(5)
8
ř

n=1

n!

(2n)!
xn (6)

8
ř

n=1

2 ¨ 4 ¨ 6 ¨ ¨ ¨ ¨ ¨ (2n)

3 ¨ 5 ¨ 7 ¨ ¨ ¨ ¨ ¨ (2n+ 1)
x2n+1 (7)

8
ř

n=1

(´1)n3 ¨ 7 ¨ 11 ¨ ¨ ¨ ¨ ¨ (4n´ 1)

4n
xn

(8)
8
ř

n=1

1

2 ¨ 4 ¨ 6 ¨ ¨ ¨ ¨ ¨ (2n)
xn (10)

8
ř

n=1

1

1 ¨ 3 ¨ 5 ¨ 7 ¨ ¨ ¨ ¨ ¨ (2n´ 1)
xn (9)

8
ř

n=1

n!

3 ¨ 6 ¨ 9 ¨ ¨ ¨ ¨ ¨ (3n)
xn

(10)
8
ř

n=1

k(k + 1)(k + 2) ¨ ¨ ¨ (k + n´ 1)

n!
xn, where k is a positive integer;

(11)
8
ř

n=0

(n!)k

(kn)!
xn, where k is a positive integer; (12)

8
ř

n=2

xn

n lnn (13)
8
ř

n=2

xn

n(lnn)2

(14)
8
ř

n=1

[
2 + (´1)n

]
(x+ 1)n´1

Problem 9.34. The function J0 defined by

J0(x) =
8
ÿ

n=0

(´1)nx2n

22n(n!)2

is called the Bessel function of the first kind of order 0. Find its domain (that is, the interval
of convergence).



Problem 9.35. The function J1 defined by

J1(x) =
8
ÿ

n=0

(´1)nx2n+1

n!(n+ 1)!22n+1

is called the Bessel function of the first kind of order 1. Find its domain (that is, the interval
of convergence).

Problem 9.36. The function A defined by

A(x) = 1 +
x3

2 ¨ 3
+

x6

2 ¨ 3 ¨ 5 ¨ 6
+

x9

2 ¨ 3 ¨ 5 ¨ 6 ¨ 8 ¨ 9
+ ¨ ¨ ¨

is called an Airy function after the English mathematician and astronomer Sir George Airy
(1801–1892). Find the domain of the Airy function.

Problem 9.37. A function f is defined by

f(x) = 1 + 2x+ x2 + 2x3 + x4 + ¨ ¨ ¨ ;

that is, its coefficients are c2n = 1 and c2n+1 = 2 for all n ě 0. Find the interval of
convergence of the series and find an explicit formula for f(x).

Problem 9.38. Let f : (´r, r) Ñ R be n-times differentiable at 0, and Pn(x) be the n-th
Maclaurin polynomial for f .

1. Show that if g(x) = xℓf(xm) for some positive integers m and ℓ, then the (mn+ ℓ)-th
Maclaurin polynomial for g is xℓPn(x

m).

2. Show that if h(x) = xℓf(´xm) for some positive integers m and ℓ, then the (mn+ℓ)-th
Maclaurin polynomial for h is xℓPn(´x

m).

3. Find the Maclaurin series for the following functions:

(1) y =
1

1 + x2
(2) y = x2 arctan(x3) (3) y = ln(1+ x4) (4) y = x sin(x3) cos(x3).

Hint for (1) and (2): See Exercise 3 Problem 4.

Problem 9.39. To find the sum of the series
8
ř

n=1

n2

2n
, express 1

1 ´ x
as a geometric series,

differentiate both sides of the resulting equation with respect to x, multiply both sides of
the result by x, differentiate again, multiply by x again, and set x equal to 1

2
. What do you

get?



Problem 9.40. Complete the following.

(1) Use the power series of y = arctanx to show that

π = 2
?
3

8
ÿ

n=0

(´1)n

(2n+ 1)3n

(2) Using x3+1 = (x+1)(x2 ´x+1), rewrite the integral
ż 1

2

0

dx

x2 ´ x+ 1
and then express

1

1 + x3
as the sum of a power series to prove the following formula for π:

π =
3
?
3

4

8
ÿ

n=0

(´1)n

8n

( 2

3n+ 1
+

1

3n+ 2

)
.

Problem 9.41. Show that the Bessel function of the first kind of order 0, denoted by J0

and defined by

J0(x) =
8
ÿ

n=0

(´1)nx2n

22n(n!)2
,

satisfies the differential equation

x2y 11(x) + xy 1(x) + x2y(x) = 0 , y(0) = 1, y 1(0) = 0 .

Problem 9.42. Show that the Bessel function of the first kind of order 1, denoted by J1

and defined by

J1(x) =
8
ÿ

n=0

(´1)nx2n+1

n!(n+ 1)!22n+1
,

satisfies the differential equation

x2y 11(x) + xy 1(x) + (x2 ´ 1)y(x) = 0 , y(0) = 0, y 1(0) =
1

2
.

Problem 9.43. Suppose that x1(t) and x2(t) are functions of t satisfying the following
equations

x 11
1 (t) ´ x1(t) = 0 , x1(0) = 1 , x 1

1(0) = 0 ,

x 11
2 (t) ´ x2(t) = 0 , x2(0) = 0 , x 1

2(0) = 1 ,

where 1 denotes the derivatives with respect to t.



1. Assume that the function x1(t) and x2(t) can be written as a power series (on a certain

interval), that is, x1(t) =
8
ř

k=0

akt
k and x2(t) =

8
ř

k=0

bkt
k. Show that

(k + 2)(k + 1)ak+2 = ak and (k + 2)(k + 1)bk+2 = bk @ k ě 0 .

2. Find ak and bk, and conclude that x1 and x2 are some functions that we have seen
before.

3. Find a function x(t) satisfying

x 11(t) ´ x(t) = 0 , x(0) = a , x 1(0) = b .

Note that x can be written as the linear combination of x1 and x2.

Problem 9.44. Find the series solution to the differential equation

y 11(x) + x2y(x) = 0 , y(0) = 1 , y 1(0) = 0 .

What is the radius of convergence of this series solution?

Problem 9.45. In this problem we try to establish the following theorem
Theorem 9.112

Let the radius of convergence of the power series f(x) =
8
ř

k=0

ak(x ´ c)k be r for some
r ą 0.

1. If
8
ř

k=0

akr
k converges, then f is continuous at c+r; that is lim

xÑ(c+r)´
f(x) = f(c+r).

2. If
8
ř

k=0

ak(´r)
k converges, then f is continuous at c ´ r; that is, lim

xÑ(c´r)+
f(x) =

f(c ´ r).

Prove case 1 of the theorem above through the following steps.

(1) Let A =
8
ř

k=0

akr
k, and define

g(x) = f(rx+ c) ´ A = ´

8
ÿ

k=1

akr
k +

8
ÿ

k=1

akr
kxk =

8
ÿ

k=0

bkx
k ,



where bk = akr
k for each k P N and b0 = ´

8
ř

k=1

akr
k. Show that the radius of conver-

gence of g is 1 and
8
ř

k=0

bk = 0. Moreover, show that f is continuous at c + r if and

only if g is continuous at 1.

(2) Let sn = b0 + b1 + ¨ ¨ ¨ + bn and Sn(x) = b0 + b1x+ ¨ ¨ ¨ + bnx
n. Show that

Sn(x) = (1 ´ x)(s0 + s1x+ ¨ ¨ ¨ + sn´1x
n´1) + snx

n

and conclude that

g(x) = lim
nÑ8

Sn(x) = (1 ´ x)
8
ÿ

k=0

skx
k . (9.11.6)

(3) Use (9.11.6) to show that g is continuous at 1. Note that you might need to use ε-δ
argument.

Problem 9.46. Show that
ż 1

0
x´x dx =

8
ř

k=1

1

kk
.

Hint: Write x´x = e´x lnx and use the Maclaurin series for exp to conclude that
ż 1

0

x´x dx =

ż 1

0

8
ÿ

k=0

(´1)k(x lnx)k
k!

dx .

Use the fact that
ż 1

0

8
ř

k=0

(´1)k(x lnx)k
k!

dx =
8
ř

k=0

ż 1

0

(´1)k(x lnx)k
k!

dx. You will also need to

recall the Gamma function.

Problem 9.47. Show that
ż 1

0

lnx ln(1 + x)

x
dx =

8
ř

k=1

(´1)k

k3
.

Hint: Use (9.7.8) and rewrite the integral above as
ż 1

0
lnx

8
ř

k=1

(´1)k´1xk´1

k
dx . Assume

that you know that
ż 1

0

lnx
8
ÿ

k=1

(´1)k´1xk´1

k
dx =

8
ÿ

k=1

(´1)k´1

k

ż 1

0

xk´1 lnx dx .

Problem 9.48. Let tanu8
n=0 and tbnu8

n=0 be sequence of real numbers such that the series
8
ř

n=0

an and
8
ř

n=0

bn both converge. Define ck =
k
ř

j=0

ajbk´j and Cn =
n
ř

i=0

ci.



1. Show that if
8
ř

n=0

an converges absolutely, then

lim
nÑ8

Cn =
( 8
ÿ

n=0

an

)( 8
ÿ

n=0

bn

)
(9.11.7)

by completing the following.

(a) Show that Cn =
n
ř

k=0

an´kBk, where Bk =
k
ř

i=0

bi is the k-th partial sum of the

series
8
ř

i=0

bi.

(b) Let Ak =
k
ř

i=0

ai be the k-th partial sum of the series
8
ř

i=0

ai, and A = lim
nÑ8

An,

B =
ř

nÑ8

Bn. Then

Cn ´ AB =
n
ÿ

k=0

an´k(Bk ´ B) + (An ´ A)B .

Use the ε-N argument to show that lim
nÑ8

Cn = AB.

2.
8
ř

n=0

cn is called the Cauchy product of the series
8
ř

n=0

an and
8
ř

n=0

bn. Show that (9.11.7)

may fail if both
8
ř

n=0

an and
8
ř

n=0

bn converges conditionally by looking at the example

an = bn =
(´1)n

?
n+ 1

for all n P N.



Chapter 10

Vectors and the Geometry of Space

10.1 Preliminaries

In this section we review some of the materials from the high school (or even linear algebra).
First we consider vectors in the plane. We let i (or e1) and j (or e2) denote the vectors (1, 0)
and (0, 1), respectively. Any vectors v in the plane can be written as v = v1 i+ v2 j. For two
vectors u = u1 i + u2 j and v = v1 i + v2 j, the dot product of u and v, denoted by u ¨ v, is
defined by

u ¨ v = u1v1 + u2v2 =
2
ÿ

j=1

ujvj .

Let θ denote the angle between two non-zero vectors u and v. The law of cosines then
implies that

u ¨ v = }u}}v} cos θ ,

where }u} =
a

u21 + u22 and }v} =
a

v21 + v22 denote the length of vectors u and v, respec-
tively.

Similar ideas can be extended for vectors in space. Let i, j, k denote the vectors

i = (1, 0, 0) ” e1 , j = (0, 1, 0) ” e2 and k = (0, 0, 1) ” e3 .

The standard unit vector notation for a vector v in space is

v = v1 i + v2 j + v3k = v1e1 + v2e2 + v3e3 =
3
ÿ

j=1

vjej .
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For two vectors u = u1 i + u2 j + u3 and v = v1 i + v2 j + v3k, the dot product of u and v,
again denoted by u ¨ v, is defined by

u ¨ v = u1v1 + u2v2 + u3v3 =
3
ÿ

j=1

ujvj .

If θ denote the angle between u and v when u, v are non-zero vectors, then the law of cosines
also implies that

u ¨ v = }u}}v} cos θ , (10.1.1)

where }u} =
a

u21 + u22 + u23 and }v} =
a

v21 + v22 + v23 again denote the length of vectors u
and v, respectively.

10.2 The Cross Product of Two Vectors in Space
Definition 10.1

Let u = u1 i+u2 j+u3k and v = v1 i+v2 j+v3k be vectors in space. The cross product
of u and v, denoted by u ˆ v, is the vector

u ˆ v = (u2v3 ´ u3v2)i + (u3v1 ´ u1v3) j + (u1v2 ´ u2v1)k .

Remark 10.2. Using the notation of determinant, the cross product of u and v can be
computed as

u ˆ v =

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i j k
u1 u2 u3

v1 v2 v3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

Remark 10.3. A sequence (k1, k2, ¨ ¨ ¨ , kn) of positive integers not exceeding n, with the
property that no two of the ki are equal, is called a permutation of degree n. The
collection of all permutations of degree n is denoted by P(n). For 1 ď i, j ď n and i ‰ j, the
operator τ(i,j) interchange the i-th and j-th elements of a sequence in P(n). For example, if
n = 3, the permutation (3, 1, 2) can be obtained by interchanging pairs of (1, 2, 3) twice:

(1, 2, 3)
τ(1,3)
ÝÑ (3, 2, 1)

τ(2,3)
ÝÑ (3, 1, 2);

thus (3, 1, 2) is called an even permutation of (1, 2, 3). On the other hand, (1, 3, 2) is obtained
by interchanging pairs of (1, 2, 3) once:

(1, 2, 3)
τ(2,3)
ÝÑ (1, 3, 2);



thus (1, 3, 2) is an odd permutation of (1, 2, 3).
For n = 3, the even and odd permutations can also be viewed as the orientation of the

permutation (k1, k2, k3). To be more precise, if (1, 2, 3) is arranged in a counter-clockwise
orientation (see Figure 10.1), then an even permutation of degree 3 is a permutation in the
counter-clockwise orientation, while an odd permutation of degree 3 is a permutation in the
clockwise orientation. From figure 10.1, it is easy to see that (3, 1, 2) is an even permutation
of degree 3 and (1, 3, 2) is an odd permutation of degree 3.

Odd permutationsEven permutations

1

2 3

1

2 3

Figure 10.1: Even and odd permutations of degree 3

The permutation symbol is a function on P(n) defined by

εk1k2¨¨¨kn =

#

1 if (k1, k2, ¨ ¨ ¨ , kn) is an even permutation of (1, 2, ¨ ¨ ¨ , n) ,

´1 if (k1, k2, ¨ ¨ ¨ , kn) is an odd permutation of (1, 2, ¨ ¨ ¨ , n) .

In general, one can define

εk1k2¨¨¨kn =

$

’

&

’

%

1 if (k1, k2, ¨ ¨ ¨ , kn) is an even permutation of (1, 2, ¨ ¨ ¨ , n) ,

´1 if (k1, k2, ¨ ¨ ¨ , kn) is an odd permutation of (1, 2, ¨ ¨ ¨ , n) ,

0 otherwise .

Using the permutation symbol, we have

u ˆ v =
3
ÿ

i,j,k=1

εijkujvkei =
3
ÿ

i=1

( 3
ÿ

j,k=1

εijkujvk

)
ei , (10.2.1)

where u = (u1, u2, u3) and v = (v1, v2, v3). In other words, the i-th component of u ˆ v is
3
ř

j,k=1

εijkujvk.

In the following, for simplicity we let (u ˆ v)i denote the i-th component of the vector
u ˆ v. In other words,

(u ˆ v)i =
3
ÿ

j,k=1

εijkujvk .



Theorem 10.4
Let u = (u1, u2, u3), v = (v1, v2, v3) and w = (w1, w2, w3) be vectors in space, and c

be a scalar.

(a) u ˆ v = ´(v ˆ u).

(b) u ˆ (v + w) = (u ˆ v) + (u ˆ w).

(c) c(u ˆ v) = (cu) ˆ v = u ˆ (cv).

(d) u ˆ 0 = 0 ˆ u = 0.

(e) u ˆ u = 0.

(f) u ¨ (v ˆ w) = (u ˆ v) ¨ w.

We note that (b) and (c) can be simplified as

u ˆ (cv + dw) = c(u ˆ v) + d(u ˆ w) @ vectors in space u, v ,w and scalars c, d.

Proof of Theorem 10.4. We provide two proofs for (f), and the others are left as exercise.

1. Since v ˆ w = (v2w3 ´ v3w2)i + (v3w1 ´ v1w3) j + (v1w2 ´ v2w1)k and u ˆ v = (u2v3 ´

u3v2)i + (u3v1 ´ u1v3) j + (u1v2 ´ u2v1)k, we find that

u ¨ (v ˆ w) = u1(v2w3 ´ v3w2) + u2(v3w1 ´ v1w3) + u3(v1w2 ´ v2w1)

= w1(u2v3 ´ u3v2) + w2(u3v1 ´ u1v3) + w3(u1v2 ´ u2v1)

= w ¨ (u ˆ v) = (u ˆ v) ¨ w .

2. Using (10.2.1) and the fact that εijk = εkij,

u ¨ (v ˆ w) =
3
ÿ

i=1

ui

3
ÿ

j,k=1

εijkvjwk =
3
ÿ

i,j,k=1

εijkuivjwk =
3
ÿ

k=1

wk

3
ÿ

i,j=1

εkijuivj

=
3
ÿ

k=1

wk(u ˆ v)k = w ¨ (u ˆ v) .

Lemma 10.5

Let δij be the Kronecker delta defined by δij =
"

1 if i = j ,

0 if i ‰ j .
Then

3
ÿ

i=1

εijkεirs = δjrδks ´ δjsδkr . (10.2.2)



Theorem 10.6: Geometric properties of the cross product
Let u and v be non-zero vectors in space, and let θ be the angle between u and v.

(a) u ˆ v is orthogonal to both u and v.

(b) }u ˆ v} = }u}}v} sin θ.

(c) u ˆ v = 0 if and only if u and v are scalar multiples of each other.

(d) }u ˆ v} is the area of parallelogram having u and v as adjacent sides.

Proof. We only prove (b). Using (10.2.2),

}u ˆ v}2 = (u ˆ v) ¨ (u ˆ v) =
3
ÿ

i=1

(u ˆ v)i(u ˆ v)i =
3
ÿ

i=1

( 3
ÿ

j,k=1

εijkujvk

)( 3
ÿ

r,s=1

εirsurvs

)
=

3
ÿ

i,j,k,r,s=1

εijkεirsujvkurvs =
n
ÿ

j,k,r,s=1

( 3
ÿ

i=1

εijkεirs

)
ujvkurvs

=
3
ÿ

j,k,r,s=1

(δjrδks ´ δjsδkr)ujvkurvs =
3
ÿ

j,k=1

[
u2jv

2
k ´ (ujvj)(ukvk)

]
=

( 3
ÿ

j=1

u2j

)( 3
ÿ

k=1

v2k

)
´

( 3
ÿ

j=1

ujvj

)( 3
ÿ

k=1

ukvk

)
= }u}2}v}2 ´ |u ¨ v|2 .

Using (10.1.1), we find that

}u ˆ v}2 = }u}2}v}2 ´ |u ¨ v|2 = }u}2}v}2 ´ }u}2}v}2 cos2 θ = }u}2}v}2 sin2 θ

which concludes (b).

Definition 10.7: Triple Scalar Product
For vectors u, v and w in space, the dot product of u and v ˆ w is called the triple
scalar product (of u, v, w).

Theorem 10.8
For u = u1 i + u2 j + u3k, v = v1 i + v2 j + v3k and w = w1 i + w2 j + w3k, the triple
scalar product u ¨ (v ˆ w) is

u ¨ (v ˆ w) =

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

u1 u2 u3

v1 v2 v3

w1 w2 w3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.



Theorem 10.9
The volume V of a parallelepiped with vectors u, v, and w as adjacent edges is

V =
ˇ

ˇ(u ˆ v) ¨ w
ˇ

ˇ =
ˇ

ˇu ¨ (v ˆ w)
ˇ

ˇ.

Figure 10.2: The number |(u ˆ v) ¨ w| is the volume of a parallelepiped.

10.2.1 Alternative definition of the cross product

We start with two nonzero vectors u and v in space. If u and v are not parallel, they
determine a plane. We select a unit vector n perpendicular to the plane by the right-hand
rule; that is, the unit normal vector n points the way your right thumb points when your
fingers curl through the angle θ from u to v (figure 10.3).

Figure 10.3: The construction of u ˆ v

Then we define a new vector as follows.



Definition 10.10
Let u and v be vectors in space, θ be the angle between u and v, and n be a unit
vector defined by the right-hand rule. The cross product u ˆ v is the vector

u ˆ v = }u}}v} sin θn .

We note that if u and v are parallel, then n is not well-defined; however, in this case
θ = 0 or π so that sin θ = 0; thus the definition above suggests that u ˆ v = 0 if u and v
are parallel. This is indeed the case we should have in mind.

Using this definition of the cross product, properties (a)(c)(d)(e) in Theorem 10.4 clearly
hold. For example, property (a) can be visualized by the following figure

Figure 10.4: The construction of u ˆ v

In the following, we prove (b) in Theorem 10.4 under this alternative definition of cross
product. To derive (b), we construct u ˆ v in a new way (see Figure 10.5 for reference).

Figure 10.5: As explained in the text, u ˆ v = }u}}v 11}. (The primes used here are purely
notational and do not denote derivatives.)



We draw u and v from the common point O and construct a plane M perpendicular to
u at O. We then project v orthogonally onto M , yielding a vector v 1 with length }v} sin θ.
We rotate v 1 90° about u in the positive sense to produce a vector v 11. Finally, we multiply
v 11 by the length of u. The resulting vector }u}v 11 is equal to u ˆ v since v 11 has the same
direction as u ˆ v by its construction and

}u}}v 11} = }u}}v 1} = }u}}v} sin θ = }u ˆ v} .

Now each of these three operations, namely,

1. projection onto M ,

2. rotation about u through 90°,

3. multiplication by the scalar }u},

when applied to a triangle whose plane is not parallel to u, will produce another triangle.
If we start with the triangle whose sides are v, w, and v + w (Figure 10.6) and apply these
three steps, we successively obtain the following:

1. A triangle whose sides are v 1, w 1, and (v + w) 1 satisfying the vector equation

v 1 + w 1 = (v + w) 1 .

2. A triangle whose sides are v 11, w 11, and (v + w) 11 satisfying the vector equation

v 11 + w 11 = (v + w) 11 .

3. A triangle whose sides are }u}v 11, }u}w 11, and }u}(v+w) 11 satisfying the vector equation

}u}v 11 + }u}w 11 = }u}(v + w) 11 .

Figure 10.6: The vectors, v, w, v + w, and their projections onto a plane perpendicular to
u.



Substituting }u}v 11 = u ˆ v, }u}w 11 = u ˆ w, and }u}(v + w) 11 = u ˆ (v + w) from our
discussion above into this last equation gives u ˆ v + u ˆ w = u ˆ (v + w), which is the law
we wanted to establish.

When we apply the definition to calculate the pairwise cross products of i, j, and k, we
find that i ˆ j = k, j ˆ k = i and k ˆ i = j.

Figure 10.7: The pairwise cross products of i, j, and k.

Having establishing (b) in Theorem 10.4 under the alternative definition of cross product,
we are able to derive the formula for cross product in Definition 10.1:

u ˆ v = (u1 i + u2 j + u3k) ˆ (v1 i + v2 j + v3k)
= u1v2(i ˆ j) + u1v3(i ˆ k) + u2v1( j ˆ i) + u2v3( j ˆ k) + u3v1(k ˆ i) + u3v2(k ˆ j)
= (u2v3 ´ u3v2)i + (u3v1 ´ u1v3) j + (u1v2 ´ u2v1)k .

10.3 Polar Coordinate
In this section we review the polar coordinate (on the plane) that we introduction in Remark
0.8 and make some extensions. To form the polar coordinate system in the plane, fix a point
O, called the pole (or origin), and construct from O an initial ray called the polar axis, as
shown in Figure 10.8.

Figure 10.8: Polar coordinate



Then each point P in the plane can be assigned polar coordinates (r, θ), also called the polar
representation of P , as follows.

r = distance from O to P ,
θ = angle (in [0, 2π)) measured counterclockwise from polar axis to segment OP .

Let the polar axis as the positive x-axis on the plane (that is, let i or e1 denote the unit
vector pointing in the direction of the polar axis), and j or e2 be the unique unit vector
in the plane obtained by rotating i counterclockwise by angle π

2
. Then every point P in

the plane can be expressed as an ordered pair (x, y) in the way that the vector ÝÝÑ
OP can be

expressed as xe1 + ye2. In other words, (x, y) is the Cartesian coordinate of P with e1 and
e2 being the unit vectors on the x-axis and y-axis of the plane. If P ‰ O, and (x, y), (r, θ)
are the Cartesian and polar coordinate of P , respectively, then we have

x = r cos θ , y = r sin θ , (10.3.1a)

r =
a

x2 + y2 , θ =

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

arctan y

x
if x ą 0 ,

π

2
if x = 0 and y ą 0 ,

π + arctan y

x
if x ă 0 ,

3π

2
if x = 0 and y ă 0 .

(10.3.1b)

(10.3.1a) is sometimes called the polar-to-rectangular and (10.3.1b) is sometimes called
the rectangular-to-polar (coordinate) conversion. Note that the polar coordinate gives
an one-to-one correspondence between the region (0,8) ˆ [0, 2π) and the plane with the
origin removed.

Remark 10.11. Often time we use the region [0,8) ˆ [0, 2π] on the rθ-plane to denote
the set to which (r, θ) belongs. The segment t0u ˆ [0, 2π] is treated as the origin (of the
xy-plane), while the ray [0,8) ˆ t0u and [0,8) ˆ t2πu both represent x-axis.

Such as some rectangular regions can be easily represented using the Cartesian coordinate
(for example, [a, b] ˆ [c, d] represents a rectangle), some special regions in the plane can be
easily represented using the polar coordinate.

Example 10.12. The sector enclosed by the circle with radius r0 and two radii θ = θ0 and
θ = θ1 can be expressed as (r, θ) P [0, r0] ˆ [θ0, θ1].



Curves in the region [0,8) ˆ [0, 2π] of the rθ-plane corresponds to curves in xy-plane
through relation (10.3.1a). For example, the line segment t1u ˆ [0, 2π] (or simply r = 1)
corresponds to the unit circle centered at the origin, and the ray [0,8) ˆ tθ0u (or simply
θ = θ0) corresponds to the ray to which the angle measured from the polar axis is θ0.

Example 10.13. The curve r = cos θ in the region [0,8)ˆ [0, 2π] corresponds to the circle
x2 + y2 = x in the xy-plane.

As we did not distinguish the angle 0 and 2π, we should not distinguish any θ with all
θ + 2kπ (k P Z). In general, for a given point P = (x, y) in Cartesian coordinate system,
we should treat (r, θ) as the polar coordinate of P as long as (r, θ) satisfies (10.3.1a). This
includes the possibility that r is negative since

(r cos θ, r sin θ) =
(
(´r) cos(θ + π), (´r) sin(θ + π)

)
which means if (r, θ) is a polar representation of P , then (´r, θ + π) is also a polar repre-
sentation of P .

To be more precise, the polar coordinate (r, θ) of a point P satisfies

r = “directed” distance from O to P ,
θ = “directed” angle measured counterclockwise from polar axis to segment OP .

We note under this convention, each point have infinitely many polar representation.

Remark 10.14. 想像你身處原點，然後你的前方是 x 軸的正方向，而座標軸上有標記單

位。現在在你前方放一面鏡子，而有另一個人出現在你的後方立於座標軸上的 ´2 這個

位置。你所看到的是，在你的「前方」有一個位置在 ´2 的人，所以你很快速地標記他的

極座標為 (´2, 0)。在此 ´2 即為所謂的 directed distance 而 0 是 directed angle。directed
distance 的正負號取決於你要不要在你觀察的那個 θ 方向加一面鏡子。

From now on, the polar coordinate, given the pole and the polar axis, refers
to this non-unique polar representation of points in the plane.
Theorem 10.15

The polar coordinates (r, θ) of a point are relation to the Cartesian coordinates (x, y)

of the point as follows.

Polar-to-Rectangular Rectangular-to-Polar
x = r cos θ tan θ = y

x
y = r sin θ r2 = x2 + y2



10.4 Cylindrical and Spherical Coordinates
10.4.1 The cylindrical coordinate
Definition 10.16

In a cylindrical coordinate system, a point P in space is presented by an ordered triple
(r, θ, z) such that

1. (r, θ) is a polar representation of the projection of P in the xy-plane.
2. z is the directed distance from (r, θ) to P .

Figure 10.9: Cylindrical coordinate

The point (0, 0, 0) is called the pole. Moreover, because the presentation of a point in the
polar coordinate system is not unique, it follows that the representation in the cylindrical
coordinate system is also not unique.

We have the coordinate conversion formula:
1. Cylindrical to rectangular: x = r cos θ, y = r sin θ, z = z.

2. Rectangular to cylindrical: r2 = x2 + y2, tan θ = y

x
, z = z.

10.4.2 The spherical coordinate
Definition 10.17

In a spherical coordinate system, a point P in space is represented by an ordered
triple (ρ, θ, ϕ) such that

1. ρ is the distance between P and the origin (so ρ ě 0).
2. θ is the same angle used in cylindrical coordinates for r ě 0.
3. ϕ is the angle between the positive z-axis and the line segment OP (so ϕ P [0, π]).

Note that the first and third coordinates, ρ and ϕ, are nonnegative.



Figure 10.10: Spherical coordinate

The collection of all points whose “spherical representation” has the same ρ ą 0 is the
sphere center at the origin with radius ρ. Therefore, for fixed ρ ą 0 the (θ, ϕ) coordinate
system can be used to represent points on the sphere (centered at the origin with radius ρ)
which is similar to the latitude-longitude system used to identify points on the surface of
Earth. In fact, for ρ = 6371 kilometer (which is the radius of Earth), with the convention
“north is positive and south is negative”, “east is positive and west is negative”, then θ is the
latitude and π

2
´ϕ is the longitude

(
here θ = 0 and θ = π correspond to the prime meridian

(本初子午線) and the international date line (國際換日線), respectively, if θ P (´π, π]
)
.

We have the coordinate conversion formula:

1. Spherical to rectangular: x = ρ cos θ sinϕ, y = ρ sin θ sinϕ, z = ρ cosϕ.

2. Rectangular to spherical: ρ2 = x2 + y2 + z2, tan θ = y

x
, ϕ = arccos z

a

x2 + y2 + z2
.

We can also convert the spherical coordinate to cylindrical coordinate and vice versa, by
the following conversion formula:

1. Spherical to cylindrical: r2 = ρ2 sin2 ϕ, θ = θ, z = ρ cosϕ.

2. Cylindrical to spherical: ρ =
?
r2 + z2, θ = θ, ϕ = arccos z

?
r2 + z2

.

10.5 Exercise
Problem 10.1. In class we have introduced the permutation symbol εijk and use it to

define the cross product: for two given vectors u = u1 i + u2 j + u3k =
3
ř

i=1

uiei and v =



v1 i + v2 j + v3k =
3
ř

i=1

viei, the cross product u ˆ v is defined by

u ˆ v =
3
ÿ

i=1

( 3
ÿ

j,k=1

εijkujvk

)
ei =

3
ÿ

i,j,k=1

εijkujvkei .

Use the summation notation above without expanding the sum (不要展開成向量和的形
式，直接用 Σ 操作) and the identity

3
ÿ

i=1

εijkεirs = δjrδks ´ δjsδkr

to prove the following.

(1) u ˆ (v ˆ w) = (u ¨ w)v ´ (u ¨ v)w for all vectors u, v,w in space. (Is the associative law
u ˆ (v ˆ w) = (u ˆ v) ˆ w true?)

(2) (a ˆ b) ¨ (c ˆ d) =
ˇ

ˇ

ˇ

ˇ

a ¨ c b ¨ c
a ¨ d b ¨ d

ˇ

ˇ

ˇ

ˇ

for all vectors a,b, c,d in space.

Problem 10.2.

(1) Let u, v be vectors in space satisfying u ¨ v =
?
3 and u ˆ v = i + 2 j + 2k. Find the

angle between u and v.

(2) Let u, v be vectors in space. What can you conclude if u ˆ v = 0 and u ¨ v = 0?

(3) Let u, v,w be vectors in space. Show that if u ¨ v = u ¨ w and u ˆ v = u ˆ w, then
v = w.

Problem 10.3.

(1) Let P be a point not on the line L that passes through the points Q and R. Show
that the distance d from the point P to the line L is

d =
}a ˆ b}

}a}
,

where a = áQR and b = áQP .



(2) Let P be a point not on the plane that passes through the points Q, R, and S. Show
that the distance d from P to the plane is

d =

ˇ

ˇa ¨ (b ˆ c)
ˇ

ˇ

}a ˆ b}
,

where a = áQR, b = áQS and c = áQP .

Problem 10.4. Show that the polar equation r = a sin θ+ b cos θ, where ab ‰ 0, represents
a circle, and find its center and radius.

Problem 10.5. Replace the polar equations in the following questions with equivalent
Cartesian equations.

(1) r2 sin 2θ = 2 (2) r = 4 tan θ sec θ (3) r = csc θer cos θ (4) r sin θ = ln r + ln cos θ.

Problem 10.6. Let C be a smooth curve parameterized by

r(t) = (cos t sin t, sin t sin t, cos t) , t P

[
´
π

2
,
π

2

]
.

(1) Show that C is a closed curve on the unit sphere S2.

(2) Using the spherical coordinate, the curve C above corresponds to a curve on the
θϕ-plane. Find the curve in the region

␣

(θ, ϕ)
ˇ

ˇ 0 ď θ ď 2π, 0 ď ϕ ď π
(

.

Solution:

(a) Let
⇀

F (x, y, z) = (0, f(x, y, z), 0). By the divergence theorem,

∫∫

Σ

f(x, y, z)n2(x, y, z)dS =

∫∫

Σ

⇀

F (x, y, z)· ⇀
n (x, y, z)dS =

∫∫∫

D

div
⇀

F (x, y, z)dV

=

∫∫∫

D

∂f

∂y
(x, y, z)dV .

(b) On the sphere x2 + y2 + z2 = 9, the outward point normal vector
⇀
n (x, y, z) = 1

3
(x, y, z).

Therefore, by (0.1) (with f(x, y, z) = 3yez in mind),

∫∫

Σ

y2ezdS =

∫∫

Σ

3yez
y

3
dS =

∫∫∫

D

∂

∂y
(3yez)dV =

∫

3

0

∫

2π

0

∫ π

0

3eρ cosφρ2 sinφdφdθdρ

= 3

∫ 3

0

∫ 2π

0

−ρeρ cosφ
∣

∣

∣

φ=π

φ=0

dθdρ

= 6π

∫ 3

0

(ρeρ − ρe−ρ)dρ

= 6π(ρ− 1)eρ
∣

∣

∣

ρ=3

ρ=0

− 6π(−ρ− 1)e−ρ
∣

∣

∣

ρ=3

ρ=0

= 12π(e3 + 2e−3) .

Problem 5. Let C be a smooth curve parametrized by

⇀
r (t) = (cos t sin t, sin t sin t, cos t) , −π

2
≤ t ≤ π

2
.

x
y

z

1. (10%) Show that the corresponding curve of
⇀
r (t) on θφ-plane consists of two line segments L1

and L2 given by

L1 =
{

(θ, φ)
∣

∣

∣
θ = φ , 0 ≤ φ ≤ π

2

}

, L2 =
{

(θ, φ)
∣

∣

∣
θ = π − φ , 0 ≤ φ ≤ π

2

}

.

2. (10%) Plot L1 and L2 on the θφ-plane. The curve C divides the unit sphere into two parts,

and let Σ be the part with smaller area. Identify the corresponding region of Σ on θφ-plane.

3. (15%) Find the surface area of Σ.

Remark: 想像球面是地球，有人開飛機飛行了 C 這個路線。這個路線在世界地圖上對

應到另一個曲線，第二小題即是要求在世界地圖上這個曲線為何。

Problem 10.7. Let C be a smooth curve parameterized by

r(t) =
(

cos(sin t) sin t, sin(sin t) sin t, cos t
)
, t P [0, 2π] .



(1) Show that C is a closed curve on the unit sphere S2.

(2) Using the spherical coordinate, the curve C above corresponds to a curve on the
θϕ-plane. Find the curve in the region

␣

(θ, ϕ)
ˇ

ˇ 0 ď θ ď 2π, 0 ď ϕ ď π
(

.

x y

z

2. Plot C1 and C2 on the θφ-plane. The curve C divides the unit sphere into two parts, and let Σ

be the part containing the point (0, 1, 0). Identify the corresponding region of Σ on θφ-plane.

3. Find the surface area of Σ.

4. Let
⇀

F (x, y, z) = (y,−x, 0) be a vector field in the space. Compute the line integral

∮

C

⇀

F ·
⇀

T ds

by the definition of the line integral.

5. Use Stokes’s Theorem to find the line integral

∮

C

⇀

F ·
⇀

T ds.



Chapter 12

Vector-Valued Functions

12.1 Vector-Valued Functions of One Variable
Definition 12.1

A function of the form

r(t) = f(t)i + g(t) j or r(t) = f(t)i + g(t) j + h(t)k

is a vector-valued function of one variable, where the component function f, g and h

are real-valued functions of the parameter t. Using the vector notation, vector-valued
functions above are sometimes denoted by

r(t) =
(
f(t), g(t)

)
or r(t) =

(
f(t), g(t), h(t)

)
.

Remark 12.2. When r is a vector-valued function, we automatically assume that its com-
ponents f , g (and h) have a common domain.

Definition 12.3: Limit of Vector-Valued Functions

1. If r is a vector-valued function such that r(t) = f(t)i + g(t) j, then

lim
tÑa

r(t) =
(

lim
tÑa

f(t)
)

i +
(

lim
tÑa

g(t)
)

j

provided that the limits lim
tÑa

f(t) and lim
tÑa

g(t) exist.

2. If r is a vector-valued function such that r(t) = f(t)i + g(t) j + h(t)k, then

lim
tÑa

r(t) =
(

lim
tÑa

f(t)
)

i +
(

lim
tÑa

g(t)
)

j +
(

lim
tÑa

h(t)
)

k

provided that the limits lim
tÑa

f(t), lim
tÑa

g(t) and lim
tÑa

h(t) exist.
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Remark 12.4. Using the ϵ-δ language, the limit of a vector-valued function r is defined as
follows: Let I be the domain of r. The notation lim

tÑa
r(t) = L means for every ε ą 0 there

exists δ ą 0 such that }r(t) ´ L} ă ε whenever 0 ă |t ´ a| ă δ and t P I.

Definition 12.5: Continuity of Vector-Valued Functions

A vector-valued function r is said to be continuous at a point a if the limit lim
tÑa

r(t)
exists and lim

tÑa
r(t) = r(a).

Definition 12.6: Differentiation of Vector-Valued Functions
The derivative of a vector-valued function r at a point a is

r 1(a) = lim
hÑ0

r(a+ h) ´ r(a)
h

provided that the limit above exists. If r 1(a) exists, then r is said to be differentiable
at a and r 1(a) is called the derivative of r at a. If r 1(t) exists for all t in an interval
I, then r is said to be differentiable on the interval I.

Theorem 12.7

1. If r is a vector-valued function such that r(t) = f(t)i + g(t) j, then

r 1(a) = f 1(a)i + g 1(a) j

provided that f 1(a) and g 1(a) exist.
2. If r is a vector-valued function such that r(t) = f(t)i + g(t) j + h(t)k, then

r 1(a) = f 1(a)i + g 1(a) j + h 1(a)k

provided that f 1(a), g 1(a) and h 1(a) exist.

Theorem 12.8
Let r and u be differentiable vector-valued functions and f be a differentiable real-
valued function.

(a) d

dt
(fr)(t) = f 1(t)r(t) + fr 1(t). (b) d

dt

[
r(t) ˘ u(t)

]
= r 1(t) ˘ u 1(t).

(c) d

dt

[
r(t) ‹ u(t)

]
= r 1(t) ‹ u(t) + r(t) ‹ u 1(t), where ‹ is the dot product or the

cross product.

(d) d

dt
r
(
f(t)

)
= f 1(t)r 1

(
f(t)

)
.



Proof. We only prove (c) for the case ‹ being the cross product. Write r(t) = r1(t)i +
r2(t) j + r3(t)k and u(t) = u1(t)i + u2(t) j + u3(t)k. By the definition of the cross product,[
r(t) ˆ u(t)

]
i
, the i-th component of r(t) ˆ u(t), is given by

ř

1ďj,kď3

εijkrj(t)uk(t). By the

product rule,

d

dt

[
r(t) ˆ u(t)

]
i
=

d

dt

ÿ

1ďj,kď3

εijkrj(t)uk(t) =
ÿ

1ďj,kď3

εijk
d

dt

[
rj(t)uk(t)

]
=

ÿ

1ďj,kď3

εijk
[
r 1
j(t)uk(t) + rj(t)u

1
j(t)

]
= r 1(t) ˆ u(t) + r(t) ˆ u 1(t) ,

where we have used r 1(t) = r 1
1(t)i + r 1

2(t) j + r 1
3(t)k and u 1(t) = u 1

1(t)i + u 1
2(t) j + u 1

3(t)k to
conclude the last equality.

Remark 12.9. The proof presented above in fact can be used to show that

d

dt

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11(t) a12(t) a13(t)

a21(t) a22(t) a23(t)

a31(t) a32(t) a33(t)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a 1
11(t) a 1

12(t) a 1
13(t)

a21(t) a22(t) a23(t)

a31(t) a32(t) a33(t)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

+

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11(t) a12(t) a13(t)

a 1
21(t) a 1

22(t) a 1
23(t)

a31(t) a32(t) a33(t)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

+

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11(t) a12(t) a13(t)

a21(t) a22(t) a23(t)

a 1
31(t) a 1

32(t) a 1
33(t)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

since the determinant of A =
[
aij(t)

]
1ďi,jď3

is given by
ř

1ďi,j,kď3

εijka1i(t)a2j(t)a3k(t). The

formula above shows that the differentiation of determinants is obtained by differentiating
row by row (or column by column).

‚ Integration of vector-valued functions of one variable

Similar to the differentiation of vector-valued functions which mimics the differentiation of
real-valued functions, we can also define the Riemann integral of a vector-valued function r
on [a, b] as the “limit” of the Riemann sum

n
ÿ

k=1

r(ξk)(tk ´ tk´1) , (12.1.1)

where ta = t0 ă t1 ă ¨ ¨ ¨ ă tn = bu is a partition of [a, b]. To be more precise, a vector-
valued function r : [a, b] Ñ Rd, where d = 2 or 3, is said to be Riemann integrable on
[a, b] if there exists a vector A such that for all ε ą 0 there exists δ ą 0 such that if
P = ta = t0 ă t1 ă ¨ ¨ ¨ ă tn = bu is a partition of [a, b] satisfying }P} ă δ, any Riemann



sum of r for P (given by (12.1.1)) locates in (A ´ ε,A + ε), where the vector A ˘ ε is the
vector obtained by adding or subtracting ε from each component of A. The vector A, if

exists, is written as
ż b

a
r(t) dt. Since the limit of a vector-valued function can be computed

componentwise, we have the following
Theorem 12.9

1. If r is a vector-valued function such that r(t) = f(t)i + g(t) j, then
ż b

a

r(t) dt =
( ż b

a

f(t)dt
)

i +
( ż b

a

g(t) dt
)

j

provided that
ż b

a
f(t) dt and

ż b

a
g(t) dt exist.

2. If r is a vector-valued function such that r(t) = f(t)i + g(t) j + h(t)k, then
ż b

a

r(t) dt =
( ż b

a

f(t)dt
)

i +
( ż b

a

g(t) dt
)

j +
( ż b

a

h(t) dt
)

k

provided that
ż b

a
f(t) dt,

ż b

a
g(t) dt and

ż b

a
h(t) dt exist.

The Fundamental Theorem of Calculus provides a way to compute the definite integral of
vector-valued functions, and this enables us to define the indefinite integral of vector-valued
functions as follows.
Definition 12.10

1. If r is a vector-valued function such that r(t) = f(t)i+g(t) j, then the indefinite
integral (anti-derivative) of r is

ż

r(t) dt =
( ż

f(t)dt
)

i +
( ż

g(t) dt
)

j

provided that
ż

f(t) dt and
ż

g(t) dt exist.

2. If r is a vector-valued function such that r(t) = f(t)i + g(t) j + h(t)k, then the
indefinite integral (anti-derivative) of r is

ż

r(t) dt =
( ż

f(t)dt
)

i +
( ż

g(t) dt
)

j +
( ż

h(t) dt
)

k

provided that
ż

f(t) dt,
ż

g(t) dt and
ż

h(t) dt exist.



Having defined the indefinite integral of vector-valued functions, by the Fundamental
Theorem of Calculus and Theorem 12.7 we have

d

dt

ż

r(t) dt = r(t)

as long as r is continuous.

12.2 Curves and Parametric Equations
Definition 12.11

A subset C in the plane (or space) is called a curve if C is the image of an interval
I Ď R under a continuous vector-valued function r. The continuous function r : I Ñ

R2 (or R3) is called a parametrization of the curve, and the equation

(x, y) = r(t) , t P I
(
or (x, y, z) = r(t), t P I

)
is called a parametric equation of the curve. A curve C is called a plane curve
if it is a subset in the plane.

Since a plane can be treated as a subset of space, in the following we always assume that
the curve under discussion is a curve in space (so that the parametrization of the curve is
given by r : I Ñ R3).
Definition 12.12

A curve C is called simple if it has an injective parametrization; that is, there exists
r : I Ñ R3 such that r(I) = C and r(x) = r(y) implies that x = y. A curve
C with parametrization r : I Ñ R3 is called closed if I = [a, b] for some closed
interval [a, b] Ď R and r(a) = r(b). A simple closed curve C is a closed curve with
parametrization r : [a, b] Ñ R3 such that r is one-to-one on (a, b). A smooth curve
C is a curve with differentiable parametrization r : I Ñ R3 such that r 1(t) ‰ 0 for all
t P I.

Example 12.13. The parabola y = x2 + 2 on the plane is a simple smooth plane curve
since r : R Ñ R2 given by r(t) = ti+ (r2 +2) j is an injective differentiable parametrization
of this parabola. We note that rr :

(
´
π

2
,
π

2

)
Ñ R2 given by rr(t) = tan ti + (sec2 t + 1) j is

also an injective smooth parametrization of this parabola. In general, a curve usually has
infinitely many parameterizations.



Example 12.14. Let I Ď R be an interval, and r : I Ñ R2 be defined by r(t) = cos ti +
sin t j. Since r is continuous and the co-domain is R2, the image of I under r, denoted by C,
is a plane curve. We note that C is part of the unit circle centered at the origin. Moreover,
C is a smooth curve since r 1(t) ‰ 0 for all t P I.

1. If I = [a, b] and |b ´ a| ă 2π, then C is a simple curve.

2. If I = [0, 2π], then C is not a simple curve. However, C a simple closed curve.

Example 12.15. Let r : [0, 2π] Ñ R2 be defined by r(t) = sin ti + sin t cos t j. The image
r([0, 2π]) is a curve called figure eight.

x

y

Figure 12.1: Figure eight

Example 12.16. Let r : R Ñ R3 be defined by r(t) = cos ti + sin t j + tk. Then the image
r(R) is a simple smooth space curve. This curve is called a helix.

In the following, when a parametrization r : I Ñ R3 of curves C is mentioned, we always
assume that “there is no overlap”; that is, there are no intervals [a, b], [c, d] Ď I satisfying
that r([a, b]) = r([c, d]). If in addition

1. C is a simple curve, then r is injective, or

2. C is closed, then I = [a, b] and r(a) = r(b), or

3. C is simple closed, then I = [a, b] and r is injective on [a, b) and r(a) = r(b).

4. C is smooth, then r is differentiable and r 1(t) ‰ 0 for all t P I.

12.2.1 Polar Graphs

In Example 10.13 we talk about one particular correspondence between a curve on the rθ-
plane and a curve on the xy-plane. The equation r = cos θ is called a polar equation which
means an equation in polar coordinate, and the corresponding curve given by the relation
(x, y) = (r cos θ, r sin θ) on the xy-plane is called the polar graph of this polar equation.



Definition 12.17
Let (r, θ) be the polar coordinate. A polar equation is an equation that r and θ

satisfy. The polar graph of a polar equation is the collection of points (r cos θ, r sin θ)
in xy-plane with (r, θ) satisfying the given polar equation.

Remark 12.18. Usually, the polar equation under consideration is of the form

r = f(θ) or θ = g(r)

for some functions f and g. The polar graph of the polar equation r = f(θ) is the
curve parameterized by the parametrization r : R Ñ R2 given by r(t) = f(t) cos ti +
f(t) sin t j (where t is the role of θ), while the polar graph of the polar equation θ = g(r) is
the curve parameterized by the parametrization r : R Ñ R2 given by r(t) = t cos g(t)i +
t sin g(t) j (where t is the role of r).

Example 12.19. 1. The polar graph of the polar equation r = r0, where r0 ‰ 0 is a
constant, is the circle centered at the origin with radius |r0|.

2. The polar graph of the polar equation θ = θ0, where θ0 is a constant, is the straight
line with slope tan θ0.

3. The polar graph of the polar equation r = sec θ is x = 1 (in the xy-plane).

4. The polar graph of the polar equation r = a cos θ, where a is a constant, is the circle

centered at
(a
2
, 0
)

with radius |a|

2
.

5. The polar graph of the polar equation r = a sin θ, where a is a constant, is the circle

centered at
(
0,
a

2

)
with radius |a|

2
.

Example 12.20. A conic section（圓錐曲線）can be defined purely in terms of plane
geometry: it is the locus of all points P whose distance to a fixed point F (called the focus
焦點) is a constant multiple (called the eccentricity e 離心率) of the distance from P to a
fixed line L (called the directrix 準線). For 0 ă e ă 1 we obtain an ellipse, for e = 1 a
parabola, and for e ą 1 a hyperbola.

Now we consider the polar equation whose polar graph represents a conic section. Let
the focus be the pole of a polar coordinate, and the polar axis is perpendicular to the
directrix but does not intersect the directrix. Then the eccentricity e is given by

e =
d(P, F )

d(P,L)
for all points P on the conic section, (12.2.1)



where d(P, F ) is the distance between P and the focus F , and d(P,L) is the distance between
P and the directrix.

Let P denote the distance between the pole and the directrix, and the polar coordinate
of points P on a conic section is (r, θ). Then (12.2.1) implies that

e =
r

r cos θ + P .

Therefore, the polar equation of a conic section with eccentricity e is given by

r =
eP

1 ´ e cos θ .

In general, for a given conic section we let the principal ray denote the ray starting from
the focus, perpendicular to the directrix without intersecting the directrix. Let the focus F
be the pole of a polar coordinate and θ0 be the directed angel from the polar axis to the
principal ray. If (r, θ) is the polar representation of point P on the conic section, then (r, θ)

satisfies
e =

r

r cos(θ ´ θ0) + P or equivalently, r =
eP

1 ´ e cos(θ ´ θ0)
.

Example 12.21 (Limaçons - 蚶線). The polar graph of the polar equation r = a ˘ b cos θ
or r = a˘ b sin θ, where a, b ą 0 are constants, is called a limaçon. A limaçons is also called
a cardioid（心臟線）if a = b.

x

y

a

b
ă 1

x

y

a

b
= 1

x

y

1ă
a

b
ă 2

x

y

a

b
ě 2

Figure 12.2: Limaçons r = a ˘ b cos θ with the ratio a

b
in different regions

(1) There is an inner loop when a

b
ă 1. (2) When a = b it is also called the cardioid.

(3) When 1 ă
a

b
ă 2, the region enclosed by the limaçon is not convex. This kind of limaçons

is called dimpled limaçons. (4) When a

b
ě 2, it is called convex limaçons.

Example 12.22 (Rose curves). The polar graph of the polar equation r = a cosnθ or
r = a sinnθ, where a ą 0 is a given number and n ě 2 is an integer, is called a rose curve.
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Figure 12.3: Rose curves r = a cosnθ: n petals when n is odd and 2n petals when n is even

x

y

n = 3

x

y

n = 4

x

y

n = 5
x

y

n = 6

Figure 12.4: Rose curves r = a sinnθ: n petals when n is odd and 2n petals when n is even

Example 12.23 (Lemniscates - 雙紐線). The polar graph of the polar equation r2 =

a2 sin 2θ or r2 = a2 cos 2θ is called a lemniscate.

x

y

r2 = a2 cos 2θ

x

y

r2 = a2 sin 2θ

Figure 12.5: Lemniscate r2 = a2 cos 2θ or r2 = a2 sin 2θ

12.3 Physical and Geometric Meanings of the Deriva-
tive of Vector-Valued Functions

Let I Ď R be an interval and r : I Ñ R3 be a differentiable vector-valued function.

12.3.1 Physical meaning

Treat I as the time interval, and r(t) as the position of an object at time t. For a, b P I and



a ă b, r(b) ´ r(a)
b´ a

is the average velocity of the object in the time interval [a, b]. Therefore,

r 1(c) = lim
hÑ0

r(c+ h) ´ r(c)
h

,

is the instantaneous velocity at t = c, and }r 1(c)} is the instantaneous speed at t = c. If r
is twice differentiable, then the derivative of the velocity vector r 1 is the acceleration.
Definition 12.24

Let I Ď R be the time interval and r : I Ñ R3 be the position vector. The velocity
vector, acceleration vector and the speed at time t are

Velocity = v(t) = r 1(t) ,

Acceleration = a(t) = r 11(t) ,

Speed = }v(t)} = }r 1(t)} .

Example 12.25. Suppose a satellite is under uniform circular motion（等速率圓周運動）
and the position of the satellite is given by

r(t) =
(
R cos(ωt), R sin(ωt)

)
,

where R is the distance between the satellite and the center of Earth, and ω is the angular
velocity. Then

r 1(t) = Rω
(

´ sin(ωt), cos(ωt)
)

and r 11(t) = ´Rω2
(

cos(ωt), sin(ωt)
)
;

thus
}a(t)} = }r 11(t)} = Rω2 =

}r 1(t)}2

R
=

}v(t)}2
R

which gives the famous formula for the centripetal acceleration（向心加速度）.

Example 12.26. In this example we consider the motion of a planet around a single sun.
In the plane on which the planet moves, we introduce a polar coordinate system and a
Cartesian coordinate system as follows:

1. Let the sun be the pole of the polar coordinate system, and fixed a polar axis on this
plane.

2. Let i be the unit vector in the direction of the polar axis, and j be the corresponding
unit vector obtained by rotating i counterclockwise by π

2
.



Suppose the position of the planet on the plane at time t P I is given by r(t) = x(t)i+y(t) j.
For each t P I, let (r(t), θ(t)) be the polar representation of (x(t), y(t)) in the trajectory.
We would like to determine the relation that r(t) and θ(t) satisfy.

Define two vectors pr(t) = cos θ(t)i + sin θ(t) j and pθ(t) = ´ sin θ(t)i + cos θ(t) j. Then
r = rpr. Moreover, let M and m be the mass of the sun and the planet, respectively. Then
Newton’s second law of motion implies that

´
GMm

r2
pr = mr 11 . (12.3.1)

By the fact that pr 1 = θ 1
pθ and pθ 1 = ´θ 1

pr, we find that

r 11 =
d

dt

(
r 1
pr + rθ 1

pθ
)
= r 11

pr + r 1θ 1
pθ + r 1θ 1

pθ + rθ 11
pθ ´ r(θ 1)2pr

=
[
r 11 ´ r(θ 1)2

]
pr +

[
2r 1θ 1 + rθ 11

]
pθ .

Therefore, (12.3.1) implies that

´
GM

r2
pr =

[
r 11 ´ r(θ 1)2

]
pr +

[
2r 1θ 1 + rθ 11

]
pθ .

Since pr and pθ are linearly independent, we must have

´
GM

r2
= r 11 ´ r(θ 1)2 , (12.3.2a)

2r 1θ 1 + rθ 11 = 0 . (12.3.2b)

Note that (12.3.2b) implies that (r2θ 1) 1 = 0; thus r2θ 1 is a constant. Since mr2θ 1 is the
angular momentum, (12.3.2b) implies that the angular momentum is a constant, so-called
the conservation of angular momentum（角動量守恆）.

12.3.2 Geometric meaning
Suppose that the image r(I) is a curve C. Since r(c+ h) ´ r(c) is the vector pointing from
r(c) to r(c+ h), we expect that r 1(c), if it is not zero, is tangent to the curve at the point
r(c). This motivates the following
Definition 12.27

Let C be a smooth curve represented by r on an interval I. The unit tangent vector
T (associated with the parametrization r) is defined as

T(t) = r 1(t)

}r 1(t)}
.



Remark 12.28. Since there are infinitely many parameterizations of a given smooth curve,
different parameterizations of a smooth curve might provide different unit tangent vector.
However, this is not the case and there are only two unit tangent vectors.

Theorem 12.29
Let I Ď R be an interval, and r : I Ñ R3 be a differentiable vector-valued function.
If }r(t)} is a constant function on I, then

r(t) ¨ r 1(t) = 0 @ t P I .

Proof. Suppose that }r(t)} = C for some constant C. Since }r(t)}2 = r(t) ¨ r(t),

r(t) ¨ r(t) = C2 @ t P I ;

thus by the fact that r is differentiable, Theorem 12.8 implies that

r(t) ¨ r 1(t) =
1

2

[
r(t) ¨ r 1(t) + r 1(t) ¨ r(t)

]
=

1

2

d

dt

[
r(t) ¨ r(t)

]
= 0 @ t P I .

Corollary 12.30

Let C be a smooth curve represented by r on an interval I, and T(t) = r 1(t)

}r 1(t)}
be the

unit tangent vector (associated with the parametrization r). If T is differentiable at
t, then

T(t) ¨ T 1(t) = 0 @ t P I .

Definition 12.31

Let C be a smooth curve represented by r on an interval I, and T(t) =
r 1(t)

}r 1(t)}

be the unit tangent vector (associated with r). If T 1(t) exists and T 1(t) ‰ 0, then
the principal unit normal vector (associated with the parametrization r) at t is
defined as

N(t) =
T 1(t)

}T 1(t)}
.

Theorem 12.32
Let C be a smooth curve represented by r on an interval I, and the principal unit
normal vector N exists, then the acceleration vector a lies in the plane determined by
the unit tangent vector T and N.



Proof. Let v = r 1 be the velocity vector. Then

v = }v}
v

}v}
= }v}

r 1

}r 1}
= }v}T .

Therefore,
a = v 1 = }v} 1T + }v}T 1 = }v} 1T + }v}}T 1}N .

The equation above implies that a is written as a linear combination of T and N, it follows
that a lies in the plane determined by T and N.

Remark 12.33. The coefficients of T and N in the proof above are called the tangential
and normal components of acceleration and are denoted by

aT = }v} 1 and aN = }v}}T 1}

so that a(t) = aT(t)T(t) + aN(t)N(t). Moreover, we note that the formula for aN above
shows that aN ě 0. The normal component of acceleration is also called the centripetal
component of acceleration.

The following theorem provides some convenient formulas for computing aT and aN.
Theorem 12.34

Let C be a smooth curve represented by r on an interval I, and the principal unit
normal vector N exists. Then the tangential and normal components of acceleration
are given by

aT = }v} 1 = a ¨ T =
v ¨ a
}v}

,

aN = }v}}T 1} = a ¨ N =
}v ˆ a}

}v}
=
b

}a}2 ´ a2T .

Proof. It suffices to show the formula aN =
}v ˆ a}

}v}
. Since a = aTT + aNN, we find that

a ˆ T = aN(N ˆ T) ;

thus using the fact that aN ě 0, by Theorem 10.6 we find that

aN = |aN| =
}a ˆ T}

}N ˆ T}
=

}a ˆ T}

}N}}T} sin π
2

= }a ˆ T} =
}v ˆ a}

}v}
.



12.4 Arc Length and Area
12.4.1 Arc length

12.4.2 Area enclosed by simple closed curves

Let C be a simple closed curve in the plane parameterized by r : [a, b] Ñ R2. Suppose that

1. r(t) =
(
x(t), y(t)

)
moves counter-clockwise (that is, the region enclosed by C is on

the left-hand side when moving along C) as t increases.

2. There exists c P (a, b) such that x is strictly increasing on [a, c] and is strictly
decreasing on [c, b] (this implies that every vertical line intersects with the curve C
at at most two points)

3. x 1y is Riemann integrable on [a, b] (for example, x is continuously differentiable on
[a, b]).

Based on the assumption above, in the following we “prove” that

the area of the region enclosed by C is ´

ż b

a

x 1(t)y(t) dt . (12.4.1)

We remark that condition 2 above implies that r(a) is the “leftmost” point of the curve,
and r(c) is the “rightmost” point of the curve.

Since x is strictly increasing on [a, c] and x is continuous, by the Intermediate Value
Theorem (Theorem 1.58) we find that for each point p P

[
x(a), x(c)

]
there exists a unique

t P [a, c] such that x(t) = p. Define q = y(t). Then the map p ÞÑ q is a function. This
implies that the curve r

(
[a, c]

)
is the graph of a continuous function f :

[
x(a), x(c)

]
Ñ R.

Moreover, y(t) = f(x(t)) for all t P [a, c]. Similarly, the curve r
(
[c, b]

)
, the “upper part of

C”, is the graph of a continuous function g :
[
x(b), x(c)

]
Ñ R and y(t) = g(x(t)) for all

t P [c, b]. Since x(a) = x(b), the substitution of variable x = x(t) implies that
ż x(c)

x(a)

[
g(x) ´ f(x)

]
dx

=

ż x(c)

x(b)

g(x) dx ´

ż x(c)

x(a)

f(x) dx =

ż c

b

g(x(t))x 1(t) dt ´

ż c

a

f(x(t))x 1(t) dt

=

ż c

b

y(t)x 1(t) dt ´

ż c

a

y(t)x 1(t) dt = ´

ż b

a

x 1(t)y(t) dt ;



thus (12.4.1) is concluded since the area of the region enclosed by C is given by the left-hand
side of the equality above.

Similar argument can be applied to conclude that

the area of the region enclosed by C is
ż b

a

x(t)y 1(t) dt . (12.4.2)

if xy 1 is Riemann integrable on [a, b] and every horizontal line intersects with the curve C
at at most two points. Combining (12.4.1) and (12.4.2), we obtain that

the area of the region enclosed by C is 1

2

ż b

a

[
x(t)y 1(t) ´ x 1(t)y(t)

]
dt (12.4.3)

provided that x 1y and xy 1 are Riemann integrable on [a, b] and every vertical line and
horizontal line intersects with the curve C at at most two points.

Remark 12.34. In general, the restriction that every vertical line or horizontal line
intersects with curve C at at most two points can be removed from the condition
for the use of (12.4.1), (12.4.2) and (12.4.3). We will see this later in Chapter ?? (but for
now we will treat this as a fact for we have proved a special case).

Remark 12.35. Using the convention that u ˆ v = u1v2 ´ u2v1 when u = u1 i + u2 j,
v = v1 i + v2 j are vectors in the plane, (12.4.3) can be rewritten as

the area of the region enclosed by C is 1

2

ż b

a

r(t) ˆ r 1(t) dt . (12.4.3’)

Without confusion, the area can also be written as 1

2

ż b

a
r(t) ˆ dr(t).

Example 12.36. Let C be the curve parameterized by r(t) = (cos t, sin t), t P [0, 2π]. Then
clearly r satisfies condition 1-3. Therefore, the area of the region enclosed by C can be
computed by the following three ways:

1. Using (12.4.1),

´

ż 2π

0

d cos t
dt

sin t dt =
ż 2π

0

sin2 t dt =

ż 2π

0

1 ´ cos(2t)
2

dt =
1

2

(
t ´

sin(2t)
2

)ˇ
ˇ

ˇ

t=2π

t=0
= π .

2. Using (12.4.2),
ż 2π

0

cos t d sin t
dt

dt =

ż 2π

0

cos2 t dt =
ż 2π

0

1 + cos(2t)
2

dt =
1

2

(
t+

sin(2t)
2

)ˇ
ˇ

ˇ

t=2π

t=0
= π .

3. Using (12.4.3),
1

2

ż 2π

0

(
cos td sin t

dt
´
d cos t
dt

sin t
)
dt =

1

2

ż 2π

0

(
cos2 t+ sin2 t

)
dt =

1

2

ż 2π

0

1dt = π .



12.4.3 Area and arc length in polar coordinates

Now we consider the area of the region given by the polar representation

␣

(r, θ)
ˇ

ˇ 0 ď r ď f(θ), θ1 ď θ ď θ2
(

, (12.4.4)

where f : [θ1, θ2] Ñ R is non-negative and continuous.

x

y

O

θ1θ2

R

r=f(θ)

x

y

O

θ1θ2

R

r=f(θ)

Remark 12.37. Note that the region given in (12.4.4) is enclosed by the curve C parame-
terized by

r(t) =
(
x(t), y(t)

)
=

$

’

&

’

%

(
t ´ θ1 + f(θ1)

)(
cos θ1, sin θ1) if θ1 ´ f(θ1) ď t ď θ1 ,

f(t)
(

cos t, sin t
)

if θ1 ď t ď θ2 ,(
θ2 + f(θ2) ´ t

)(
cos θ2, sin θ2) if θ2 ď t ď θ2 + f(θ2) .

Then

x(t)y 1(t) ´ x 1(t)y(t) =
(
x 1(t), y 1(t)

)
¨
(

´ y(t), x(t)
)
=

$

’

&

’

%

0 if θ1 ´ f(θ1) ď t ď θ1 ,

f(t)2 if θ1 ď t ď θ2 ,

0 if θ2 ď t ď θ2 + f(θ2) ;



thus using (12.4.3) we find that

the area given in (12.4.4) is 1

2

ż θ2

θ1

f(θ)2 dθ .

Example 12.38 (Kepler’s second law).

12.5 Exercise
Problem 12.1. Let C be a curve parameterized by the vector-valued function r : [0, 1] Ñ

R2,

r(t) =
(et ´ e´t

et + e´t
,

2

et + e´t

)
, 0 ď t ď 1 .

(1) Show that C is part of the unit circle centered at the origin.

(2) Plot the curve C. (The plot does not have to be very precise. You only need to specify
the starting and end points as well as the orientation.)

(3) Find the length of the curve C.

Problem 12.2. Let C be the curve given by the parametric equations

x(t) =
3 + t2

1 + t2
, y(t) =

2t

1 + t2

on the interval t P [0, 1] .

(1) In fact C is the graph of a function y = f(x). Find f .

(2) Find the arc length of the curve C.

(3) Find the area of the surface formed by revolving the curve C about the y-axis.

Problem 12.3. In class we talked about how to find the total distance that you travel when
you walk along a path according to the position vector r : [a, b] Ñ R2. The total distance
travelled can be computed by

ż b

a

}r 1(t)} dt

when r is continuously differentiable. Complete the following.



1. Let r : [0, 4π] Ñ R2 be given by r(t) = 3 cos ti + 3 sin t j. Find the image of [0, 4π]
under r.

2. Compute the integral
ż 4π

0
}r 1(t)} dt. Does it agree with the length of the curve C ”

r
(
[0, 4π]

)
?

Problem 12.4. To illustrate that the length of a smooth space curve does not depend on
the parametrization you use to compute it, calculate the length of one turn of the helix in
Example 1 with the following parametrizations.

1. r(t) = cos(4t)i + sin(4t) j + 4tk, t P
[
0,
π

2

]
.

2. r(t) = cos t
2

i + sin t

2
j + t

2
k, t P [0, 4π].

3. r(t) = cos ti ´ sin t j ´ tk, t P [´2π, 0].

Problem 12.5. Parametrize the curve

r = r(t) = arctan t
?
1 ´ t2

i + arcsin t j + arccos tk, t P

[
´ 1, 0.5

]
,

in the same orientation in terms of arc-length measured from the point where t = 0.

Problem 12.6. (15%) Parametrize the curve

r = r(t) = arcsin t
?
1 + t2

i + arctan t j + arccos 1
?
1 + t2

k, t P [´1, 1],

in the same orientation in terms of arc-length measured from the point where t = 0.

Problem 12.7. Give a parametrization of the simple closed curve C shown in the figure
below

x

y

O

y=
?
x

y=x2

and find the area of the region enclosed by C using (12.4.1), (12.4.2) or (12.4.3).



Problem 12.8. Give a parametrization of the simple closed curve C shown in the figure
below

x

y

O

y=x

y=x2 ´ x

and find the area of the region enclosed by C using (12.4.1), (12.4.2) or (12.4.3).

Problem 12.9. Let C1 be the polar graph of the polar function r = 1 + cos θ (which is a
cardioid), and C2 be the polar graph of the polar function r = 3 cos θ (which is a circle).
See the following figure for reference.

x

y

O
‹‹
‹
‹
‹
‹

‹‹

Figure 12.6: The polar graphs of the polar equations r = 1 + cos θ and r = 3 cos θ

(1) Find the intersection points of C1 and C2.

(2) Find the line L passing through the lowest intersection point and tangent to the curve
C2.

(3) Identify the curve marked by ‹ on the θr-plane for 0 ď θ ď 2π.

(4) Find the area of the shaded region.

Problem 12.10. Let R be the region bounded by the lemniscate r2 = 2 cos 2θ and is outside
the circle r = 1 (see the shaded region in the graph).



x

y

O
r2=2 cos 2θ

r=1

Figure 12.7: The polar graphs of the polar equations r2 = 2 cos 2θ and r = 1

(1) Find the area of R.

(2) Find the slope of the tangent line passing thought the point on the lemniscate corre-
sponding to θ = π

6
.

(3) Find the volume of the solid of revolution obtained by rotating R about the x-axis by
complete the following:

(a) Suppose that (x, y) is on the lemniscate. Then (x, y) satisfies

y4 + a(x)y2 + b(x) = 0 (12.5.1)

for some functions a(x) and b(x). Find a(x) and b(x).

(b) Solving (12.5.1), we find that y2 = c(x), where c(x) = c1x
2 + c2 + c3

?
1 + 4x2 for

some constants c1, c2 and c3. Then the volume of interests can be computed by

I = 2 ˆ

[
π

ż

?
2

?
3
2

c(x)dx ´ π

ż 1

?
3
2

d(x)dx
]
.

Compute
ż 1

?
3
2

[
d(x) ´ (1 ´ x2)

]
dx.

(c) Evaluate I by first computing the integral
ż

?
2

?
3
2

?
1 + 4x2 dx, and then find I.

(4) Find the surface area of the surface of revolution obtained by rotating the boundary
of R about the x-axis.



Problem 12.11. Let R be the region bounded by the circle r = 1 and outside the lemniscate
r2 = ´2 cos 2θ, and is located on the right half plane (see the shaded region in the graph).

x

y

O

r2=´2 cos 2θ

r=1

Figure 12.8: The polar graphs of the polar equations r = 1 and r2 = ´2 cos 2θ

(1) Find the points of intersection of the circle r = 1 and the lemniscate r2 = ´2 cos 2θ.

(2) Show that the straight line x =
1

2
is tangent to the lemniscate at the points of

intersection on the right half plane.

(3) Find the area of R.

(4) Find the volume of the solid of revolution obtained by rotating R about the x-axis by
complete the following:

(a) Suppose that (x, y) is on the lemniscate. Then (x, y) satisfies

y4 + a(x)y2 + b(x) = 0 (12.5.2)

for some functions a(x) and b(x). Find a(x) and b(x).

(b) Solving (12.5.2), we find that y2 = c(x), where c(x) = c1x
2 + c2 + c3

?
1 ´ 4x2 for

some constants c1, c2 and c3. Then the volume of interests can be computed by

I = π

ż 1
2

0

c(x)dx+ π

ż 1

1
2

d(x)dx.

Compute
ż 1

1
2

[
d(x) ´ (1 ´ x2)

]
dx.

(c) Evaluate I by first computing the integral
ż 1

2

0

?
1 ´ 4x2dx, and then find I.



(5) Find the area of the surface of revolution obtained by rotating the boundary of R
about the x-axis.

Problem 12.12. Let C1, C2 be the curves given by polar coordinate r = 1 ´ 2 sin θ and
r = 4 + 4 sin θ, respectively, and the graphs of C1 and C2 are given in Figure 12.9.

x

y

O

C2 : r=4 + 4 sin θ

C1 : r=1 ´ 2 sin θ

x

y

O

C2 : r=4 + 4 sin θ

C1 : r=1 ´ 2 sin θC1 : r=1 ´ 2 sin θ

Zoom in P1P4

P2P3

Figure 12.9: The polar graphs of the polar equations r = 1 ´ 2 sin θ and r = 4 + 4 sin θ

(1) Let P1, ¨ ¨ ¨ , P4 be four points of intersection of curves C1 and C2 as shown in Figure
12.9 (the fifth one is the origin). What are the Cartesian coordinates of P1 and P2?

(2) Let L1 and L2 be two straight lines passing P1 and tangent to C1, C2, respectively.
Find the cosine value of the acute/smaller angle between L1 and L2.

(3) Compute the area of the shaded region.



Chapter 13

Functions of Several Variables

13.1 Introduction to Functions of Several Variables
Definition 13.1

Let D be a set of ordered pairs of real numbers. If to each ordered pair (x, y) in D

there corresponds a unique real number f(x, y), then f is a real-valued function of
(two variables) x and y. The set D is the domain of f , and the corresponding set of
values for f(x, y) is the range of f . For the function z = f(x, y), x and y are called
the independent variables and z is called the dependent variable.

Definition 13.2
Let f, g be real-valued functions of two variables with domain D.

1. The sum of f and g, the difference of f and g and the product of f and g,
denoted by f + g, f ´ g and fg, are functions defined on D given by

(f + g)(x, y) = f(x, y) + g(x, y) @ (x, y) P D ,

(f ´ g)(x, y) = f(x, y) ´ g(x, y) @ (x, y) P D ,

(fg)(x, y) = f(x, y)g(x, y) @ (x, y) P D .

2. The quotient of f and g, denoted by f

g
, is a function defined on Dz

␣

(x, y) P

D
ˇ

ˇ g(x, y) = 0
(

given by

f

g
(x, y) =

f(x, y)

g(x, y)
@ (x, y) P D such that g(x, y) ‰ 0 .
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Remark 13.3. A function f of two variables should be given along with its domain. When
the domain of a function is not specified, as before the domain should be treated as the
collection of all (x, y) such that f(x, y) is meaningful.

Definition 13.4
Let h be a real-valued function of two variables with domain D, and g : I Ñ R be a
real-valued function (of one variable) on an interval I. The composite function of g
and h, denoted by g ˝ h, is a function defined on D X

␣

(x, y) P D
ˇ

ˇh(x, y) P I
(

given
by

(g ˝ h)(x, y) = g
(
h(x, y)

)
@ (x, y) P D such that h(x, y) P I .

Similar concepts such as real-valued functions of three variables, the sum, different,
product, quotient and composition of functions of three variables can be defined accordingly.
Definition 13.5

Let D be a set of ordered pairs of real numbers, and f : D Ñ R be a real-valued
function of two variables. The graph of f is the set of all points (x, y, z) for which
z = f(x, y) and (x, y) P D.

Example 13.6. Let r ą 0 be a real number. The graph of the function z = f(x, y) =
a

r2 ´ x2 ´ y2 is the upper hemi-sphere of the sphere centered at the origin with radius r.
On the other hand, the graph of the function z = g(x, y) = ´

a

r2 ´ x2 ´ y2 is the lower
hemi-sphere of the sphere.

Definition 13.7: Level Curves
Let D be a set of ordered pairs of real numbers, and f : D Ñ R be a function of two
variables. A level curve (or contour curve) of f is a collection of points (x, y) in D

along which the value of f(x, y) is constant.

Definition 13.8: Level Surfaces
Let D be a set of ordered pairs of real numbers, and f : D Ñ R be a function of three
variables. A level surface of f is a collection of points (x, y, z) in D along which the
value of f(x, y, z) is constant.



Example 13.9. A level curve of the function z =
a

r2 ´ x2 ´ y2 is a circle centered at the
origin, and a level surface of the function w = g(x, y, z) = x2 + y2 + z2 ´ r2 is a sphere
centered at the origin.

Example 13.10. The graph of f(x, y) = y2 ´ x2 is called a hyperbolic paraboloid. A
level curve of a hyperbolic paraboloid is a hyperbola (or degenerated hyperbola), and each
plane perpendicular to the xy-plane intersects the graph of z = f(x, y) along a parabola (or
degenerated parabola).

13.2 Limits and Continuity
Definition 13.11

Let δ ą 0 be given. The δ-neighborhood about a point (x0, y0) in the plane is the
open disk centered at (x0, y0) with radius δ given by

D
(
(x0, y0), δ

)
”
␣

(x, y)
ˇ

ˇ

a

(x ´ x0)2 + (y ´ y0)2 ă δ
(

.

Definition 13.12
Let R be a collection of points in the plane. A point (x0, y0) (in R) is called an
interior point of R if there exists δ ą 0 such that the δ-neighborhood about (x0, y0)
lies entirely in R. If every point in R is an interior point of R, then R is called an
open region. A point (x0, y0) is called a boundary point of R if every δ-neighborhood
about (x0, y0) containing points inside R and point outsides R. In other words, (x0, y0)
is a boundary point of R if

@ δ ą 0, D
(
(x0, y0), δ) X R ‰ H and D

(
(x0, y0), δ) X RA ‰ H .

If R contains all its boundary points, then R is called a closed region.



Remark 13.13. For x P R and δ ą 0, let D(x, δ) denote the interval (x ´ δ, x + δ) (and
called the interval centered at x with radius r). Then for each x P (a, b), there exists δ ą 0

such that D(x, r) Ď (a, b); thus (a, b) is called an open interval. The end-points a, b of the
interval are boundary points of the interval, and [a, b] is a closed interval since it contains
all its boundary points.

Definition 13.14
Let f be a real-valued function of two variables defined, except possibly at (x0, y0),
on an open disk centered at (x0, y0), and let L be a real number. Then

lim
(x,y)Ñ(x0,y0)

f(x, y) = L

if for every ε ą 0 there exists δ ą 0 such that
ˇ

ˇf(x) ´ L
ˇ

ˇ ă ε whenever 0 ă
a

(x ´ x0)2 + (y ´ y0)2 ă δ .

Remark 13.15. If lim
(x,y)Ñ(x0,y0)

f(x, y) = L1 and lim
(x,y)Ñ(x0,y0)

f(x, y) = L2, then L1 = L2. In
other words, the limit is unique when it exists.

The proof of the following is almost identical to the one of Theorem 1.14.

Theorem 13.16: Properties of Limits of Functions of Two Variables

Let (a, b) P R2. Suppose that the limits

lim
(x,y)Ñ(a,b)

f(x, y) = L and lim
(x,y)Ñ(a,b)

g(x, y) = K .

both exist, and c is a constant.

1. lim
(x,y)Ñ(a,b)

c = c, lim
(x,y)Ñ(a,b)

x = a and lim
(x,y)Ñ(a,b)

y = b.

2. lim
(x,y)Ñ(a,b)

[
f(x, y) ˘ g(x, y)

]
= L+K;

3. lim
(x,y)Ñ(a,b)

[
f(x, y)g(x, y)

]
= LK;

4. lim
(x,y)Ñ(a,b)

f(x, y

g(x, y)
=

L

K
if K ‰ 0.



Theorem 13.17: Squeeze

Let (x0, y0) P R2. Suppose that f, g, h are functions of two variables such that

g(x, y) ď f(x, y) ď h(x, y)

except possible at (x0, y0), and lim
(x,y)Ñ(x0,y0)

g(x, y) = lim
(x,y)Ñ(x0,y0)

h(x, y) = L, then

lim
(x,y)Ñ(x0,y0)

f(x, y) = L .

Example 13.18. For (a, b) P R2, find the limit lim
(x,y)Ñ(a,b)

5x2y

x2 + y2
.

First we note that 1-3 of Theorem 13.16 implies that the function f(x, y) = 5x2y and
g(x, y) = x2 + y2 has the property that

lim
(x,y)Ñ(a,b)

f(x, y) = 5a2b and lim
(x,y)Ñ(a,b)

g(x, y) = a2 + b2 .

Therefore, Theorem 13.16 again shows the following:

1. If (a, b) ‰ (0, 0), then 4 of Theorem 13.16 implies that

lim
(x,y)Ñ(a,b)

5x2y

x2 + y2
= lim

(x,y)Ñ(a,b)

f(x, y)

g(x, y)
=

5a2b

a2 + b2
.

2. If (a, b) = (0, 0), then we cannot apply 4 of Theorem 13.16 to compute the limit.
Nevertheless, since

ˇ

ˇ

ˇ

5x2y

x2 + y2
´ 0

ˇ

ˇ

ˇ
ď 5|y| @ (x, y) ‰ (0, 0) ,

the Squeeze Theorem implies that

lim
(x,y)Ñ(0,0)

5x2y

x2 + y2
= 0 .

Example 13.19. Show that the limit lim
(x,y)Ñ(0,0)

(
x2 ´ y2

x2 + y2

)2

does not exist.

Let f(x, y) =
(
x2 ´ y2

x2 + y2

)2

. By the definition of limits, if lim
(x,y)Ñ(0,0)

f(x, y) = L exists, then
there exists δ ą 0 such that

ˇ

ˇf(x, y) ´ L
ˇ

ˇ ă
1

2
whenever 0 ă

a

x2 + y2 ă δ



which implies that

L ´
1

2
ă f(x, y) ă L+

1

2
whenever 0 ă

a

x2 + y2 ă δ . (13.2.1)

However, when (x, y) satisfies 0 ă
a

x2 + y2 ă δ and x = y, then f(x, y) = 0 while on the
other hand, when (x, y) satisfies 0 ă

a

x2 + y2 ă δ and y = 0, then f(x, y) = 1. This is a
contradiction because of (13.2.1).
‚ Another way of looking at this limit: When (x, y) approaches (0, 0) along the line x = y

(we use the notation lim
(x,y)Ñ(0,0)

x=y

to denote this limit process), we find that

lim
(x,y)Ñ(0,0)

x=y

f(x, y) = 0

and when (x, y) approaches (0, 0) along the x-axis (we use the notation lim
(x,y)Ñ(0,0)

y=0

to denote

this limit process), we find that

lim
(x,y)Ñ(0,0)

y=0

f(x, y) = 1 .

The uniqueness of the limit implies that the limit of f at (0, 0) does not exist.

13.2.1 Continuity of functions of two variables
Definition 13.20

A function f of two variables is continuous at a point (x0, y0) in an open region R
if f(x0, y0) is defined and is equal to the limit of f(x, y) as (x, y) approaches (x0, y0);
that is,

lim
(x,y)Ñ(x0,y0)

f(x, y) = f(x0, y0) .

In other words, f is continuous at (x0, y0) if for every ε ą 0 there exists δ ą 0 such
that

ˇ

ˇf(x, y) ´ f(x0, y0)
ˇ

ˇ ă ε whenever
a

(x ´ x0)2 + (y ´ y0)2 ă δ .

The function f is continuous in the open region R if it is continuous at every
point in R.

Remark 13.21. 1. Unlike the case that f does not have to be defined at (x0, y0) in order
to consider the limit of f at (x0, y0), for f to be continuous at a point (x0, y0) f has
to be defined at (x0, y0).



2. A point (x0, y0) is called a discontinuity of f if f is not continuous at (x0, y0). (x0, y0)

is called a removable discontinuity of f if lim
(x,y)Ñ(x0,y0)

f(x, y) exists.

Theorem 13.22
Let f and g be functions of two variables such that f and g are continuous at (x0, y0).

1. f ˘ g is continuous at (x0, y0).

2. fg is continuous at (x0, y0).

3. f

g
is continuous at (x0, y0) if g(x0, y0) ‰ 0.

Theorem 13.23
If h is continuous at (x0, y0) and g is continuous at h(x0, y0), then the composite
function g ˝ h is continuous at (x0, y0); that is,

lim
(x,y)Ñ(x0,y0)

(g ˝ h)(x, y) = g
(
h(x0, y0)

)
.

13.3 Partial Derivatives
Definition 13.24

Let f be a function of two variable. The first partial derivative of f with respect to
x at (x0, y0), denoted by fx(x0, y0), is defined by

fx(x0, y0) = lim
∆xÑ0

f(x0 +∆x, y0) ´ f(x0, y0)

∆x

provided the limit exists. The first partial derivative of f with respect to y at (x0, y0),
denoted by fy(x0, y0), is defined by

fy(x0, y0) = lim
∆yÑ0

f(x0, y0 +∆y) ´ f(x0, y0)

∆y

provided the limit exists. When fx and fy exist for all (x0, y0) (in a certain open
region), fx and fy are simply called the first partial derivative of f with respect to x
and y, respectively.



‚ Notation: For z = f(x, y), the partial derivative fx and fy, can also be denoted by
B

Bx
f(x, y) = fx(x, y) = zx =

Bz

Bx
=

Bf

Bx
(x, y)

and
B

By
f(x, y) = fy(x, y) = zy =

Bz

By
=

Bf

By
(x, y) .

When evaluating the partial derivative at (x0, y0), we write

fx(x0, y0) =
Bf

Bx
(x0, y0) =

B

Bx

ˇ

ˇ

ˇ

(x,y)=(x0,y0)
f(x, y)

and
fy(x0, y0) =

Bf

By
(x0, y0) =

B

By

ˇ

ˇ

ˇ

(x,y)=(x0,y0)
f(x, y) .

Example 13.25. For f(x, y) = xex
2y, find fx and fy, and evaluate each at the point (1, ln 2).

Note that fx is obtained by treating y as a constant and differentiate f with respect to
x. Therefore, the product rule implies tat

fx(x, y) =
( B

Bx
x
)
ex

2y + x
( B

Bx
ex

2y
)
= ex

2y + x ¨ ex
2y ¨ 2xy = (1 + 2x2y)ex

2y ;

thus
fx(1, ln 2) = (1 + 2 ln 2)eln 2 = 2(1 + 2 ln 2) .

Similarly,
fy(x, y) =

( B

By
x
)
ex

2y + x
( B

By
ex

2y
)
= x3ex

2y ;

thus fy(1, ln 2) = eln 2 = 2.

Example 13.26. Let f : R2 Ñ R be defined by

f(x, y) =

$

&

%

xy(x2 ´ y2)

x2 + y2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) .

Then if (x, y) ‰ (0, 0), we can apply the quotient rule (and product rule) to compute the
partial derivatives and obtain that

fx(x, y) =
(x2 + y2)

B

Bx

[
xy(x2 ´ y2)

]
´ xy(x2 ´ y2)

B

Bx
(x2 + y2)

(x2 + y2)2

=
(x2 + y2)

[
y(x2 ´ y2) + 2x2y

]
´ xy(x2 ´ y2) ¨ (2x)

(x2 + y2)2

=
x4y + 4x2y3 ´ y5

(x2 + y2)2
.



If (x, y) = (0, 0), we cannot use the quotient rule to compute the derivative since the
denominate is 0 (so that 4 of Theorem 13.16 cannot be applied), and we have to compute
fx(0, 0) using the definition. By definition,

fx(0, 0) = lim
∆xÑ0

f(∆x, 0) ´ f(0, 0)

∆x
= 0 .

Therefore,

fx(x, y) =

$

&

%

x4y + 4x2y3 ´ y5

(x2 + y2)2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) .

Similarly,

fy(x, y) =

$

&

%

x5 ´ 4x3y2 ´ xy4

(x2 + y2)2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) .

‚ Geometric meaning of partial derivatives: Let f(x, y) be a function of two variable,
(x0, y0) be given, and z0 = f(x0, y0). Consider the graph of the function z = f(x, y0) (of one
variable) on the xz-plane. If the graph z = f(x, y0) has a tangent line at (x0, z0), then the
slope of the tangent line at (x0, z0) is given by

lim
hÑ0

f(x0 + h, y0) ´ f(x0, y0)

h

and this limit, if exists, is fx(x0, y0). This is called the slopes in the x-direction of the
surface z = f(x, y) at the point (x0, y0, z0). Similarly, the slope of the tangent line of the
graph of z = f(x0, y) at (y0, z0) is fy(x0, y0), and is called the slopes in the y-direction
of the surface z = f(x, y) at the point (x0, y0, z0).

‚ Partial derivatives of functions of three or more variables:

The concept of partial derivatives can be extended to functions of three or more variables.
For example, if w = f(x, y, z), then

Bw

Bx
= fx(x, y, z) = lim

∆xÑ0

f(x+∆x, y, z) ´ f(x, y, z)

∆x
,

Bw

By
= fy(x, y, z) = lim

∆yÑ0

f(x, y +∆y, z) ´ f(x, y, z)

∆y
,

Bw

Bz
= fz(x, y, z) = lim

∆zÑ0

f(x, y, z +∆z) ´ f(x, y, z)

∆z
.

In general, if w = f(x1, x2, ¨ ¨ ¨ , xn), then there are n first partial derivatives denoted by
Bw

Bxk
= fxk

(x1, x2, ¨ ¨ ¨ , xn) , k = 1, 2, ¨ ¨ ¨ , n .



‚ Higher-order partial derivatives:

We can also take higher-order partial derivatives of functions of several variables. For
example, for z = f(x, y),

1. Differentiate twice with respect to x:
B

Bx

(Bf

Bx

)
=

B 2f

Bx2
= fxx .

2. Differentiate twice with respect to y:
B

By

(Bf

By

)
=

B 2f

By2
= fyy .

3. Differentiate first with respect to x and then with respect to y:
B

By

(Bf

Bx

)
=

B 2f

ByBx
= fxy .

4. Differentiate first with respect to y and then with respect to x:
B

Bx

(Bf

By

)
=

B 2f

BxBy
= fyx .

The third and fourth cases are called mixed partial derivatives.

Example 13.27. In this example we compute the second partial derivatives of the function
given in 13.26. We have obtained that

fx(x, y) =

$

&

%

x4y + 4x2y3 ´ y5

(x2 + y2)2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) ,

and

fy(x, y) =

$

&

%

x5 ´ 4x3y2 ´ xy4

(x2 + y2)2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) .

If (x, y) ‰ (0, 0), the quotient rule, the product rule and the chain rule (for functions of one
variable) together show that

fxx(x, y) =
(x2 + y2)2

B

Bx
(x4y + 4x2y3 ´ y5) ´ (x4y + 4x2y3 ´ y5)

B

Bx
(x2 + y2)2

(x2 + y2)4

=
(x2 + y2)2(4x3y + 8xy3) ´ (x4y + 4x2y3 ´ y5) ¨

[
2(x2 + y2) ¨ (2x)

]
(x2 + y2)3

=
(x2 + y2)(4x3y + 8xy3) ´ 4x(x4y + 4x2y3 ´ y5)

(x2 + y2)3
=

´4x3y3 + 12xy5

(x2 + y2)3
.



Similarly, if (x, y) ‰ (0, 0),

fyy(x, y) =
(x2 + y2)2(´8x3y ´ 4xy3) ´ (x5 ´ 4x3y2 ´ xy4) ¨

[
2(x2 + y2) ¨ (2y)

]
(x2 + y2)2

=
´12x5y + 4x3y3

(x2 + y2)3
,

fxy(x, y) =
(x2 + y2)(x4 + 12x2y2 ´ 5y4) ´ 4y(x4y + 4x2y3 ´ y5)

(x2 + y2)3

=
x6 + 9x4y2 ´ 9x2y4 ´ y6

(x2 + y2)3

and

fyx(x, y) =
(x2 + y2)(5x4 ´ 12x2y2 ´ y4) ´ 4x(x5 ´ 4x3y2 ´ xy4)

(x2 + y2)3

=
x6 + 9x4y2 ´ 9x2y4 ´ y6

(x2 + y2)3
.

We note that when (x, y) ‰ (0, 0), fxy(x, y) = fyx(x, y).
Since fx(x, 0) = fy(0, y) = 0 for all x ‰ 0, we find that

fxx(0, 0) = lim
∆xÑ0

fx(∆x, 0) ´ fx(0, 0)

∆x
= 0

and
fyy(0, 0) = lim

∆yÑ0

fy(0,∆y) ´ fy(0, 0)

∆y
= 0 .

Finally, we compute fxy(0, 0) and fyx(0, 0). By definition,

fxy(0, 0) = lim
∆yÑ0

fx(0,∆y) ´ fx(0, 0)

∆y
= lim

∆yÑ0

´∆y5

∆y4

∆y
= ´1

and

fyx(0, 0) = lim
∆xÑ0

fy(∆x, 0) ´ fy(0, 0)

∆x
= lim

∆yÑ0

∆x5

∆x4

∆x
= 1 .

We note that fxy(0, 0) ‰ fyx(0, 0).

Theorem 13.28: Clairaut’s Theorem
If f is a function of x and y such that fxy and fyx are continuous on an open disk D,
then

fxy(x, y) = fyx(x, y) @ (x, y) P D .



In the following, we prove the following more general version:

If f is a function of x and y such that on an open disk D fxy is continuous and fyx

exists, then fxy(x, y) = fyx(x, y) for all (x, y) P D.

Proof. Let (a, b) P D be given. Then

fyx(a, b) = (fy)x(a, b) = lim
hÑ0

fy(a+ h, b) ´ fy(a, b)

h

= lim
hÑ0

lim
kÑ0

f(a+ h, b+ k) ´ f(a+ h, b)

k
´ lim

kÑ0

f(a, b+ k) ´ f(a, b)

k

h

= lim
hÑ0

lim
kÑ0

f(a+ h, b+ k) ´ f(a, b+ k) ´ f(a+ h, b) ´ f(a, b)

hk
.

Define
Q(h, k) ”

f(a+ h, b+ k) ´ f(a+ h, b) ´ f(a, b+ k) + f(a, b)

hk
.

Then the computation above shows that

lim
hÑ0

lim
kÑ0

Q(h, k) = fyx(a, b) . (13.3.1)

For h, k ‰ 0 such that (a + h, b + k) P D, define φ(x, y) = f(x, y + k) ´ f(x, y). Then

Q(h, k) =
φ(a+ h, b) ´ φ(a, b)

hk
. By the mean value theorem for functions of one variable

(Theorem 3.9),

Q(h, k) =
φx(a+ θ1h, b)h

hk
=
fx(a+ θ1h, b+ k) ´ fx(a+ θ1h, b)

k

for some functions θ1 = θ1(h) satisfying 0 ă θ1 ă 1. Applying the mean value theorem
again,

Q(h, k) =
fx(a+ θ1h, b+ k) ´ fx(a+ θ1h, b)

k
=
fxy(a+ θ1h, b+ θ2k)k

k
= fxy(a+ θ1h, b+ θ2k)

for some functions θ2 = θ2(h, k) satisfying 0 ă θ2 ă 1. Therefore, we establish that there
exist functions θ1 = θ1(h) and θ2 = θ2(h, k) such that

Q(h, k) = fxy(x+ θ1h, y + θ2k) .

Passing to the limit as k Ñ 0 first then h Ñ 0, using (13.3.1) and the continuity of fxy we
conclude that fxy(a, b) = fyx(a, b).



Example 13.29. Let f(x, y, z) = yex+x ln z. Then fx(x, y, z) = yex+ ln z, fy(x, y, z) = ex

and fz(x, y, z) =
x

z
. Therefore,

fxy(x, y, z) = ex = fyx(x, y, z) ,

fxz(x, y, z) =
1

z
= fzx(x, y, z) @ z ‰ 0 ,

fyz(x, y, z) = 0 = fzy(x, y, z) .

13.4 Differentiability of Functions of Several Variables

Recall that a function f : (a, b) Ñ R is said to be differentiable at a point c P (a, b) if the
limit

lim
∆xÑ0

f(c+∆x) ´ f(c)

∆x

exists. The differentiability of f at c can be rephrased as follows:

A function f : (a, b) Ñ R is said to be differentiable at c P (a, b) if there exists
m P R such that

lim
∆xÑ0

ˇ

ˇ

ˇ

f(c+∆x) ´ f(c) ´ m∆x

∆x

ˇ

ˇ

ˇ
= 0 .

or equivalently,

lim
xÑc

ˇ

ˇ

ˇ

f(x) ´ f(c) ´ m(x ´ c)

x ´ c

ˇ

ˇ

ˇ
= 0 .

This equivalent way of defining differentiability of functions of one variable motivate the
following
Definition 13.30

Let R Ď R2 be an open region in the plane, and f : R Ñ R be a function of two
variables. For (x0, y0) P R, f is said to be differentiable at (x0, y0) if there exist real
numbers A,B such that

lim
(x,y)Ñ(x0,y0)

ˇ

ˇf(x, y) ´ f(x0, y0) ´ (A,B) ¨ (x ´ x0, y ´ y0)
ˇ

ˇ

a

(x ´ x0)2 + (y ´ y0)2
= 0 .

Suppose that f is differentiable at (x0, y0). When (x, y) approaches (x0, y0) along the



line y = y0, we find that

0 = lim
(x,y)Ñ(x0,y0)

y=y0

ˇ

ˇf(x, y) ´ f(x0, y0) ´ A(x ´ x0) ´ B(y ´ y0)
ˇ

ˇ

a

(x ´ x0)2 + (y ´ y0)2

= lim
xÑx0

ˇ

ˇf(x, y0) ´ f(x0, y0) ´ A(x ´ x0)
ˇ

ˇ

|x ´ x0|
= lim

xÑx0

ˇ

ˇ

ˇ

f(x, y0) ´ f(x0, y0)

x ´ x0
´ A

ˇ

ˇ

ˇ

which implies that the number A must be fx(x0, y0). Similarly, B = fy(x0, y0), and we have
the following alternative
Definition 13.31

Let R Ď R2 be an open region in the plane, and f : R Ñ R be a function of two
variables. For (x0, y0) P R, f is said to be differentiable at (x0, y0) if (fx(x0, y0),
fy(x0, y0) both exist and)

lim
(x,y)Ñ(x0,y0)

ˇ

ˇf(x, y) ´ f(x0, y0) ´ fx(x0, y0)(x ´ x0) ´ fy(x0, y0)(y ´ y0)
ˇ

ˇ

a

(x ´ x0)2 + (y ´ y0)2
= 0 .

Remark 13.32. The ordered pair
(
fx(x0, y0), fy(x0, y0)

)
if called the derivative of f at

(x0, y0) if f is differentiable at (x0, y0) and is usually denoted by (Df)(x0, y0).

2. Using ε-δ notation, we find that f is differentiable at (x0, y0) if for every ε ą 0, there
exists δ ą 0 such that

ˇ

ˇf(x, y) ´ f(x0, y0) ´ fx(x0, y0)(x ´ x0) ´ fy(x0, y0)(y ´ y0)
ˇ

ˇ

ď ε
a

(x ´ x0)2 + (y ´ y0)2 whenever
a

(x ´ x0)2 + (y ´ y0)2 ă δ .

Now suppose that f is a function of two variables such that fx(x0, y0) and fy(x0, y0)

exist. Define

ε(x, y) =

$

&

%

f(x, y) ´ f(x0, y0) ´ fx(x0, y0)(x´ x0) ´ fy(x0, y0)(y ´ y0)
a

(x´ x0)2 + (y ´ y0)2
if (x, y) ‰ (x0, y0) ,

0 if (x, y) = (x0, y0) .

Let ∆x = x ´ x0, ∆y = y ´ y0 and ∆z = f(x, y) ´ f(x0, y0). Then

∆z = fx(x0, y0)∆x+ fy(x0, y0)∆y + ε(x, y)
a

∆x2 +∆y2 ,

and f is differentiable at (x0, y0) if and only if lim
(x,y)Ñ(x0,y0)

ε(x, y) = 0.



Finally, define

ε1(x, y) =

$

&

%

ε(x, y)∆x
a

∆x2 +∆y2
if (x, y) ‰ (x0, y0) ,

0 if (x, y) ‰ (x0, y0) ,

ε2(x, y) =

$

&

%

ε(x, y)∆y
a

∆x2 +∆y2
if (x, y) ‰ (x0, y0) ,

0 if (x, y) ‰ (x0, y0) ,

,

then
0 ď |ε1(x, y)|, |ε2(x, y)| ď |ε(x, y)| =

a

ε1(x, y)2 + ε2(x, y)2

thus the Squeeze Theorem shows that

lim
(x,y)Ñ(x0,y0)

ε(x, y) = 0 if and only if lim
(x,y)Ñ(x0,y0)

ε1(x, y) = lim
(x,y)Ñ(x0,y0)

ε2(x, y) = 0 .

By the fact that ε(x, y)
a

∆x2 +∆y2 = ε1(x, y)∆x + ε2(x, y)∆y, the alternative definition
above can be rewritten as

Let R Ď R2 be an open region in the plane, and f : R Ñ R be a function of two
variables. For (x0, y0) P R, f is said to be differentiable at (x0, y0) if (fx(x0, y0),
fy(x0, y0) both exist and) there exist functions ε1 and ε2 such that

∆z = fx(x0, y0)∆x+ fy(x0, y0)∆y + ε1∆x+ ε2∆y ,

where both ε1 and ε2 approaches 0 as (x, y) Ñ (x0, y0).

Example 13.33. Show that the function f(x, y) = x2 + 3y is differentiable at every point
in the plane.

Let (a, b) P R2 be given. Then fx(a, b) = 2a and fy(a, b) = 3. Therefore,

∆z ´ fx(a, b)∆x ´ fy(a, b)∆y = x2 + 3y ´ a2 ´ 3b ´ 2a(x ´ a) ´ 3(y ´ b)

= (x ´ a)2 = ε1(x, y)∆x+ ε2(x, y)∆y ,

where ε1(x, y) = x ´ a and ε2(x, y) = 0. Since

lim
(x,y)Ñ(a,b)

ε1(x, y) = 0 and lim
(x,y)Ñ(a,b)

ε2(x, y) = 0 ,

by the definition we find that f is differentiable at (a, b).



Example 13.34. The function f given in Example 13.26 is differentiable at (0, 0) since if
(x, y) ‰ (0, 0),

ˇ

ˇf(x, y) ´ f(0, 0) ´ fx(0, 0)x ´ fy(0, 0)y
ˇ

ˇ

a

x2 + y2
=

ˇ

ˇxy(x2 ´ y2)
ˇ

ˇ

(x2 + y2)
3
2

ď
|x2 ´ y2|
a

x2 + y2
ď |x| + |y|

and the Squeeze Theorem shows that

lim
(x,y)Ñ(0,0)

ˇ

ˇf(x, y) ´ f(0, 0) ´ fx(0, 0)(x ´ 0) ´ fy(0, 0)(y ´ 0)
ˇ

ˇ

a

x2 + y2
= 0 .

‚ Differentiability of functions of several variables

A real-valued function f of n variables is differentiable at (a1, a2, ¨ ¨ ¨ , an) if there exist n
real numbers A1, A2, ¨ ¨ ¨ , An such that

lim
(x1,¨¨¨ ,xn)Ñ(a1,¨¨¨ ,an)

ˇ

ˇf(x1, ¨ ¨ ¨ , xn) ´ f(a1, ¨ ¨ ¨ , an) ´ (A1, ¨ ¨ ¨ , An) ¨ (x1 ´ a1, ¨ ¨ ¨ , xn ´ an)
ˇ

ˇ

a

(x1 ´ a1)2 + ¨ ¨ ¨ + (xn ´ an)2
= 0 .

We also note that when f is differentiable at (a1, ¨ ¨ ¨ , an), then these numbers A1, A2, ¨ ¨ ¨ , An

must be fx1(a1, ¨ ¨ ¨ , an), fx2(a1, ¨ ¨ ¨ , an), ¨ ¨ ¨ , fxn(a1, ¨ ¨ ¨ , an), respectively.
It is usually easier to compute the partial derivatives of a function of several variables

than determine the differentiability of that function. Is there any connection between some
specific properties of partial derivatives and the differentiability? We have the following
Theorem 13.35

Let R Ď R2 be an open region in the plane, and f : R Ñ R be a function of two
variables. If fx and fy are continuous in a neighborhood of (x0, y0) P R, then f is
differentiable at (x0, y0). In particular, if fx and fy are continuous on R, then f is
differentiable on R; that is, f is said to be differentiable at every point in R.

Therefore, the differentiability of f in Example 13.26 at any point (x0, y0) ‰ (0, 0) can
be guaranteed since fx and fy are continuous on R2zt(0, 0)u.
Theorem 13.36

Let R Ď R2 be an open region in the plane, and f : R Ñ R be a function of two
variables. If f is differentiable at (x0, y0), then f is continuous at (x0, y0).



Proof. By the definition of differentiability, if f is differentiable at (x0, y0), then there exists
function ε1 and ε2 such that

lim
(x,y)Ñ(x0,y0)

ε1(x, y) = lim
(x,y)Ñ(x0,y0)

εw(x, y) = 0

and

f(x, y) = f(x0, y0) + fx(x0, y0)(x ´ x0) + fy(x0, y0)(y ´ y0)

+ ε1(x, y)(x ´ x0) + ε2(x, y)(y ´ y0) .

Then lim
(x,y)Ñ(x0,y0)

f(x, y) = f(x0, y0).

Example 13.37. Consider the function

f(x, y) =

$

&

%

´3xy

x2 + y2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) .

Then f is not continuous at (0, 0) since

lim
(x,y)Ñ(0,0)

y=0

f(x, y) = 0 but lim
(x,y)Ñ(0,0)

x=y

f(x, y) = ´
3

2
.

However, we note that

fx(0, 0) = lim
∆xÑ0

f(∆x, 0) ´ f(0, 0)

∆x
= 0 and fy(0, 0) = lim

∆yÑ0

f(0,∆y) ´ f(0, 0)

∆y
= 0 .

Therefore, the existence of partial derivatives at a point in all directions does not even
imply the continuity.

13.5 Chain Rules for Functions of Several Variables
Recall the chain rule for functions of one variable:

Let I, J be open intervals, f : J Ñ R, g : I Ñ R be real-valued functions, and the
range of g is contained in J . If g is differentiable at c P I and f is differentiable at
g(c), then f ˝ g is differentiable at c and

d

dx

ˇ

ˇ

ˇ

x=c
(f ˝ g)(x) = f 1(g(c))g 1(c) .



For functions of two variables, we have the following
Theorem 13.37

Let z = f(x, y) be a differentiable function (of x and y). If x = g(t) and y = h(t) are
differentiable functions (of t), then z(t) = f

(
x(t), y(t)

)
is differentiable and

z 1(t) = fx
(
x(t), y(t)

)
x 1(t) + fy

(
x(t), y(t)

)
y 1(t) .

Let γ(t) =
(
x(t), y(t)

)
. Then γ 1(t) =

(
x 1(t), y 1(t)

)
, and the chain rule above can be

written as
d

dt
(f ˝ γ)(t) = (Df)(γ(t)) ¨ γ 1(t) .

A short-hand notation of the identity above

dz

dt
=

Bf

Bx

dx

dt
+

Bf

By

dy

dt
= (fx, fy) ¨ (x 1, y 1) .

Corollary 13.38

Let z = f(x, y) be a differentiable function (of x and y).

1. If x = u(s, t) and y = v(s, t) are such that Bu

Bs
and Bv

Bs
exist, then the first partial

derivative Bz

Bs
of the function z(s, t) = f

(
u(s, t), v(s, t)

)
exists and

zs(s, t) = fx
(
u(s, t), v(s, t)

)
us(s, t) + fy

(
u(s, t), v(s, t)

)
vs(s, t) .

2. If x = u(s, t) and y = v(s, t) are such that Bu

B t
and Bv

B t
exist, then the first partial

derivative Bz

B t
of the function z(s, t) = f

(
u(s, t), v(s, t)

)
exists and

zt(s, t) = fx
(
u(s, t), v(s, t)

)
ut(s, t) + fy

(
u(s, t), v(s, t)

)
vt(s, t) .

Example 13.39. Let f(x, y) = x2y ´ y2. Find dz

dt
, where z(t) = f(sin t, et).

1. Since z(t) = et sin2 t´ e2t, by the product rule and the chain rule for functions of one
variable, we find that

z 1(t) =
det

dt
sin2 t+ et

d sin2 t

dt
´ 2e2t = et sin2 t+ 2et sin t cos t ´ 2e2t .



2. By the chain rule for functions of two variables,

z 1(t) =
(
fx(sin t, et), fy(sin t, et)

)
¨
d

dt
(sin t, et)

= (2xy, x2 ´ 2y)
ˇ

ˇ

ˇ

(x,y)=(sin t,et)
¨ (cos t, et)

= (2et sin t, sin2 t ´ 2et) ¨ (cos t, et)
= 2et sin t cos t+ et sin2 t ´ 2e2t .

Example 13.40. Let f(x, y) = 2xy. Find Bz

Bs
and Bz

B t
, where z(s, t) = f

(
s2 + t2,

s

t

)
.

1. Since z(s, t) = 2(s2 + t2)
s

t
=

2s3

t
+ 2st, by the product rule we find that

Bz

Bs
(s, t) =

6s2

t
+ 2t and Bz

B t
(s, t) = ´

2s3

t2
+ 2s .

2. By the chain rule for functions of two variables,
Bz

Bs
(s, t) =

(
fx(s

2 + t2, s/t), fy(s
2 + t2, s/t)

)
¨

B

Bs

(
s2 + t2,

s

t

)
=

(2s
t
, 2(s2 + t2)

)
¨
(
2s,

1

t

)
=

4s2

t
+

2s2 + 2t2

t
=

6s2

t
+ 2t

and
Bz

B t
(s, t) =

(
fx(s

2 + t2, s/t), fy(s
2 + t2, s/t)

)
¨

B

B t

(
s2 + t2,

s

t

)
=

(2s
t
, 2(s2 + t2)

)
¨
(
2t,´

s

t2

)
= 4s ´

2s3 + 2st2

t2
= ´

2s3

t2
+ 2s .

‚ The chain rule for functions of several variables

Suppose that w = f(x1, x2, ¨ ¨ ¨ , xn) be a differentiable function (of x1, x2, ¨ ¨ ¨ , xn). If each
xi is a differentiable function of m variables t1, t2, ¨ ¨ ¨ , tm, then

Bw

B t1
=

Bw

Bx1

Bx1
B t1

+
Bw

Bx2

Bx2
B t1

+ ¨ ¨ ¨ +
Bw

Bxn

Bxn
B t1

=
n
ÿ

j=1

Bw

Bxj

Bxj
B t1

,

Bw

B t2
=

Bw

Bx1

Bx1
B t2

+
Bw

Bx2

Bx2
B t2

+ ¨ ¨ ¨ +
Bw

Bxn

Bxn
B t2

=
n
ÿ

j=1

Bw

Bxj

Bxj
B t2

,

...
Bw

B tm
=

Bw

Bx1

Bx1
B tm

+
Bw

Bx2

Bx2
B tm

+ ¨ ¨ ¨ +
Bw

Bxn

Bxn
B tm

=
n
ÿ

j=1

Bw

Bxj

Bxj
B tm

.



Using the notation of the matrix multiplication,

[
Bw

B t1

Bw

B t2
¨ ¨ ¨

Bw

B tm

]
=

[
Bf

Bx1

Bf

Bx2
¨ ¨ ¨

Bf

Bxn

]


Bx1
B t1

Bx1
B t2

¨ ¨ ¨
Bx1
B tm

Bx2
B t1

Bx2
B t2

¨ ¨ ¨
Bx2
B tm

... ... . . . ...
Bxn
B t1

Bxn
B t2

¨ ¨ ¨
Bxn
B tm


.

‚ Differentiation of determinant functions

For an n ˆ n matrix A, let Cof(A) denote the cofactor matrix of A; that is, the (i, j)-th
entry of Cof(A) is the determinant of the matrix obtained by deleting the i-th row and j-th
column of A or

[
Cof(A)

]
ij
= (´1)i+j

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11 a12 ¨ ¨ ¨ a1(j´1) a1(j+1) ¨ ¨ ¨ a1n
... . . . ... ... ...

a(i´1)1 a(i´1)2 ¨ ¨ ¨ a(i´1)(j´1) a(i´1)(j+1) ¨ ¨ ¨ a(i´1)n

a(i+1)1 a(i+1)2 ¨ ¨ ¨ a(i+1)(j´1) a(i+1)(j+1) ¨ ¨ ¨ a(i+1)n
... ... ... ... . . . ...
an1 an2 ¨ ¨ ¨ an(j´1) an(j+1) ¨ ¨ ¨ ann

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

Then the determinant of A, using the reductive algorithm, can be computed by

det(A) =
n
ÿ

k=1

aik
[
Cof(A)

]
ik

@ 1 ď i ď n . (13.5.1)

On the other hand, the determinant of an nˆ n matrix A = [aij]1ďi,jďn can be viewed as a
real-valued function of n2 variable:

f(a11, a12, ¨ ¨ ¨ , a1n, a21, a22, ¨ ¨ ¨ , a2n, a31 ¨ ¨ ¨ , ann) = det([aij]) .

Since for each 1 ď i ď n the (i, k)-th entry of the cofactor matrix Cof(A)ik is independent

of aij for all 1 ď j, k ď n, we have Bf

Baij
=

[
Cof(A)

]
ij

; thus if aij = aij(t) is a function of t

for all 1 ď i, j ď n, with A = A(t) =
[
aij(t)

]
1ďi,jďn

in mind the chain rule implies that

d

dt
f
(
a11(t), a12(t), ¨ ¨ ¨ , ann(t)

)
=

n
ÿ

i,j=1

[
Cof(A)

]
ij

daij(t)

dt
. (13.5.2)



Let Adj(A) be the transpose of the cofactor matrix, called the adjoint matrix, of A, then
(13.5.2) implies that

d

dt
det(A) =

n
ÿ

i,j=1

[
Adj(A)

]
ji

daij
dt

= tr
(

Adj(A)dA
dt

)
, (13.5.3)

where tr(M) denotes the trace of a square matrix M and dA

dt
=

[
daij
dt

]
1ďi,jďn

. In particular,

if A is invertible, then A´1 =
1

det(A)Adj(A); thus for invertible matrix A =
[
aij(t)

]
, we have

d

dt
det(A) = tr

(
det(A)A´1dA

dt

)
= det(A)tr

(
A´1dA

dt

)
(13.5.4)

or
d

dt
ln
ˇ

ˇ det(A)
ˇ

ˇ = tr
(
A´1dA

dt

)
.

Example 13.41. Let A(t) =
[
f(t) g(t)
h(t) k(t)

]
. Then

d

dt
det(A) = tr

([
k ´g

´h f

] [
f 1 g 1

h 1 k 1

])
= tr

([
kf 1 ´ gh 1 kg 1 ´ gk 1

´hf 1 + fh 1 ´hg 1 + fk 1

])
= kf 1 ´ gh 1 ´ hg 1 + fk 1 = (fk ´ gh) 1 .

‚ Taylor’s theorem for functions of two variables

Let R Ď R2 be an open region, and f : R Ñ R be a function of two variables. For
(x, y), (a, b) P R, define g(t) = f

(
a+ t(x´ a), b+ t(y´ b)

)
. Suppose that all the k-th partial

derivatives of f are continuous for 0 ď k ď n + 1 (which, by Theorem 13.35, implies that
g is (n + 1)-times differentiable), then Taylor’s Theorem implies that there exists ξ P (0, 1)

such that
g(1) =

n
ÿ

k=0

g(k)(0)

k!
+
g(n+1)(ξ)

(n+ 1)!
.

Now we compute g(k)(0). First by the chain rule,

g 1(t) =
d

dt
f
(
a+ t(x ´ a), b+ t(y ´ b)

)
= fx

(
a+ t(x ´ a), b+ t(y ´ b)

)
(x ´ a) + fy

(
tx+ (1 ´ t)a, ty + (1 ´ t)b

)
(y ´ b) ;

thus g 1(0) = fx(a, b)(x ´ a) + fy(a, b)(y ´ b). In general, we can prove by induction that

g(k)(t) =
k
ÿ

j=0

Ck
j

B kf

Bxk´jByj
(
a+ t(x ´ a), b+ t(y ´ b)

)
(x ´ a)k´j(y ´ b)j (13.5.5)



under the assumption that the k-th partial derivatives are continuous (on an open region
containing the line segment connecting (x, y) and (a, b)). To see this, we first simplify the
notation by letting γ(t) =

(
a+ t(x´ a), b+ t(y´ b)

)
. We note that (13.5.5) holds for k = 1.

Suppose that (13.5.5) holds for k = ℓ. Then by the chain rule and Theorem 13.28, we find
that

g(ℓ+1)(t) =
d

dt
g(ℓ)(t) =

d

dt

ℓ
ÿ

j=0

Cℓ
j

B ℓf

Bxℓ´jByj
(
γ(t)

)
(x ´ a)ℓ´j(y ´ b)j

=
ℓ
ÿ

j=0

Cℓ
j

[ B ℓ+1f

Bxℓ´j+1Byj
(
γ(t)

)
(x ´ a)ℓ´j+1(y ´ b)j

+
B ℓ+1f

Bxℓ´jByj+1

(
γ(t)

)
(x ´ a)ℓ´j(y ´ b)j+1

]
=

ℓ
ÿ

j=0

Cℓ
j

B ℓ+1f

Bxℓ+1´jByj
(
γ(t)

)
(x ´ a)ℓ+1´j(y ´ b)j

+
ℓ+1
ÿ

j=1

Cℓ
j´1

B ℓ+1f

Bxℓ+1´jByj
(
γ(t)

)
(x ´ a)ℓ+1´j(y ´ b)j

=
B ℓ+1f

Bxℓ+1

(
γ(t)

)
(x ´ a)ℓ+1 +

B ℓ+1f

Byℓ+1

(
γ(t)

)
(y ´ b)ℓ+1

+
ℓ
ÿ

j=1

(Cℓ
j + Cℓ

j´1)
B ℓ+1f

Bxℓ+1´jByj
(
γ(t)

)
(x ´ a)ℓ+1´j(y ´ b)j .

By Pascal’s Theorem,

g(ℓ+1)(t) =
B ℓ+1f

Bxℓ+1

(
γ(t)

)
(x ´ a)ℓ+1 +

B ℓ+1f

Byℓ+1

(
γ(t)

)
(y ´ b)ℓ+1

+
ℓ
ÿ

j=1

Cℓ+1
j

B ℓ+1f

Bxℓ+1´jByj
(
γ(t)

)
(x ´ a)ℓ+1´j(y ´ b)j

=
ℓ+1
ÿ

j=0

Cℓ+1
j

B ℓ+1f

Bxℓ+1´jByj
(
γ(t)

)
(x ´ a)ℓ+1´j(y ´ b)j ;

thus we establish (13.5.5) by induction. Therefore, by the fact that g(1) = f(x, y) and
g(0) = f(a, b),

f(x, y) =
n
ÿ

k=0

1

k!

k
ÿ

j=0

Ck
j

B kf

Bxk´jByj
(a, b)(x ´ a)k´j(y ´ b)j +Rn(x, y) , (13.5.6)



where

Rn(x, y) =
1

(n+ 1)!

n+1
ÿ

j=0

Cn+1
j

B kf

Bxk´jByj
(
a+ ξ(x ´ a), b+ ξ(y ´ b)

)
(x ´ a)n+1´j(y ´ b)j .

The “polynomial” of two variables

Pn(x, y) =
n
ÿ

k=0

1

k!

k
ÿ

j=0

Ck
j

B kf

Bxk´jByj
(a, b)(x ´ a)k´j(y ´ b)j

is called the n-th Taylor polynomial for f centered at (a, b), and the function Rn is the
remainder associated with Pn.

Expanding the sum, we find that

Pn(x, y) = f(a, b) + fx(a, b)(x ´ a) + fy(a, b)(y ´ b)

+
1

2!

[
fxx(a, b)(x ´ a)2 + 2fxy(a, b)(x ´ a)(y ´ b) + fyy(a, b)(y ´ b)2

]
+

1

3!

[
fxxx(a, b)(x ´ a)3 + 3fxxy(a, b)(x ´ a)2(y ´ b) + 3fxyy(x ´ a)(y ´ b)2

+ fyyy(a, b)(y ´ b)3
]
+ ¨ ¨ ¨+

+
1

n!

[
Bnf

Bxn
(a, b)(x ´ a)n + Cn

1

Bnf

Bxn´1By
(a, b)(x ´ a)n´1(y ´ b) + ¨ ¨ ¨ ¨ ¨ ¨+

+ Cn
n´1

Bnf

BxByn´1
(a, b)(x ´ a)(y ´ b)n´1 +

Bnf

Byn
(a, b)(y ´ b)n

]
.

Example 13.42. Find the third Taylor polynomial for the function f(x, y) = sin(xy) cen-
tered at (0, 0).

We compute the first, the second and the third partial derivatives of f as follows:

fx(x, y) = y cos(xy) , fy(x, y) = x cos(xy) ,
fxx(x, y) = ´y2 sin(xy) , fxy(x, y) = cos(xy) ´ xy sin(xy) , fyy(x, y) = ´x2 sin(xy) ,
fxxx(x, y) = ´y3 cos(xy) , fxxy(x, y) = ´2y sin(xy) ´ xy2 cos(xy) ,
fxyy(x, y) = ´2x sin(xy) ´ x2y cos(xy) , fyyy(x, y) = ´x3 cos(xy) .

Therefore, the only non-vanishing term, when plugging (x, y) = (0, 0), is fxy(0, 0) = 1; thus

P3(x, y) =
1

2!
¨ 2fxy(0, 0)(x ´ 0)(y ´ 0) = xy .



Example 13.43. Find the second Taylor polynomial for the function f(x, y) = exp(x2+2y)

centered at (0, 0).
We compute the first and the second partial derivatives of f as follows:

fx(x, y) = 2x exp(x2 + 2y) , fy(x, y) = 2 exp(x2 + 2y) ,

fxx(x, y) = (2 + 4x2) exp(x2 + 2y) , fxy(x, y) = 4x exp(x2 + 2y) ,

fyy(x, y) = 4 exp(x2 + 2y) .

Therefore, fx(0, 0) = fxy(0, 0) = 0, fy(0, 0) = fxx(0, 0) = 2, fyy(0, 0) = 4; thus

P2(x, y) = f(0, 0) + fx(0, 0)x+ fy(0, 0)y +
1

2!

[
fxx(0, 0)x

2 + 2fxy(0, 0)xy + fyy(0, 0)y
2
]

= 1 + 2y + x2 + 2y2 .

‚ Implicit partial differentiation

In Section 2.4 we have talked about finding derivatives of a function y = f(x) which is defined
implicitly by F (x, y) = 0 (when F is giving explicitly). Now suppose that z = F (x, y) is a
differentiable function and the relation F (x, y) = 0 defines a differentiable function y = f(x)

implicitly (so that F (x, f(x)) = 0). By the chain rule,

0 =
d

dx
F (x, f(x)) = Fx(x, f(x)) + Fy(x, f(x))f

1(x)

which implies that

f 1(x) = ´
Fx(x, f(x))

Fy(x, f(x))
if Fy(x, f(x)) ‰ 0 .

Since f is in general unknown (but exists), we usually write the identity above as

dy

dx
= ´

Fx(x, y)

Fy(x, y)
if F (x, y) = 0 and Fy(x, y) ‰ 0 .

In fact, when Fx and Fy are continuous in an open region R, and F (a, b) = 0 and Fy(a, b) ‰ 0

at some point (a, b) P R, the relation F (x, y) = 0 defines a function y = f(x) implicitly near
(a, b) and f is continuously differentiable near x = a. This is the Implicit Function Theorem
and the precise statement is stated as follows.



Theorem 13.44: Implicit Function Theorem (Special case)

Let R Ď R2 be an open region in the plane, and F : R Ñ R be a function of
two variables such that Fx and Fy are continuous in a neighborhood of (a, b) P R.
If F (a, b) = 0 and Fy(a, b) = 0, then there exists δ ą 0 and a unique function
f : (a´ δ, a+ δ) Ñ R satisfying F (x, f(x)) = 0 for all x P (a´ δ, a+ δ), and b = f(a).
Moreover, f is differentiable on (a ´ δ, a+ δ), and

f 1(x) = ´
Fx(x, f(x))

Fy(x, f(x))
@x P (a ´ δ, a+ δ) .

In general, if F is a function of n variables (x1, x2, ¨ ¨ ¨ , xn) such that Fx1 , Fx2 , ¨ ¨ ¨ ,
Fxn are continuous in a neighborhood of (a1, a2, ¨ ¨ ¨ , an. If F (a1, a2, ¨ ¨ ¨ , an) = 0

and Fxn(a1, a2, ¨ ¨ ¨ , an) ‰ 0, then locally there exists a unique function f satisfying
F (x1, ¨ ¨ ¨ , xn´1, f(x1, ¨ ¨ ¨ , xn´1)) = 0 and an = f(a1, ¨ ¨ ¨ , an´1). Moreover, for 1 ď

j ď n ´ 1,
Bf

Bxj
(x1, ¨ ¨ ¨ , xn´1) = ´

Fxj
(x1, ¨ ¨ ¨ , xn´1, f(x1, ¨ ¨ ¨ , xn´1))

Fxn(x1, ¨ ¨ ¨ , xn´1, f(x1, ¨ ¨ ¨ , xn´1))
.

Example 13.45. Find dy

dx
if (x, y) satisfies y3 + y2 ´ 5y ´ x2 + 4 = 0.

Let F (x, y) = y3 + y2 ´ 5y ´ x2 + 4. Then Fx(x, y) = ´2x and Fy(x, y) = 3y2 + 2y ´ 5.
Therefore,

dy

dx
= ´

Fx(x, y)

Fy(x, y)
=

2x

3y2 + 2y ´ 5
.

Example 13.46. Find Bz

Bx
and Bz

By
if (x, y, z) satisfies 3x2z ´ x2y2 + 2z3 + 3yz ´ 5 = 0.

Let F (x, y, z) = 3x2z´x2y2+2z3+3yz´5. Then Fx(x, y, z) = 6xz´2xy2, Fy(x, y, z) =

´2x2y + 3z and Fz(x, y, z) = 3x2 + 6z2 + 3y. Therefore,

Bz

Bx
= ´

Fx(x, y, z)

Fz(x, y, z)
=

2xy2 ´ 6xz

3x2 + 6z2 + 3y

and
Bz

By
= ´

Fy(x, y, z)

Fz(x, y, z)
=

2x2y ´ 3z

3x2 + 6z2 + 3y
.



13.6 Directional Derivatives and Gradients
Let f be a function of two variables. From the discussion above we know that the existence
of fx and fy does not guarantee the differentiability of f . Since fx and fy are the rate of
change of the function f in two special directions (1, 0) and (0, 1), we can ask ourselves
whether f is differentiable if the rate of change of f exist in all direction.
Definition 13.47

Let f be a function of two variables x and y, and let u = cos θ i+sin θ j, where i = (1, 0)

and j = (0, 1), be a unit vector. The directional derivative of f in the direction of u
at (a, b), denoted by Duf(a, b), is the limit

Duf(a, b) = lim
hÑ0

f(a+ h cos θ, b+ h sin θ) ´ f(a, b)

h

provided this limit exists.

Example 13.48. Find the direction derivative of f(x, y) = x2 sin 2y at
(
1,
π

2

)
in the direc-

tion of v = 3i ´ 4 j.
We first normalize the vector v and find that u =

3

5
i ´

4

5
j is in the same direction of v

and has unit length. Therefore, for h ‰ 0,

f
(
1 +

3h

5
,
π

2
´

4h

5

)
´ f

(
1,
π

2

)
h

=
(1 +

3h

5
)2 sin

(
π ´

8h

5

)
´ 12 sin π

h
=

(
1 +

3h

5

)2 sin 8h

5

h
;

thus by the fact that lim
hÑ0

sinh
h

= 1, we find that

lim
hÑ0

f
(
1 +

3h

5
,
π

2
´

4h

5

)
´ f

(
1,
π

2

)
h

= lim
hÑ0

(
1 +

3h

5

)2 sin 8h

5

h
=

8

5
.

Theorem 13.49
Let R Ď R2 be an open region in the plane, and f : R Ñ R be a function of two
variables. If f is differentiable at (x0, y0) P R, then for all unit vector v = cos θ i+sin θ j,

(Duf)(x0, y0) = fx(x0, y0) cos θ + fy(x0, y0) sin θ = (Df)(x0, y0) ¨ u .

Proof. Let g(t) = f(x0 + t cos θ, y0 + t sin θ). Then by the chain rule for functions of two
variables,



(Duf)(x0, y0) = lim
hÑ0

g(h) ´ g(0)

h
= g 1(0) = fx(x0, y0) cos θ + fy(x0, y0) sin θ .

Example 13.50. In this example we re-compute of the direction derivative in Example 13.48
using Theorem 13.49. Note that f(x, y) = x2 sin 2y is differentiable on R2 since fx(x, y) =
2x sin 2y and fy(x, y) = 2x2 cos 2y are continuous (so that Theorem 13.35) guarantees the
differentiability of f). Therefore, Theorem 13.49 implies that

(Duf)
(
1,
π

2

)
=

3

5
fx
(
1,
π

2

)
´

4

5
fy
(
1,
π

2

)
=

3

5
¨ 2 ¨ sinπ ´

4

5
¨ 2 ¨ 12 ¨ cos π =

8

5
.

Unfortunately, the existence of directional derivative of f in all directions does not imply
the differentiability of f .

Example 13.51. Let f : R2 Ñ R be given by

f(x, y) =

$

&

%

xy2

x2 + y4
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) ,

and u = (cos θ, sin θ) P R2 be a unit vector. Then if cos θ ‰ 0
(
or equivalently, θ ‰

π

2
,
3π

2

)
,

(Duf)(0, 0) = lim
hÑ0

f(h cos θ, h sin θ) ´ f(0, 0)

h
= lim

tÑ0

h3 cos θ sin θ2
h(h2 cos θ2 + h4 sin θ4) =

sin θ2
cos θ

while if cos θ = 0,

(Duf)(0, 0) = lim
hÑ0

f(h cos θ, h sin θ) ´ f(0, 0)

h
= 0 .

Therefore, the directional derivative of f at (0, 0) exist in all directions. However, f is not
continuous at (0, 0) since if (x, y) approaches (0, 0) along the curve x = my2 with m ‰ 0,
we have

lim
(x,y)Ñ(0,0)

x=my2

f(x, y) = lim
yÑ0

f(my2, y) = lim
yÑ0

my4

m2y4 + y4
=

m

m2 + 1

which depends on m. Therefore, f is not continuous at (0, 0).

Definition 13.52
Let z = f(x, y) be a function of x and y such that fx(a, b) and fy(a, b) exists. Then
the gradient of f at (a, b), denoted by (∇f)(a, b) or (gradf)(a, b), is the vector
(fx(a, b), fy(a, b)); that is,

(∇f)(a, b) =
(
fx(a, b), fy(a, b)

)
= fx(a, b)i + fy(a, b) j .



‚ Functions of several variables
Definition 13.53

Let f be a function of n variables. The directional derivative of f at (a1, a2, ¨ ¨ ¨ , an)

in the direction u = (u1, u2, ¨ ¨ ¨ , un), where u21 + u22 + ¨ ¨ ¨ + u2n = 1, is the limit

(Duf)(a1, a2, ¨ ¨ ¨ , an) = lim
hÑ0

f(a1 + hu1, a2 + hu2, ¨ ¨ ¨ , an + hun) ´ f(a1, a2, ¨ ¨ ¨ , an)

h

provided that the limit exists. The gradient of f at (a1, a2, ¨ ¨ ¨ , an), denoted by
(∇f)(a1, a2, ¨ ¨ ¨ , an), is the vector

(∇f)(a1, a2, ¨ ¨ ¨ , an) =
(
fx1(a1, ¨ ¨ ¨ , an), fx2(a1, ¨ ¨ ¨ , an), ¨ ¨ ¨ , fxn(a1, ¨ ¨ ¨ , an)

)
.

Theorem 13.54
Let f be a function of n variables. If f is differentiable at (a1, a2, ¨ ¨ ¨ , an) and u =

(u1, u2, ¨ ¨ ¨ , un) is a unit vector, then

(Duf)(a1, a2, ¨ ¨ ¨ , an) = (∇f)(a1, ¨ ¨ ¨ , an) ¨ u .

‚ Properties of the gradient

Theorem 13.55
Let f be a function of two variables. If f has continuous first partial derivatives
fx and fy in a neighborhood of (x0, y0) and (∇f)(x0, y0) ‰ 0, then (∇f)(x0, y0) is
perpendicular/normal to the level curve f(x, y) = f(x0, y0) at (x0, y0). Moreover,

the value of f at (x0, y0) increase most rapidly in the direction (∇f)(x0, y0)
}(∇f)(x0, y0)}

and

decreases most rapidly in the direction ´
(∇f)(x0, y0)

}(∇f)(x0, y0)}
, where } ¨ } denotes the length

of the vector.

Remark 13.56. 1. Let f : (a, b) Ñ R be differentiable. The graph of the function y =

f(x) can be view as the level set F (x, y) = y ´ f(x) through point (c, f(c)) (that
is, F (x, y) = F (c, f(c))). We note that at the slope of the tangent line (c, f(c)) if
f 1(c) (so that (1, f 1(c)) is a tangent vector at (c, f(c))); thus the vector (´f 1(c), 1)

is perpendicular to the graph of f at (c, f(c)). The theorem above generalizes this
result.



2. The terminology “the value of f at (x0, y0) increase most rapidly in the direction u”,
where u is a unit vector, means that the directional derivative (Dvf)(x0, y0), treated
as a function of v, attains its maximum at v = u.

Example 13.57. Let f(x, y) = x2

a2
+
y2

b2
. Then the level curve f(x, y) = 1 is an ellipse and

the normal vector of this level curve at point (a cos θ, b sin θ) is given by(
fx(a cos θ, b sin θ), fy(a cos θ, b sin θ)

)
=

(2 cos θ
a

,
2 sin θ
b

)
.

Example 13.58. A heat-seeking particle is located at the point (2,´3) on a metal plate
whose temperature at (x, y) is T (x, y) = 20 ´ 4x2 ´ y2. Find the path of the particle as it
continuously moves in the direction of maximum temperature increase.

Suppose the path of the particle is given by (x(t), y(t)). Then

(x 1(t), y 1(t))// (∇T )(x(t), y(t)) =
(

´ 8x(t),´2y(t)
)
.

Therefore, there exists a function k(t) such that ´8x = k
dx

dt
and ´ 2y = k

dy

dt
; thus

d

dt

(
ln |x| ´ 4 ln |y|

)
= 0 .

Then |x||y|´4 = C. Since (x(t), y(t)) passes through (2,´3), we find that C =
2

81
; thus

(x, y) satisfies x =
2

81
y4.

Theorem 13.59
Let f be a function of three variables. If f has continuous first partial deriva-
tives fx, fy, fz in a neighborhood of (x0, y0, z0) and (∇f)(x0, y0, z0) ‰ 0, then
(∇f)(x0, y0, z0) is perpendicular/normal to the level surface f(x, y, z) = f(x0, y0, z0)

at (x0, y0, z0). Moreover, the value of f at (x0, y0, z0) increase most rapidly in the direc-

tion (∇f)(x0, y0, z0)
}(∇f)(x0, y0, z0)}

and decreases most rapidly in the direction ´
(∇f)(x0, y0, z0)

}(∇f)(x0, y0, z0)}
,

where } ¨ } denotes the length of the vector.

Proof. We have shown that (∇F )(x0, y0, z0) is perpendicular to the level surface F (x, y, z) =
F (x0, y0, z0) in Theorem 13.63, so it suffices to show that (DvF )(x0, y0, z0) attains its maxi-
mum at v = u. Nevertheless, by Theorem 13.54, we find that

(DvF )(x0, y0, z0) = (∇F )(x0, y0, z0) ¨ v = }(∇F )(x0, y0, z0)} cos θ ,



where θ is the angle between (∇F )(x0, y0, z0) and v. Clearly (DvF )(x0, y0, z0) attains its
maximum when θ = 0 which shows that (DvF )(x0, y0, z0) attains its maximum at v =

(∇F )(x0, y0, z0)
}(∇F )(x0, y0, z0)}

.

Example 13.60 (Gradient method of finding local minimum of a function). Suppose that
you are looking for the minimum of a function f : R2 Ñ R. You do not know where the
minimum point of f is, so you start with (conjecturing a possible) point (a, b) and hope to
find a curve C that connects (a, b) and the minimum point. Suppose that C is parameterized
by r : [a, b] Ñ R2. By the fact that ´(∇f)(x) points to the direction to which f decreases
most rapidly, we expected that

r 1(t) // ´(∇f)(r(t)) .

In particular, we choose r 1(t) = ´(∇f)(r(t)) and hope that we can find r (so that we can

find C). We note that we can also choose r 1(t) = ´
(∇f)(r(t))

}(∇f)(r(t))} which implies that r 1 never

vanishes so that the tangent direction indeed points to the direction ´(∇f)(r(t)).
Sometimes it is very hard to find the solution r to the differential equationt, so instead

we choose a different strategy. Starting at the point (a, b), we move forward in the direction
´(∇f)(a, b) and stop temporally at (a1, b1) ” (a, b) ´ t0(∇f)(a, b) for some t ą 0. Then
we move forward in the direction ´(∇f)(a1, b1) and stop temporally at (a2, b2) ” (a1, b1) ´

t1(∇)(a1, b1). Continue this process, we obtain a sequence of stops t(ak, bk)u
8
k=1 given by

(ak+1, bk+1) = (ak, bk) ´ tk(∇f)(ak, bk) (13.6.1)

for some sequence ttku8
k=0 of non-negative numbers to be chosen. One way of choosing the

step-size tk, called the method of exact line search, is to choose tk so that

f
(
(ak, bk) ´ tk(∇f)(ak, bk)

)
= min

tą0
f
(
(ak, bk) ´ t(∇f)(ak, bk)

)
.

Such tk must satisfy that
d

dt

ˇ

ˇ

ˇ

t=tk
f
(
(ak, bk) ´ t(∇f)(ak, bk)

)
= 0

which implies that tk satisfies that (∇f)
(
(ak, bk)´ tk(∇f)(ak, bk)) ¨ (∇f)(ak, bk) = 0. There-

fore, (13.6.1) implies that

(∇f)(ak+1, bk+1) ¨ (∇f)(ak, bk) = 0 @ k P N Y t0u

which shows that the exact line search algorithm of constructing minimizing sequence pro-
duces a zigzag path connecting the starting point and the minimum point.



13.7 Tangent Planes and Normal Lines
‚ The tangent plane of surfaces

Any three points in space that are not collinear defines a plane. Suppose that S is a
“surface” (which we have not define yet, but please use the common sense to think about
it), and P0 = (x0, y0, z0) is a point on the plane. Given another two point P1 = (x1, y1, z1)

and P2 = (x2, y2, z2) on the surface such that P0, P1, P2 are not collinear, let TP1P2 denote
the plane determined by P0, P1 and P2. If the plane “approaches” a certain plane as P1, P2

approaches P0, the “limit” is called the tangent plane of S at P0.
Now suppose that the surface S is the graph of a function of two variables z = f(x, y).

Consider the tangent plane of S at P0 = (x0, y0, z0), where z0 = f(x0, y0). The plane TP1P2 ,
where P1 = (x0 + h, y0, f(x0 + h, y0)) and P2 = (x0, y0 + k, f(x0, y0 + k)), is given by[(
h, 0, f(x0+h, y0)´f(x0, y0)

)
ˆ
(
0, k, f(x0, y0+k)´f(x0, y0)

)]
¨ (x´x0, y´y0, z´z0) = 0 ,

where u ¨ v and u ˆ v are the inner product and the cross product of u and v, respectively.
For (h, k) ‰ (0, 0), divide both sides by hk and pass to the limit as (h, k) Ñ (0, 0), we find
that the limit is[(

1, 0, fx(x0, y0)
)

ˆ
(
0, 1, fy(x0, y0)

)]
¨ (x ´ x0, y ´ y0, z ´ z0) = 0 ,

provided that fx(x0, y0) and fy(x0, y0) exists. Computing the cross product, we find that(
1, 0, fx(x0, y0)

)
ˆ
(
0, 1, fy(x0, y0)

)
=

(
´fx(x0, y0),´fy(x0, y0), 1

)
;

thus if the tangent plane exists at (x0, y0, z0), the tangent plane must be(
´fx(x0, y0),´fy(x0, y0), 1

)
¨
(
x ´ x0, y ´ y0, z ´ f(x0, y0)

)
= 0

or equivalently,

z = f(x0, y0) + fx(x0, y0)(x ´ x0) + fy(x0, y0)(y ´ y0) .

On the other hand, if f is differentiable at (x0, y0), then

f(x, y) = f(x0, y0) + fx(x0, y0)(x ´ x0) + fy(x0, y0)(y ´ y0)

+ ε1(x, y)(x ´ x0) + ε2(x, y)(y ´ y0)



for some functions ε1, ε2 satisfying lim
(x,y)Ñ(x0,y0)

ε1(x, y) = lim
(x,y)Ñ(x0,y0)

ε2(x, y) = 0. This shows
that the rate of convergence of the quantity

ˇ

ˇf(x, y) ´ f(x0, y0) ´ fx(x0, y0)(x ´ x0) ´ fy(x0, y0)(y ´ y0)
ˇ

ˇ ,

as (x, y) approaches (x0, y0), is “faster than linear” and this is exactly what we have in mind
when talking about tangent planes. Therefore, we conclude that
Theorem 13.61

Let R Ď R2 be an open region in the plane, and f : R Ñ R be a function of two

variables. If f is differentiable at (x0, y0) P R, the tangent plane of the graph of f at
(x0, y0, f(x0, y0)) is given by

z = f(x0, y0) + fx(x0, y0)(x ´ x0) + fy(x0, y0)(y ´ y0) ,

and the vector (fx(x0, y0), fy(x0, y0),´1) is a normal vector to the graph of f at
(x0, y0, f(x0, y0)).

Example 13.62. Find the equation of the normal line to the surface xyz = 12 at the point
(2,´2,´3).

Let F (x, y, z) = xyz ´ 12. Then (Fx, Fy, Fz)(2,´2,´3) = (6,´6,´4). Therefore, the
vector (6,´6,´4) is normal to the surface xyz = 12 at (2,´2,´3) and the normal line
passing through (2,´2,´3) is

x ´ 2

6
=
y + 2

´6
=
z + 3

´4
.

Now suppose that the function of three variables w = F (x, y, z) is continuously differen-
tiable; that is, Fx, Fy, Fz are continuous. Suppose that for some (x0, y0, z0) in the domain,
(Fx(x0, y0, z0), Fy(x0, y0, z0), Fz(x0, y0, z0)) ‰ 0. W.L.O.G., we assume that Fz(x0, y0, z0) ‰

0. Then the Implicit Function Theorem (Theorem 13.44) implies that there exists a unique
differentiable function z = f(x, y) such that

F (x, y, f(x, y)) = 0 and z0 = f(x0, y0) .

By the discussion above, the tangent plane of the graph of f at (x0, y0, z0) is given by

z = z0 + fx(x0, y0)(x ´ x0) + fy(x0, y0)(y ´ y0)



and the implicit partial differentiation further shows that the tangent plane above can be
rewritten as

z = z0 ´
Fx(x0, y0, z0)

Fz(x0, y0, z0)
(x ´ x0) ´

Fy(x0, y0, z0)

Fz(x0, y0, z0)
(y ´ y0) .

Therefore, the tangent plane of the graph of f at (x0, y0, z0) is given by

(
Fx(x0, y0, z0), Fy(x0, y0, z0), Fz(x0, y0, z0)

)
¨ (x ´ x0, y ´ y0, z ´ z0) = 0 .

On the other hand, note that the graph of f is the same as the level surface F (x, y, z) =
F (x0, y0, z0); thus we conclude that
Theorem 13.63

Let w = F (x, y, z) be a function of three variables such that Fx, Fy and Fz are
continuous. If

(
Fx(x0, y0, z0), Fy(x0, y0, z0), Fz(x0, y0, z0)

)
‰ 0, then the tangent plane

of the level surface F (x, y, z) = F (x0, y0, z0) at (x0, y0, z0) is given by(
Fx(x0, y0, z0), Fy(x0, y0, z0), Fz(x0, y0, z0)

)
¨ (x ´ x0, y ´ y0, z ´ z0) = 0 ,

and the vector
(
Fx(x0, y0, z0), Fy(x0, y0, z0), Fz(x0, y0, z0)

)
is a normal vector to the

level surface F (x, y, z) = F (x0, y0, z0).

Example 13.64. Find an equation of the normal line and the tangent plane to the paraboloid

z = 1 ´
1

10
(x2 + 4y2)

at the point
(
1, 1,

1

2

)
.

Let F (x, y, z) = z ´ 1 +
1

10
(x2 + 4y2). Then Fz

(
1, 1,

1

2

)
”

(1
5
,
4

5
, 1
)

‰ 0; thus Theorem

13.63 implies that the tangent plane of the given paraboloid at
(
1, 1,

1

2

)
is

z =
1

2
´

1

5
(x ´ 1) ´

4

5
(y ´ 1) =

3

2
´

1

5
x ´

4

5
y .

An equation of the normal line at
(
1, 1,

1

2

)
is given by

x´ 1

1/5
=
y ´ 1

4/5
=
z ´ 1/2

1
.



13.8 Extrema of Functions of Several Variables

13.8.1 Absolute extrema and relative extrema

Theorem 13.65: Extreme Value Theorem
Let f be a continuous function of two variables x and y defined on a closed bounded
region R in the plane.

1. There is at least one point in R at which f takes on a minimum value.

2. There is at least one point in R at which f takes on a maximum value.

A minimum is also called an absolute minimum and a maximum is also called an absolute
maximum. As in the case of functions of one variable, there are relative extrema defined as
follows.

Definition 13.66: Relative Extrema
Let f be a function defined on a region R containing (x0, y0).

1. The function f has a relative minimum at (x0, y0) if f(x, y) ě f(x0, y0) for all
(x, y) in an open disk containing (x0, y0).

2. The function f has a relative maximum at (x0, y0) if f(x, y) ď f(x0, y0) for all
(x, y) in an open disk containing (x0, y0).

Similar to the critical points for functions of one variable defined in Definition 3.4,we
have the following

Definition 13.67: Critical Points
Let f be defined on an open region R containing (x0, y0). The point (x0, y0) is a
critical point of f if one of the following is true.

1. fx(x0, y0) = 0 and fy(x0, y0) = 0;

2. fx(x0, y0) or fy(x0, y0) does not exist.

Similar to Theorem 3.5, we have the following necessary condition for points where f
attains its relative extrema.



Theorem 13.68
Let R be an open region in the plane, and f : R Ñ R be continuous. If f has a
relative extremum at (x0, y0) on an open region R, then (x0, y0) is a critical point of
f .

Example 13.69. Determine the relative extrema of the function

f(x, y) = ´x3 + 4xy ´ 2y2 + 1 .

First we find the critical points of f . Since f is differentiable, the critical points are
those points at which the gradient of f is the zero vector. Since fx(x, y) = ´3x2 + 4y and
fy(x, y) = 4x´ 4y, if (a, b) is a critical point of f , then ´3a2 +4b = 4a´ 4b = 0. Therefore,
(0, 0) and

(4
3
,
4

3

)
are the only critical points of f .

Note that (0, 0) is not a relative extremum of f since f(x, 0) does not attain its extremum
at x = 0. Near

(4
3
,
4

3

)
, we find that if |h|, |k| ! 1,

f
(4
3
+ h,

4

3
+ k

)
= ´

(
h+

4

3

)3
+ 4

(4
3
+ h

)(4
3
+ k

)
´ 2

(
k +

4

3

)2
+ 1

= ´h3 ´ 4h2 ´
16h

3
´

64

27
+ 4

(16
9

+
4

3
h+

4

3
k + hk

)
´ 2

(
k2 +

8

3
k +

16

9

)
+ 1

= ´h3 ´ 4h2 + 4hk ´ 2k2 + f
(4
3
,
4

3

)
= f

(4
3
,
4

3

)
´ 2(k ´ h)2 ´ h2(2 + h) ď f

(4
3
,
4

3

)
.

Therefore, f has a relative maximum at
(4
3
,
4

3

)
.

13.8.2 The second partials test

A critical point of a function of two variables do not always yield relative maxima or minima.

Definition 13.70
Let f be a function of two variables. A point (x0, y0) is a saddle point of f if (x0, y0)
is a critical point of f but f does not attain its extrema at (x0, y0).



Theorem 13.71
Suppose that a function f of two variables has continuous second partial derivatives
on an open region containing a point (a, b) for which fx(a, b) = fy(a, b) = 0. Let

D = fxx(a, b)fyy(a, b) ´ fxy(a, b)
2 =

ˇ

ˇ

ˇ

ˇ

fxx(a, b) fxy(a, b)

fyx(a, b) fyy(a, b)

ˇ

ˇ

ˇ

ˇ

.

1. If D ą 0 and fxx(a, b) ą 0, then f has a relative minimum at (a, b).

2. If D ą 0 and fxx(a, b) ă 0, then f has a relative maximum at (a, b).

3. If D ă 0, then (a, b, f(a, b)) is a saddle point.

4. The test is inconclusive if D = 0.

Example 13.72. Consider the relative extrema of the function given in Example 13.69.
We have computed that (0, 0) and

(4
3
,
4

3

)
are the only critical points of f .

1. The point (0, 0): we compute the second partial derivatives and obtain that

fxx(0, 0) = 0 , fxy(0, 0) = 4 and fyy(0, 0) = ´4 .

Therefore, D = ´16 ă 0 which implies that (0, 0) is a saddle point.

2. The point
(4
3
,
4

3

)
: we compute the second partial derivatives and obtain that

fxx
(4
3
,
4

3

)
= ´8 , fxy

(4
3
,
4

3

)
= 4 and fyy

(4
3
,
4

3

)
= ´4 .

Therefore, D = 16 ą 0. Since fxx
(4
3
,
4

3

)
ă 0, f has a relative maximum at

(4
3
,
4

3

)
.

Example 13.73. Find the absolute extrema of the function f(x, y) = sin(xy) on the closed
region given by 0 ď x ď π and 0 ď y ď 1.

From the partial derivatives

fx(x, y) = y cos(xy) and fy(x, y) = x cos(xy) ,

we find that each point on the hyperbola xy =
π

2
is a critical point of f . The value of f at

each of these points is sin π
2
= 1 which is the maximum of the sine function. Therefore, the

maximum of f is 1.
The minimum of f occurs at the boundary of the region.



1. x = 0 and 0 ď y ď 1: then f(x, y) = 0.

2. x = π and 0 ď y ď 1: then f(x, y) = sin(πy). The critical points of the function
g(y) = sin(πy) occurs at y =

1

2
since g 1

(1
2

)
= π cos

(π
2

)
= 0. Since g

(1
2

)
= 1 and

g(0) = g(1) = 0, we find that the minimum of g is 0.

3. y = 0 and 0 ď x ď π: then f(x, y) = 0.

4. y = 1 and 0 ď x ď π: then f(x, y) = sinx whose minimum on [0, π] is 0.

Therefore, the minimum of f is 0.

The concepts of relative extrema and critical points can be extended to functions of three
or more variables. On the other hand, the second derivative test for functions of three or
more variables are more tricky, and we will not talk about this until the course of Advance
Calculus.

13.9 Applications of Extrema
Theorem 13.74

The least squares regression line for n points
␣

(x1, y1), (x2, y2), ¨ ¨ ¨ , (xn, yn)
(

is given
by y = ax+ b, where

a =

n
n
ř

i=1

xiyi ´

( n
ř

i=1

xi

)( n
ř

i=1

yi

)
n

n
ř

i=1

x2i ´

( n
ř

i=1

xi

)2
and b =

1

n

( n
ÿ

i=1

yi ´ a
n
ÿ

i=1

xi

)
. (13.9.1)

Proof. For a, b P R, define S(a, b) =
n
ř

i=1

(axi + b ´ yi)
2. Then

BS

Ba
(a, b) = 2

n
ÿ

i=1

(axi + b ´ yi)xi ,

BS

Bb
(a, b) = 2

n
ÿ

i=1

(axi + b ´ yi) .



The critical points (a, b) of S satisfies

a
n
ÿ

i=1

x2i + b
n
ÿ

i=1

xi =
n
ÿ

i=1

xiyi , (13.9.2a)

a
n
ÿ

i=1

xi + b
n
ÿ

i=1

1 =
n
ÿ

i=1

yi (13.9.2b)

which implies that (a, b) are given by (13.9.1). Clearly such (a, b) minimizes S.

Remark 13.75. An easy way to memorize the equations (a, b) satisfies is given in this
remark. We assume (even though in general it is a false assumption) that the line y = ax+b

passes through (x1, y1), (x2, y2), ¨ ¨ ¨ , (xn, yn). Then yi = axi + b for all 1 ď i ď n; thus in
matrix form, we have 

x1 1
x2 1
... ...
xn 1


[
a
b

]
=


y1 1
y2 1
... ...
yn 1

 .

Therefore,

[
x1 x2 ¨ ¨ ¨ xn
1 1 ¨ ¨ ¨ 1

]
x1 1
x2 1
... ...
xn 1


[
a
b

]
=

[
x1 x2 ¨ ¨ ¨ xn
1 1 ¨ ¨ ¨ 1

]
y1 1
y2 1
... ...
yn 1


which implies (13.9.2).

13.10 Lagrange Multipliers

The concept of this section is to find the extrema of a function of several variables subject
to certain constraints:

Find extrema of the function w = f(x1, x2, ¨ ¨ ¨ , xn) when (x1, x2, ¨ ¨ ¨ , xn) satisfies
g1(x1, ¨ ¨ ¨ , xn) = g2(x1, ¨ ¨ ¨ , xn) = ¨ ¨ ¨ = gm(x1, ¨ ¨ ¨ , xn) = 0.



Theorem 13.76: Lagrange Multiplier Theorem
Let f and g be continuously differentiable functions of two variables. Suppose that
on the level curve g(x, y) = c the function f attains its extrema at (x0, y0). If
(∇g)(x0, y0) ‰ 0, then there is a real value λ such that

(∇f)(x0, y0) = λ(∇g)(x0, y0) .

Proof. First we note that (x0, y0) is on the level curve g(x, y) = c; thus c = g(x0, y0).
Define F (x, y) = g(x, y)´ g(x0, y0). Then F has continuous first partial derivatives, and

(∇F )(x0, y0) = (∇g)(x0, y0) ‰ 0. Then either Fx(x0, y0) ‰ 0 or Fy(x0, y0) ‰ 0. Suppose
that Fy(x0, y0) ‰ 0. Then the Implicit Function Theorem implies that there exists δ ą 0 a
unique differentiable function h : (x0 ´ δ, x0 + δ) Ñ R such that

F (x, h(x)) = 0 and y0 = h(x0) .

In other words, the set
␣

(x, h(x))
ˇ

ˇx0´δ ă x ă x0+δ
(

is a subset of the level curve g(x, y) =
g(x0, y0). Therefore, the function G : (x0 ´ δ, x0 + δ) Ñ R defined by G(x) = f(x, h(x))

attains its extrema at (an interior point) x0; thus

G 1(x0) = fx(x0, y0) + fy(x0, y0)h
1(x0) = 0 .

Since the implicit differentiation shows that

h 1(x0) = ´
Fx(x0, h(x0))

Fy(x0, h(x0))
= ´

gx(x0, y0)

gy(x0, y0)
,

we conclude that
fx(x0, y0) ´ fy(x0, y0)

gx(x0, y0)

gy(x0, y0)
= 0 .

If fy(x0, y0) = 0, then fx(x0, y0) = 0 which implies that (∇f)(x0, y0) = 0 = 0 ¨ (∇g)(x0, y0).
If fy(x0, y0) ‰ 0, then

fx(x0, y0)

fy(x0, y0)
=
gx(x0, y0)

gy(x0, y0)

which implies that (∇f)(x0, y0)// (∇g)(x0, y0); thus there exists λ such that

(∇f)(x0, y0) = λ(∇g)(x0, y0) .

Similar argument can be applied to the case Fx(x0, y0) ‰ 0, and we omit the proof for
this case.



Remark 13.77. The scalar λ in the theorem above is called a Lagrange multiplier.

Example 13.78. Find the extreme value of f(x, y) = 4xy subject to the constraint

x2

9
+
y2

16
= 1 .

Let g(x, y) =
x2

9
+
y2

16
´ 1. Suppose that on the level curve g(x, y) = 0 the function

f attains its extrema at (x0, y0). Note that then (∇g)(x0, y0) ‰ 0 (since (x0, y0) ‰ (0, 0));
thus the Lagrange Multiplier Theorem implies that there exists λ P R such that

(4y0, 4x0) = (∇f)(x0, y0) = λ(∇g)(x0, y0) = λ
(2x0

9
,
y0
8

)
.

Therefore, (x0, y0) satisfies 4y0 =
2λx0
9

and 4x0 =
λy0
8

, as well as x20
9

+
y20
16

= 1. Therefore,
λ ‰ 0, and

4x0 =
λy0
8

=
λ

8
¨
λx0
18

=
λ2x0
144

.

The identity above implies that x0 = 0 or λ = ˘24.

1. If x0 = 0, then y0 = ˘4 which shows that λ = 0, a contradiction.

2. If λ = ˘24, then x0 = ˘
3y0
4

; thus

1 =
1

9
¨
9y20
16

+
y20
16

=
y20
8
.

Therefore, y0 = ˘2
?
2 which implies that x0 = ˘

3
?
2

2
. At these (x0, y0), f(x0, y0) =

˘24. Therefore, on the ellipse x2

9
+
y2

16
= 1 the maximum of f is 24

(
at (x0, y0) =(

˘ 2
?
2,˘

3
?
2

2

))
and the minimum of f is ´24

(
at (x0, y0) =

(
˘ 2

?
2,¯

3
?
2

2

))
.

Example 13.79. Find the extreme value of f(x, y) = 4xy, where x ą 0 and y ą 0, subject

to the constraint x2

9
+
y2

16
= 1. From the previous example we find that the maximum of

f is 24
(

at (x0, y0) =
(
2
?
2,

3
?
2

2

))
. The minimum of f occurs at the end-points (0, 4) or

(3, 0). In either points, the value of f is 0; thus the minimum of f is 0.



Example 13.80. Find the extreme value of f(x, y) = 4xy, where (x, y) satisfies x
2

9
+
y2

16
ď 1.

We have find the extreme value of f , under the constraint x
2

9
+
y2

16
= 1, is ˘24. Therefore,

it suffices to consider the extreme value of f in the interior x
2

9
+
y2

16
ă 1.

Assume that f attains its extreme value at an interior point (x0, y0). Then (x0, y0) is a
critical point of f ; thus

fx(x0, y0) = fy(x0, y0) = 0

which implies that (x0, y0) = (0, 0). Since f(0, 0) = 0, f(0, 0) is not an extreme value of f .

Therefore, the extreme value of f on the region x2

9
+
y2

16
ď 1 is ˘24.

We note that (0, 0) in fact is a saddle point of f since fxx(0, 0)fyy(0, 0) ´ fxy(0, 0)
2 =

´16 ă 0.

Example 13.81. Find the extreme value of f(x, y) = x2 + 6(y2 + y + 1)2 subject to the
constraint x2 + (y3 ´ 1)2 = 1 (using the method of Lagrange multipliers).

Let g(x, y) = x2 + (y3 ´ 1)2. We first compute the gradient of f and g as follows:

(∇f)(x, y) =
(
2x, 12(2y + 1)(y2 + y + 1)

)
and (∇g)(x, y) =

(
2x, 6y2(y3 ´ 1)

)
.

Assume that f , under the constraint g = 1, attains its extrema at (x0, y0). Then

1. If (∇g)(x0, y0) ‰ 0, then the Lagrange multiplier theorem implies that there exists
λ P R such that(

2x0, 12(2y0 + 1)(y20 + y0 + 1)
)
= λ

(
2x0, 6y

2
0(y

3
0 ´ 1)

)
. (13.10.1)

Therefore, x0(λ ´ 1) = 0 and 2(2y0 + 1) = λy20(y0 ´ 1).

(a) x0 = 0, then g(x0, y0) = 1 implies that y0 = 3
?
2 (y0 = 0 cannot be true because

no λ will verify (13.10.1)); thus f(x0, y0) = 6( 3
?
4 + 3

?
2 + 1)2.

(b) λ = 1, then 4y0 + 2 = y20(y0 ´ 1) or equivalently, y30 ´ y20 ´ 2(2y0 + 1) = 0. Note
that

y30 ´ y20 ´ 4y0 ´ 2 = (y0 + 1)(y20 ´ 2y0 ´ 2) ;

thus y0 = ´1 (impossible since g(x0,´1) ‰ 1) or y0 = 1˘
?
3 (both are impossible

since g(x0, 1 ˘
?
3) ‰ 1).



2. If (∇g)(x0, y0) = 0, then (x0, y0) = (0, 0); thus f(x0, y0) = 1.

Therefore, the maximum of f , under the constraint g = 1, is f(0, 3
?
2) = 6( 3

?
4 + 3

?
2 + 1)2

and the minimum of f , under the constraint g = 1, is f(0, 0) = 1.

Similar argument of proving Theorem 13.76 can be used to show the following
Theorem 13.82

Let f and g be continuously differentiable functions of n variables. Suppose that on
the level curve g(x1, ¨ ¨ ¨ , xn) = c the function f attains its extrema at (a1, ¨ ¨ ¨ , an). If
(∇g)(a1, ¨ ¨ ¨ , an) ‰ 0, then there is a real value λ such that

(∇f)(a1, ¨ ¨ ¨ , an) = λ(∇g)(a1, ¨ ¨ ¨ , an) .

Example 13.83. Find the minimum value of f(x, y, z) = 2x2 + y2 + 3z2 subject to the
constraint 2x ´ 3y ´ 4z = 49.

Let g(x, y, z) = 2x´ 3y ´ 4z ´ 49. Then (∇g) ‰ 0; thus if f attains its relative extrema
at (x0, y0, z0), there exists λ P R such that (∇f)(x0, y0, z0) = λ(∇g)(x0, y0, z0). Therefore,

(4x0, 2y0, 6z0) = λ(2,´3,´4)

or equivalently, λ = 2x0 = ´
2

3
y0 = ´

3

2
z0. Since 2x0 ´ 3y0 ´ 4z0 = 49, we find that λ = 6

which implies that
(x0, y0, z0) = (3,´9,´4) .

Since f grows beyond any bound as
a

x2 + y2 + z2 approaches 8, we find that f(3,´9,´4) =

147 is the minimum of f .

Next, we consider the optimization problem of finding the extreme value of a function
of three variables w = f(x, y, z) subject to two constraints g(x, y, z) = h(x, y, z) = 0.
Theorem 13.84: Lagrange Multiplier Theorem - More General Version

Let f , g and h be continuously differentiable functions of three variables. Suppose
that subject to the constraints g(x, y, z) = h(x, y, z) = c the function f attains its
extrema at (x0, y0, z0). If (∇g)(x0, y0, z0) ˆ (∇h)(x0, y0, z0) ‰ 0, then there are real
numbers λ and µ such that

(∇f)(x0, y0, z0) = λ(∇g)(x0, y0, z0) + µ(∇h)(x0, y0, z0) .



Example 13.85. Find the extreme value of the function f(x, y, z) = 20 + 2x + 2y + z2

subject to two constraints x2 + y2 + z2 = 11 and x+ y + z = 3.
Let g(x, y, z) = x2 + y2 + z2 ´ 11 and h(x, y, z) = x + y + z ´ 3. We first note that if

(x, y, z) satisfies g(x, y, z) = h(x, y, z) = 0, then (∇g)(x, y, z)ˆ (∇h)(x, y, z) ‰ 0. Moreover,
f attains its extrema on the intersection of the level surface g(x, y, z) = 0 and h(x, y, z) =

0 (since the intersection is closed and bounded). Suppose that f attains its extrema at
(x0, y0, z0). Then there exists λ, µ P R such that

(∇f)(x0, y0, z0) = λ(∇g)(x0, y0, z0) + µ(∇h)(x0, y0, z0) ,

g(x0, y0, z0) = h(x0, y0, z0) = 0 .

Therefore,

2λx0 + µ = 2 , (13.10.2a)
2λy0 + µ = 2 , (13.10.2b)

2(λ ´ 1)z0 + µ = 0 , (13.10.2c)
x20 + y20 + z20 = 11 , (13.10.2d)
x0 + y0 + z0 = 3 . (13.10.2e)

(13.10.2a,b) implies that λ(x0 ´ y0) = 0; thus λ = 0 or x0 = y0.

1. If λ = 0, then (13.10.2a) implies µ = 2 and (13.10.2c) implies µ = 2z0. Therefore,
z0 = 1 which further shows x20 + y20 = 10 and x0 + y0 = 2. Then (x0, y0) = (3,´1) or
(´1, 3). Therefore, when λ = 0,

(x0, y0, z0) = (3,´1, 1) or (x0, y0, z0) = (´1, 3, 1) .

2. If x0 = y0, then (13.10.2d,e) implies that 2x20 + z20 = 11 and 2x0 + z0 = 3. Therefore,

x0 = y0 =
3 ˘ 2

?
3

3
, z0 =

3 ¯ 4
?
3

3
.

Since f(3,´1, 1) = f(´1, 3, 1) = 25 and

f
(3 + 2

?
3

3
,
3 + 2

?
3

3
,
3 ´ 4

?
3

3
) = f

(3 ´ 2
?
3

3
,
3 ´ 2

?
3

3
,
3 + 4

?
3

3
) =

91

3
,

we conclude that the maximum and minimum value of f subject to g = h = 0 are 91

3
and

25, respectively.



Example 13.86. Find the extreme value of f(x, y, z) = z subject to the constraints x4 +
y4 ´ z3 = 0 and y = z.

Let g(x, y, z) = x4 + y4 ´ z3 and h(x, y, z) = y ´ z. Then

(∇g)(x, y, z) = (4x3, 4y3,´3z2) and (∇h)(x, y, z) = (0, 1,´1)

which implies that

(∇g)(x, y, z) ˆ (∇h)(x, y, z) = (3z2 ´ 4y3, 4x3, 4x3) .

Suppose the extreme value of f , under the constraints g = h = 0, occurs at (x0, y0, z0).

1. If (∇g)(x0, y0, z0) ˆ (∇h)(x0, y0, z0) = 0, then (x0, y0, z0) = (0, 0, 0) and f(0, 0, 0) = 0.

2. If (∇g)(x0, y0, z0)ˆ(∇h)(x0, y0, z0) ‰ 0, then the Lagrange Multiplier Theorem implies
that there exist λ, µ P R such that

(∇f)(x0, y0, z0) = λ(∇g)(x0, y0, z0) + µ(∇h)(x0, y0, z0) .

Therefore, (x0, y0, z0) satisfies that

4λx30 = 0 , (13.10.3a)
4λy30 + µ = 0 , (13.10.3b)

´3λz20 ´ µ = 1 , (13.10.3c)
x40 + y40 ´ z30 = 0 , (13.10.3d)

y0 ´ z0 = 0 . (13.10.3e)

Then (13.10.3a) implies that λ = 0 or x0 = 0.

(a) If λ = 0, then (13.10.3b) shows µ = 0; thus using (13.10.3c), we obtain a contra-
diction 0 = ´1. Therefore, λ ‰ 0.

(b) If x0 = 0 (and λ ‰ 0), then (13.10.3d) implies that y40 ´ z30 = 0. Together with
(13.10.3e), we find that y0 = 0 or y0 = 1. However, if y0 = 0, then (13.10.3b)
shows that µ = 0 which again implies a contradiction 0 = 1 from (13.10.3c).
Therefore, y0 = z0 = 1 (and there are λ, µ satisfying (13.10.3b,c) for y0 = z0 = 1

but the values of λ and µ are not important).



Therefore, the Lagrange Multiplier Theorem only provides one possible (x0, y0, z0) =

(0, 1, 1) where f attains its extreme value.

Since the intersection of the level surface g = 0 and h = 0 is closed and bounded, f must
attains its maximum and minimum subject to the constraints g = h = 0. Since (0, 0, 0)

and (0, 1, 1) are the only possible points where f attains its extrema, the maximum and
minimum of f , subject to the constraint g = h = 0, is f(0, 1, 1) = 1 and f(0, 0, 0) = 0,
respectively.

13.11 Exercise
Problem 13.1. Let f : R2 Ñ R be a function such that

f(x, y) + f(y, z) + f(z, x) = 0 @x, y, z P R .

Show that there exists g : R Ñ R such that

f(x, y) = g(x) ´ g(y) @x, y P R .

Problem 13.2. In the following sub-problems, find the limit if it exists or explain why it
does not exist.

(1) lim
(x,y)Ñ(0,0)

x+ y

x2 + y
(2) lim

(x,y)Ñ(0,0)

x

x2 ´ y2
(3) lim

(x,y)Ñ(0,0)

x2y

x4 + y2

(4) lim
(x,y)Ñ(0,0)

xy

x2 + y2
(5) lim

(x,y)Ñ(0,0)

x3 ´ y3

x2 + y2
(6) lim

(x,y)Ñ(0,0)
(x2 + y2) ln(x2 + y2)

(7) lim
(x,y)Ñ(0,0)

xy4

x4 + y4
(8) lim

(x,y)Ñ(0,0)
y sin 1

x
(9) lim

(x,y)Ñ(0,0)
x cos 1

y

(10) lim
(x,y)Ñ(0,0)

x2 + y2
a

x2 + y2 + 1 ´ 1
(11) lim

(x,y,z)Ñ(0,0,0)

xy + yz + zx

x2 + y2 + z2

(12) lim
(x,y,z)Ñ(0,0,0)

xy + yz2 + xz2

x2 + y2 + z2
13) lim

(x,y,z)Ñ(0,0,0)
arctan 1

x2 + y2 + z2

Problem 13.3. Discuss the continuity of the functions given below.

1. f(x, y) =

$

&

%

sin(xy)
xy

if xy ‰ 0 ,

1 if xy = 0 .



2. f(x, y) =

$

&

%

e´x2´y2 ´ 1

x2 + y2
if (x, y) ‰ (0, 0) ,

1 if (x, y) = (0, 0) .

3. f(x, y) =

$

&

%

sin(x3 + y4)

x2 + y2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) .

Problem 13.4. Let f(x, y) =
"

0 if y ď 0 or y ě x4 ,

1 if 0 ă y ă x4 .

1. Show that f(x, y) Ñ 0 as (x, y) Ñ (0, 0) along any path through (0, 0) of the form
y = mxα with 0 ă α ă 4.

2. Show that f is discontinuous on two entire curves.

Problem 13.5. Find B

Bx

ˇ

ˇ

ˇ

(x,y,z)=(ln 4,ln 9,2)

8
ř

n=0

(x+ y)n

n!zn
. Do not write the answer in terms of

an infinite sum.

Problem 13.6. Let f(x, y) = (x2 + y2)
2
3 . Find the partial derivative Bf

Bx
.

Problem 13.7. Let f(x, y, z) = xy2z3+arcsin(x
?
z). Find fxzy in the region

␣

(x, y, z)
ˇ

ˇ |x2z| ă

1
(

.

Problem 13.8. Let áa = (a1, a2, ¨ ¨ ¨ , an) be a unit vector, áx = (x1, x2, ¨ ¨ ¨ , xn), and
f(x1, x2, ¨ ¨ ¨ , xn) = exp(áa ¨ áx). Show that

B 2f

Bx21
+

B 2f

Bx22
+ ¨ ¨ ¨ +

B 2f

Bx2n
= f .

Problem 13.9. Let f(x, y) = x(x2 + y2)´ 3
2 esin(x2y). Find fx(1, 0).

Problem 13.10. Let f(x, y) =
ż y

1

dt
?
1 ´ x3t3

. Show that

fx(x, y) =

ż y

1

( B

Bx

1
?
1 ´ x3t3

)
dt

in the region
␣

(x, y)
ˇ

ˇx ă 1, y ą 1 and xy ă 1
(

.

Problem 13.11. The gas law for a fixed mass m of an ideal gas at absolute temperature
T , pressure P , and volume V is PV = mRT , where R is the gas constant. Show that

BP

BV

BV

BT

BT

BP
= ´1 .



Problem 13.12. The total resistance R produced by three conductors with resistances R1,
R2, R3 connected in a parallel electrical circuit is given by the formula

1

R
=

1

R1

+
1

R2

+
1

R3

.

Find BR

BR1
by directly taking the partial derivative of the equation above.

Problem 13.13. Find the value of Bz

Bx
at the point (1, 1, 1) if the equation

xy + z3x ´ 2yz = 0

defines z as a function of the two independent variables x and y and the partial derivative
exists.

Problem 13.14. Find the value of Bx

Bz
at the point (1,´1,´3) if the equation

xz + y lnx ´ x2 + 4 = 0

defines x as a function of the two independent variables y and z and the partial derivative
exists.

Problem 13.15. Let f : R2 Ñ R be a function such that fx(a, b) and fy(a, b) exists.
Suppose that c = f(a, b).

1. Using the geometric meaning of partial derivatives, explain what the vectors (1, 0, fx(a, b))
and (0, 1, fy(a, b)) mean.

2. Suppose that you know that there is a tangent plane (which we have not talked about,
but you can roughly imagine what it is) of the graph of f at (a, b, c). What should
the equation of the tangent plane be?

Problem 13.16. Define

f(x, y) =

#

x2 arctan y

x
´ y2 arctan x

y
if x, y ‰ 0 ,

0 if x = 0 or y = 0 .

Find fxy(0, 0) and fyx(0, 0).

Problem 13.17. Show that each of the following functions is not differentiable at the origin.



(1) f(x, y) = 3
?
x cos y (2) f(x, y) =

a

|xy|

Problem 13.18. In the following, show that both fx(0, 0) and fy(0, 0) both exist but that
f is not differentiable at (0, 0).

(1) f(x, y) =

$

&

%

5x2y

x3 + y3
if x3 + y3 ‰ 0 ,

0 if x3 + y3 = 0 .

(2) f(x, y) =

$

&

%

2xy
a

x2 + y2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) .

(3) f(x, y) =

$

&

%

3x2y

x4 + y2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) .

(4) f(x, y) =

$

&

%

sin(x3 + y4)

x2 + y2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) .

Problem 13.19. Let f, g : (a, b) Ñ R be real-valued function, h(x, y) = f(x)g(y), and
c, d P (a, b). Show that if f is differentiable at c and g is differentiable at d, then h is
differentiable at (c, d).

Problem 13.20. Show that the function f(x, y) =
a

x2 + y2 sin
a

x2 + y2 is differentiable
at (0, 0).

Problem 13.21. Investigate the differentiability of the following functions at the point
(0, 0).

(1) f(x, y) =

$

&

%

xy
a

x2 + y2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0)
(2) f(x, y) =

# xy

x+ y2
if x+ y2 ‰ 0 ,

0 if x+ y2 = 0

(3) f(x, y) =

$

&

%

(x2 + y2) sin 1
a

x2 + y2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) .

Problem 13.22. Use the chain rule for functions of several variables to compute dz

dt
or dw

dt
.

(1) z =
?
1 + xy, x = tan t, y = arctan t.



(2) w = x exp
(y
z

)
, x = t2, y = 1 ´ t, z = 1 + 2t.

(3) w = ln
a

x2 + y2 + z2, x = sin t, y = cos t, z = tan t.

(4) w = xy cos z, x = t, y = t2, z = arccos t.

(5) w = 2yex ´ ln z, x = ln(t2 + 1), y = arctan t, z = et.

Problem 13.23. Use the chain rule for functions of several variables to compute Bz

Bs
and

Bz

B t
.

(1) z = arctan(x2 + y2), x = s ln t, y = tes.

(2) z = arctan x
y

, x = s cos t, y = s sin t.

(3) z = ex cos y, x = st, y = s2 + t2.

Problem 13.24. Assume that z = f
(
ts2,

s

t

)
, Bf

Bx
(x, y) = xy, Bf

By
(x, y) =

x2

2
. Find Bz

Bs
and

Bz

B t
.

Problem 13.25. Find the partial derivatives Bz

Bx
and Bz

By
at given points.

(1) sin(x+ y) + sin(y + z) + sin(x+ z) = 0, (x, y, z) = (π, π, π).

(2) xey + yez + 2 lnx ´ 2 ´ 3 ln 2 = 0, (x, y, z) = (1, ln 2, ln 3).

(3) z = ex cos(y + z), (x, y, z) = (0,´1, 1).

Problem 13.26. Let f be differentiable, and z =
1

y

[
f(ax+ y) + g(ax ´ y)

]
. Show that

B 2z

Bx2
=
a2

y2
B

By

(
y2

Bz

By

)
.

Problem 13.27. Suppose that we substitute polar coordinates x = r cos θ and y = r sin θ
in a differentiable function z = f(x, y).

(1) Show that Bz

Br
= fx cos θ + fy sin θ and 1

r

Br

Bθ
= ´fx sin θ + fy cos θ.

(2) Solve the equations in part (1) to express fx and fy in terms of Bz

Br
and Bz

Bθ
.



(3) Show that (fx)
2 + (fy)

2 =
(

Bz

Br

)2

+
1

r2

(
Bz

Bθ

)2

.

(4) Suppose in addition that fx and fy are differentiable. Show that

fxx + fyy =
B 2z

Br2
+

1

r

Bz

Br
+

1

r2
B 2z

Bθ2
.

Problem 13.28. Let R be an open region in R2 and f : R Ñ R be a real-valued function. In
class we have talked about the differentiability of f . For k ě 2, the k-times differentiability
of f is defined inductively: for k P N, f is said to be (k + 1)-times differentiable at (a, b)

if the k-th partial derivative B kf

Bxk´jByj
is differentiable at (a, b) for all 0 ď j ď k

(
note

that in order to achieve this, B kf

Bxk´jByj
has to be defined in a neighborhood of (a, b) for all

0 ď j ď k
)
. f is said to be k-times differentiable on R if f is k-times differentiable at (a, b)

for all (a, b) P R. f is said to be k-times continuously differentiable on R if the k-th partial

derivative B kf

Bxk´jByj
is continuous at (a, b) for all 0 ď j ď k.

(1) Show that if f is (k + 1)-times differentiable on R, then f is k-times continuously
differentiable on R.

(2) Show that if f is k-times continuously differentiable on R, then f is k-times differen-
tiable on R.

Hint: In this problem Theorem 13.35 is used (without proving yet).

Problem 13.29. Let f(x, ) = 3
?
xy.

(1) Show that f is continuous at (0, 0).

(2) Show that fx and fy exist at the origin but that the directional derivatives at the
origin in all other directions do not exist.

Problem 13.30. Let

f(x, y) =

$

&

%

x3y

x4 + y2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) .

(1) Show that the directional derivative of f at the origin exists in all directions u, and

(Duf)(0, 0) =
(

Bf

Bx
(0, 0),

Bf

By
(0, 0)

)
¨ u .



(2) Determine whether f is differentiable at (0, 0) or not.

Problem 13.31. Let u = (a, b) be a unit vector and f be twice continuously differentiable.
Show that

D2
uf = fxxa

2 + 2fxyab+ fyyb
2 ,

where D2
uf = Du(Duf).

Problem 13.32. Show that the operation of taking the gradient of a function has the
given property. Assume that u and v are differentiable functions of x and y and that a, b
are constants.

(1) ∇(au+ bv) = a∇u+ b∇v.

(2) ∇(uv) = u∇v + v∇u.

(3) ∇
(u
v

)
=
v∇u´ u∇v

v2
.

(4) ∇(un) = nun´1∇u.

Problem 13.33. Show that the equation of the tangent plane to the ellipsoid x2

a2
+
y2

b2
+
z2

c2
=

1 at the point (x0, y0, z0) can be written as

xx0
a2

+
yy0
b2

+
zz0
c2

= 1 .

Problem 13.34. Show that the equation of the tangent plane to the elliptic paraboloid
z

c
=
x2

a2
+
y2

b2
at the point (x0, y0, z0) can be written as

2xx0
a2

+
2yy0
b2

=
z + z0
c

.

Problem 13.35. Let f be a differentiable function and consider the surface z = xf
(y
x

)
.

Show that the tangent plane at any point (x0, y0, z0) on the surface passes through the
origin.

Problem 13.36. Prove that the angle of inclination θ of the tangent plane to the surface
z = f(x, y) at the point (x0, y0, z0) satisfies

cos θ = 1
a

fx(x0, y0)2 + fy(x0, y0)2 + 1
.



Problem 13.37. In the following problems, find all relative extrema and saddle points of
the function. Use the Second Partials Test when applicable.

(1) f(x, y) = x2 ´ xy ´ y2 ´ 3x ´ y (2) f(x, y) = 2xy ´
1

2
(x4 + y4) + 1

(3) f(x, y) = xy ´ 2x ´ 2y ´ x2 ´ y2 (4) f(x, y) = x3 + y3 ´ 3x2 ´ 3y2 ´ 9x

(5) f(x, y) =
a

56x2 ´ 8y2 ´ 16x ´ 31 + 1 ´ 8x (6) f(x, y) = 1

x
+ xy +

1

y

(7) f(x, y) = ln(x+ y) + x2 ´ y (8) f(x, y) = 2 lnx+ ln y ´ 4x ´ y

(9) f(x, y) = xy exp
(

´
x2 + y2

2

)
(10) f(x, y) = xy + e´xy

(11) f(x, y) = (x2 + y2)e´x (12) f(x, y) =
(
1

2
´ x2 + y2

)
exp(1 ´ x2 ´ y2)

Problem 13.38. In the following problems, find the absolute extrema of the function over
the region R (which contains boundaries).

(1) f(x, y) = x2 + xy, and R =
␣

(x, y)
ˇ

ˇ |x| ď 2, |y| ď 1
(

(2) f(x, y) = 2x ´ 2xy + y2, and R is the region in the xy-plane bounded by the graphs
of y = x2 and y = 1.

(3) f(x, y) =
4xy

(x2 + 1)(y2 + 1)
, and R =

␣

(x, y)
ˇ

ˇ 0 ď x ď 1, 0 ď y ď 1
(

.

(4) f(x, y) = xy2, and R =
␣

(x, y)
ˇ

ˇx ě 0, y ě 0, x2 + y2 ď 3
(

.

(5) f(x, y) = 2x3 + y4, and R =
␣

(x, y)
ˇ

ˇx2 + y2 ď 1
(

.

Problem 13.39. Show that f(x, y) = x2 + 4y2 ´ 4xy + 2 has an infinite number of critical
points and that the discriminant fxxfyy ´f 2

xy = 0 at each one. Then show that f has a local
(and absolute) minimum at each critical point

Problem 13.40. Show that f(x, y) = x2ye´x2´y2 has maximum values at
(

˘ 1,
1

?
2

)
and

minimum values at
(

˘ 1,´
1

?
2

)
. Show also that f has infinitely many other critical points

and the discriminant fxxfyy ´f 2
xy = 0 at each of them. Which of them give rise to maximum

values? Minimum values? Saddle points?



Problem 13.41. Find two numbers a and b with a ď b such that
ż b

a

3
?
24 ´ 2x ´ x2 dx

has its largest value.

Problem 13.42. Let m ą n be natural numbers, and A be an m ˆ n real matrix, b P Rm

be a vector.

(1) Show that if the minimum of the function f(x1, ¨ ¨ ¨ , xn) = }Ax ´ b} occurs at the
point c = (c1, ¨ ¨ ¨ , cn), then c satisfies ATAc = ATb.

(2) Find the relation between the linear regression and (1).

Problem 13.43. Let
␣

(x1, y1), (x2, y2), ¨ ¨ ¨ , (xn, yn)
(

be n points with xi ‰ xj if i ‰ j. Use
the Second Partials Test to verify that the formulas for a and b given by

a =

n
n
ř

i=1

xiyi ´

( n
ř

i=1

xi

)( n
ř

i=1

yi

)
n

n
ř

i=1

x2i ´

( n
ř

i=1

xi

)2
and b =

1

n

( n
ÿ

i=1

yi ´ a
n
ÿ

i=1

xi

)

indeed minimize the function S(a, b) =
n
ř

i=1

(axi + b ´ yi)
2.

Problem 13.44. The Shannon index (sometimes called the Shannon-Wiener index or
Shannon-Weaver index) is a measure of diversity in an ecosystem. For the case of three
species, it is defined as

H = ´p1 ln p1 ´ p2 ln p2 ´ p3 ln p3 ,

where pi is the proportion of species i in the ecosystem.

(1) Express H as a function of two variables using the fact that p1 + p2 + p3 = 1.

(2) What is the domain of H?

(3) Find the maximum value of H. For what values of p1, p2, p3 does it occur?

Problem 13.45. Three alleles (alternative versions of a gene) A, B, and O determine the
four blood types A (AA or AO), B (BB or BO), O (OO), and AB. The Hardy-Weinberg



Law states that the proportion of individuals in a population who carry two different alleles
is

P = 2pq + 2pr + 2rq ,

where p, q, and r are the proportions of A, B, and O in the population. Use the fact that
p+ q + r = 1 to show that P is at most 2

3
.

Problem 13.46. Find an equation of the plane that passes through the point (1, 2, 3) and
cuts off the smallest volume in the first octant.

Problem 13.47. Use the method of Lagrange multipliers to complete the following.

(1) Maximize f(x, y) =
a

6 ´ x2 ´ y2 subject to the constraint x+ y ´ 2 = 0.

(2) Minimize f(x, y) = 3x2 ´ y2 subject to the constraint 2x ´ 2y + 5 = 0.

(3) Minimize f(x, y) = x2 + y2 subject to the constraint xy2 = 54.

(4) Maximize f(x, y, z) = exyz subject to the constraint 2x2 + y2 + z2 = 24.

(5) Maximize f(x, y, z) = ln(x2 + 1) + ln(y2 + 1) + ln(z2 + 1) subject to the constraint
x2 + y2 + z2 = 12.

(6) Maximize f(x, y, z) = x+ y + z subject to the constraint x2 + y2 + z2 = 1.

(7) Maximize f(x, y, z, t) = x+ y + z + t subject to the constraint x2 + y2 + z2 + t2 = 1.

(8) Minimize f(x, y, z) = x2+y2+z2 subject to the constraints x+2z = 6 and x+y = 12.

(9) Maximize f(x, y, z) = z subject to the constraints x2+y2+z2 = 36 and 2x+y´z = 2.

(10) Maximize f(x, y, z) = yz + xy subject to the constraint xy = 1 and y2 + z2 = 1.

Problem 13.48. Use the method of Lagrange multipliers to find the extreme values of the
function f(x1, x2, ¨ ¨ ¨ , xn) = x1+x2+ ¨ ¨ ¨+xn subject to the constraint x21+x22+ ¨ ¨ ¨+x2n = 1.

Problem 13.49. (1) Use the method of Lagrange multipliers to show that the product of
three positive numbers x, y, and z, whose sum has the constant value S, is a maximum
when the three numbers are equal. Use this result to show that

x+ y + z

3
ě 3

?
xyz @x, y, z ą 0 .



(2) Generalize the result of part (1) to prove that the product x1x2x3 ¨ ¨ ¨ xn is maximized,
under the constraint that

n
ř

i=1

xi = S and xi ě 0 for all 1 ď i ď n, when

x1 = x2 = x3 = ¨ ¨ ¨ = xn .

Then prove that

n
?
x1x2 ¨ ¨ ¨ xn ď

x1 + x2 + ¨ ¨ ¨ + xn
n

@x1, x2, ¨ ¨ ¨ , xn ě 0 .

Problem 13.50. (1) Maximize
n
ř

i=1

xiyi subject to the constraints
n
ř

i=1

x2i = 1 and
n
ř

i=1

y2i = 1.

(2) Put xi =
ai

d

n
ř

j=1
a2j

and yi =
bi

d

n
ř

j=1
b2j

to show that

n
ÿ

i=1

aibi ď

g

f

f

e

n
ÿ

j=1

a2j

g

f

f

e

n
ÿ

j=1

b2j

for any numbers a1, a2, ¨ ¨ ¨ , an, b1, b2, ¨ ¨ ¨ , bn. This inequality is known as the Cauchy-
Schwarz Inequality.

Problem 13.51. Find the points on the curve x2 + xy + y2 = 1 in the xy-plane that are
nearest to and farthest from the origin.

Problem 13.52. If the ellipse x2

a2
+
y2

b2
= 1 is to enclose the circle x2+y2 = 2y, what values

of a and b minimize the area of the ellipse?

Problem 13.53. (1) Use the method of Lagrange multipliers to prove that the rectangle
with maximum area that has a given perimeter p is a square.

(2) Use the method of Lagrange multipliers to prove that the triangle with maximum area
that has a given perimeter p is equilateral.

Hint: Use Heron’s formula for the area:

A =
a

s(s ´ x)(s ´ y)(s ´ z) ,

where s = p

2
and x, y, z are the lengths of the sides.



Problem 13.54. When light waves traveling in a transparent medium strike the surface of
a second transparent medium, they tend to “bend” in order to follow the path of minimum
time. This tendency is called refraction and is described by Snell＇s Law of Refraction,

sin θ1
v1

=
sin θ2

v2

,

where θ1 and θ2 are the magnitudes of the angles shown in the figure, and v1 and v2 are the
velocities of light in the two media. Use the method of Lagrange multipliers to derive this
law using x+ y = a.

Problem 13.55. A set C Ď Rn is said to be convex if

tx + (1 ´ t)y P C @ x,y P C and t P [0, 1] .

（一個 Rn 中的集合 C 被稱為凸集合如果 C 中任兩點 x 與 y 之連線所形成的線段也在 C

中)。
Suppose that C Ď Rn is a convex set, and f : C Ñ R be a differentiable real-valued

function. Show that if f on C attains its minimum at a point x˚, then

(∇f)(x˚) ¨ (x ´ x˚) ě 0 @ x P C . (‹)

Hint: Recall that (∇f)(x˚) ¨ (x ´ x˚), when f is differentiable at x˚, is the directional
derivative of f at x˚ in the “direction” (x ´ x˚).
Remark: A point x˚ satisfying (‹) is sometimes called a stationary point of f in C.

Problem 13.56. Let B be the unit closed ball centered at the origin given by

B =
␣

x = (x1, x2, ¨ ¨ ¨ , xn) P Rn
ˇ

ˇ }x}2 = x21 + x22 + ¨ ¨ ¨ + x2n ď 1
(

,

and f : B Ñ R be a differentiable real-valued function. Consider the minimization problem
min
xPB

f(x).



(1) Show that if f attains its minimum at x˚ P B, then there exists λ ď 0 such that

(∇f)(x˚) = λx˚ .

(2) Find the minimum of the function f(x, y) = x2 + 2y2 ´ x on the unit closed disk
centered at the origin

␣

(x, y)
ˇ

ˇx2 + y2 ď 1
(

using (1).

Problem 13.57. Let a P R3 be a vector, b P R, and C be a half plane given by

C =
␣

x = (x1, x2, x3) P R3
ˇ

ˇa ¨ x ď b
(

,

and f : C Ñ R be a differentiable real-valued function. Consider the minimization problem
min
xPC

f(x). Show that if f attains its minimum at x˚ P C, then there exists λ ď 0 such that

(∇f)(x˚) = λa .



Chapter 14

Multiple Integration

14.1 Double Integrals and Volume
Let R be a closed and bounded region in the plane, and f : R Ñ R be a non-negative
continuous function. We are interested in the volume of the solid in space

D =
␣

(x, y, z)
ˇ

ˇ (x, y) P R , 0 ď z ď f(x, y)
(

.

First we assume that R = [a, b] ˆ [c, b] =
␣

(x, y)
ˇ

ˇ a ď x ď b, c ď y ď d
(

be a rectangle. Let
Px = ta = x0 ă x1 ă x2 ă ¨ ¨ ¨ ă xn = bu and Py = tc = y0 ă y1 ă ¨ ¨ ¨ ă ym = du be
partitions of [a, b] and [c, d], respectively, Rij denote the rectangle [xi´1, xi] ˆ [yj´1, yj], and
␣

(αi, βj)
(

1ďiďn,1ďjďm
be a collection of points such that αi P [xi´1, xi] and βj P [yj´1, yj].

Then as before, we consider an approximation of the volume of D given by
n
ÿ

i=1

m
ÿ

j=1

f(αi, βj)(xi ´ xi´1)(yj ´ yj´1) .

Then the limit of the sum above, as }Px}, }Py} approaches zero, is the volume of D. The
collection of rectangles P = tRiju1ďiďn,1ďjďm is called a partition of R.

Figure 14.1: The volume of D can be obtained by making }Px}, }Py} Ñ 0.
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In general, by relabeling the rectangles as R1, R2, ¨ ¨ ¨ , Rnm (thus P = tRk | 1 ď k ď

nmu), and letting
␣

(ξk, ηk)
(nm

k=1
be a collection of point in R such that (ξk, ηk) P Rk, we can

consider an approximation of the volume of the solid given by
nm
ÿ

k=1

f(ξk, ηk)Ak ,

where Ak is the area of the rectangle Rk. The sum above is called a Riemann sum of f
for partition P . With }P}, called the norm of P , denoting the maximum length of the
diagonal of Rk; that is,

}P} = max
␣

ℓk
ˇ

ˇ ℓk is the length of the diagonal of Rk, 1 ď k ď nm
(

,

then the volume of D is the “limit”

lim
}P}Ñ0

nm
ÿ

k=1

f(ξk, ηk)Ak

as long as “the limit exists”. Similar to the discussion of the limit of Riemann sums in the
case of functions of one variable, we can remove the restrictions that f is continuous and
non-negative on R and still consider the limit of the Riemann sums. We have the following
Definition 14.1

Let R = [a, b] ˆ [c, d] be a rectangle in the plane, and f : R Ñ R be a function. f is
said to be Riemann integrable on R if there exists a real number V such that for every
ε ą 0, there exists δ ą 0 such that if P is partition of R satisfying }P} ă δ, then any
Riemann sums of f for the partition P belongs to the interval (V ´ ε, V + ε). Such
a number V (is unique if it exists and) is called the Riemann integral or double

integral of f on R and is denoted by
ĳ

R

f(x, y) dA or simply
ż

R
f(x, y) d(x, y).

How about the case that the base R of the solid is not a closed and bounded rectangle?
In this case we choose r ą 0 large enough such that R Ď [´r, r]2 ” [´r, r]ˆ [´r, r] and then
for a function f : R Ñ R, define rf : [´r, r]2 Ñ R by

rf(x) =

"

f(x) if x P R ,

0 if x R R .

We define
ĳ

R

f(x, y) dA as
ĳ

[´r,r]2

rf(x, y) dA (when the latter double integral exists).



Before proceeding, let us talk about a special class of regions.

Definition 14.2
A region R is said to be have area if the constant function 1 is Riemann integrable on

R. If R has area, then the area of R is defined as the integral
ĳ

R

1 dA.

The following theorem is an analogy of Theorem 4.10.

Theorem 14.3
Let R be a closed and bounded region in the plane, and f : R Ñ R be a function. If
R has area and f is continuous on R, then f is Riemann integrable on R.

Similar to the properties for integrals of functions of one variable, we have the following

Theorem 14.4: Properties of double integrals
Let R be a closed and bounded region in the plane, f, g : R Ñ R be functions that
are Riemann integrable on R, and c be a real number.

1. cf is Riemann integrable on R, and
ĳ

R

(cf)(x, y) dA = c

ĳ

R

f(x, y) dA .

2. f ˘ g are Riemann integrable on R, and
ĳ

R

(f ˘ g)(x, y) dA =

ĳ

R

f(x, y) dA ˘

ĳ

R

g(x, y) dA .

3. If f(x, y) ě g(x, y) for all (x, y) P R, then
ĳ

R

f(x, y) dA ě

ĳ

R

g(x, y) dA .

4. |f | is Riemann integrable, and
ˇ

ˇ

ˇ

ĳ

R

f(x, y) dA
ˇ

ˇ

ˇ
ď

ĳ

R

ˇ

ˇf(x, y)
ˇ

ˇ dA .



Definition 14.5
Two bounded regions R1 and R2 in the plane are said to be non-overlapping if R1XR2

has zero area.

Theorem 14.6
Let R1 and R2 be non-overlapping regions in the plane, R = R1 YR2, and f : R Ñ R
be such that f is Riemann integrable on R1 and R2. Then f is Riemann integrable
on R and

ĳ

R

f(x, y) dA =

ĳ

R1

f(x, y) dA+

ĳ

R2

f(x, y) dA .

14.2 The Iterated Integrals and Fubini’s Theorem

Let R be a bounded region with area, and f : R Ñ R be a non-negative continuous function.
As explained in the previous section, the volume of the solid

D =
␣

(x, y, z)
ˇ

ˇ (x, y) P R, 0 ď z ď f(x, y)
(

is given by
ĳ

R

f(x, y) dA. We are concerned with computing this double integral in this

section.
Recall from Section 7.2 that if D is a solid lies between two planes x = a and x = b

(a ă b), and the area of the cross section of D taken perpendicular to the x-axis is A(x),
then

the volume of D =

ż b

a

A(x) dx .

Therefore, if the region R is given by

R =
␣

(x, y)
ˇ

ˇ a ď x ď b, g1(x) ď y ď g2(x)
(

for some continuous functions g1, g2 : [a, b] Ñ R, then the area of the cross section of D
taken perpendicular to the x axis is

A(x) =

ż g2(x)

g1(x)

f(x, y) dy



which shows that the volume of D is given by
ż b

a

( ż g2(x)

g1(x)
f(x, y) dy

)
dx. Therefore, in this

special case we find that
ĳ

R

f(x, y) dA =

ż b

a

( ż g2(x)

g1(x)

f(x, y) dy
)
dx . (14.2.1)

Similarly, recall that if D lies between y = c and y = d (c ă d), and the area of the cross
section of D taken perpendicular to the y-axis is A(y), then

the volume of D =

ż d

c

A(y) dy ;

thus similar argument shows that
ĳ

R

f(x, y) dA =

ż d

c

( ż h2(y)

h1(y)

f(x, y) dx
)
dy . (14.2.2)

Figure 14.2: Finding the volume of D using the method of cross section

We note that in formulas (14.2.1), we have to compute the integral
ż g2(x)

g1(x)
f(x, y) dy

for each fixed x P [a, b] which gives the area of the cross section A(x), then compute the

integral
ż b

a
A(x) dx to obtain the volume of D. This way of computing double integrals is

called iterated integrals, and sometime we omit the parentheses and write it as
ĳ

R

f(x, y) dA =

ż b

a

ż g2(x)

g1(x)

f(x, y) dydx .

Similarly, the iterated integral appearing in (14.2.2) can also be written as
ĳ

R

f(x, y) dA =

ż d

c

ż h2(y)

h1(y)

f(x, y) dxdy .



The evaluation of the double integral
ĳ

R

f(x, y) dA can be generalized for a more general

class of functions, and it is called the Fubini Theorem.
Theorem 14.7: Fubini’s Theorem

Let R be a region in the plane, and f : R Ñ R be continuous (but no necessary
non-negative).

1. If R is given by R =
␣

(x, y)
ˇ

ˇ a ď x ď b, g1(x) ď y ď g2(x)
(

, then
ĳ

R

f(x, y) dA =

ż b

a

( ż g2(x)

g1(x)

f(x, y) dy
)
dx .

2. If R is given by R =
␣

(x, y)
ˇ

ˇ c ď y ď d, g1(x) ď y ď g2(x)
(

, then
ĳ

R

f(x, y) dA =

ż d

c

( ż h2(y)

h1(y)

f(x, y) dx
)
dy .

Example 14.8. Find the volume of the solid region bounded by the paraboloid z = 4 ´

x2 ´ 2y2 and the xy-plane. By the definition of double integrals, the volume of this solid is
given by

ĳ

R

(4 ´ x2 ´ 2y2) dA, where R is the region
␣

(x, y)
ˇ

ˇx2 + 2y2 ď 4
(

. Writing R as

R =
!

(x, y)
ˇ

ˇ

ˇ
´ 2 ď x ď 2 ,´

c

4 ´ x2

2
ď y ď

c

4 ´ x2

2

)

or

R =
␣

(x, y)
ˇ

ˇ ´
?
2 ď y ď

?
2 ,´

a

4 ´ 2y2 ď x ď
a

4 ´ 2y2
(

,

the Fubini Theorem then implies that

ĳ

R

(4 ´ x2 ´ 2y2) dA =

ż 2

´2

( ż b

4´x2

2

´

b

4´x2

2

(4 ´ x2 ´ 2y2) dy
)
dx

=

ż

?
2

´
?
2

( ż ?
4´2y2

´
?

4´2y2
(4 ´ x2 ´ 2y2) dx

)
dy .

1. Integrating in y first then integrating in x: for fixed x P [´2, 2],



ż

b

4´x2

2

´

b

4´x2

2

(4 ´ x2 ´ 2y2) dy =

ż

b

4´x2

2

´

b

4´x2

2

(4 ´ x2) dy ´ 2

ż

b

4´x2

2

´

b

4´x2

2

y2 dy

=
?
2(4 ´ x2)

3
2 ´

4

3

(c4 ´ x2

2

)3

=
2
?
2

3
(4 ´ x2)

3
2 .

Therefore, by the substitution x = 2 sin θ (so that dx = 2 cos θ dθ),
ĳ

R

(4 ´ x2 ´ 2y2) dA =
2
?
2

3

ż 2

´2

(4 ´ x2)
3
2 dx =

2
?
2

3

ż π
2

´π
2

8 cos3 θ ¨ 2 cos θdθ

=
32

?
2

3

ż π
2

´π
2

cos4 θ dθ = 64
?
2

3

ż π
2

0

cos4 θ dθ

=
64

?
2

3

ż π
2

0

(1 + cos 2θ
2

)2

dθ

=
16

?
2

3

ż π
2

0

(
1 + 2 cos 2θ + 1 + cos 4θ

2

)
dθ

=
16

?
2

3

[3
2

¨
π

2
+ sin

(
2 ¨

π

2

)
+

1

8
sin

(
4 ¨

π

2

)]
= 4

?
2π .

2. Integrating in x first then integrating in y: for fixed y P [´
?
2,

?
2],

ż

?
4´2y2

´
?

4´2y2
(4 ´ x2 ´ 2y2) dx =

ż

?
4´2y2

´
?

4´2y2
(4 ´ 2y2) dx ´

ż

?
4´2y2

´
?

4´2y2
x2 dx

= 2(4 ´ 2y2)
3
2 ´

2

3
(4 ´ 2y2)

3
2 =

4

3
(4 ´ 2y2)

3
2 ;

thus by the substitution of variable y =
?
2 sin θ (so that dy =

?
2 cos θ dθ),

ĳ

R

(4 ´ x2 ´ 2y2) dA =
4

3

ż

?
2

´
?
2

(4 ´ 2y2)
3
2 dy =

4

3

ż π
2

´π
2

8 cos3 θ ¨
?
2 cos θ dθ

=
32

?
2

3

ż π
2

´π
2

cos4 θ dθ = 64
?
2

3

ż π
2

0

cos4 θ dθ = 4
?
2π .

Example 14.9. Find the volume of the solid region bounded above by the paraboloid
z = 1 ´ x2 ´ y2 and below by the plane z = 1 ´ y.

Let R be the region in the plane whose boundary points (x, y) satisfies 1´x2´y2 = 1´y

or equivalently, x2 + y2 ´ y = 0. Then the volume of the solid described above is given by



ĳ

R

[
(1 ´ x2 ´ y2) ´ (1 ´ y)

]
dA. Note that the region R is a disk centered at

(
0,

1

2

)
with

radius 1

2
and can be written as

R =
␣

(x, y)
ˇ

ˇ 0 ď y ď 1 ,´
a

y ´ y2 ď x ď
a

y ´ y2
(

.

Therefore,
ĳ

R

[
(1 ´ x2 ´ y2) ´ (1 ´ y)

]
dA =

ż 1

0

( ż ?
y´y2

´
?

y´y2
(y ´ x2 ´ y2) dx

)
dy

=

ż 1

0

(
2(y ´ y2)

3
2 ´

2

3
(y ´ y2)

3
2

)
dy =

4

3

ż 1

0

(y ´ y2)
3
2 dy =

4

3

ż 1

0

[1
4

´
(
y ´

1

2

)2] 3
2 dy .

Making the substitution of variable y ´
1

2
=

1

2
sin θ

(
so that dy =

1

2
cos θ dθ

)
,

ĳ

R

[
(1 ´ x2 ´ y2) ´ (1 ´ y)

]
dA =

4

3

ż π
2

´π
2

cos3 θ
8

¨
1

2
cos θ dθ = 1

6

ż π
2

0

cos4 θ dθ = π

32
.

Example 14.10. Find the iterated integral
ż 1

0

( ż 1

y
e´x2

dx
)
dy.

Let R =
␣

(x, y)
ˇ

ˇ 0 ď y ď 1 , y ď x ď 1
(

. Since R can also be expressed as R =
␣

(x, y)
ˇ

ˇ 0 ď x ď 1 , 0 ď y ď x
(

, by the Fubini Theorem we find that
ż 1

0

( ż 1

y

e´x2

dx
)
dy =

ĳ

R

e´x2

dA =

ż 1

0

( ż x

0

e´x2

dy
)
dx =

ż 1

0

xe´x2

dx

= ´
1

2
e´x2

ˇ

ˇ

ˇ

x=1

x=0
=

1

2

(
1 ´ e´1

)
.

14.3 Surface Area
14.3.1 Surface area of graph of functions

Let R = [a, b] ˆ [c, d] be a rectangle in the plane, and f : R Ñ R be a continuously
differentiable function. We are interested in the area of the surface

S =
␣

(x, y, z)
ˇ

ˇ (x, y) P R , z = f(x, y)
(

.

Let P =
␣

Rij

ˇ

ˇ 1 ď i ď n , 1 ď j ď m
(

be a partition of R. Partition each rectangle
Rij = [xi´1, xi]ˆ [yj´1, yj] into two triangles ∆1

ij and ∆2
ij, where ∆1

ij has vertices (xi´1, yj´1),



(xi, yj´1), (xi´1, yj) and ∆2
ij has vertices (xi, yj), (xi´1, yj), (xi, yj´1). Then intuitively, the

area of the surface f(∆1
ij) can be approximated by the area of the triangle T 1

ij with ver-
tices

(
xi´1, yj´1, f(xi´1, yj´1)

)
,
(
xi, yj´1, f(xi, yj´1)

)
and

(
xi, yj, f(xi, yj)

)
, while the area

of the surface f(∆2
ij) can be approximated by the area of the triangle T 2

ij with vertices(
xi, yj, f(xi, yj)

)
,
(
xi´1, yj, f(xi´1, yj)

)
and

(
xi, yj´1, f(xi, yj´1)

)
. Therefore, the area of the

surface f(Rij) can be approximated by the sum of area of triangles T 1
ij and T 2

ij, and the area
of the surface S can be approximated by the sum of the area of the triangles T 1

ij and T 2
ij,

where is sum is taken over all 1 ď i ď n and 1 ď j ď m.
Now we compute the area of the triangles T 1

ij and T 2
ij. We remark that for a triangle T

with vertices P1, P2, P3, letting u =
#       »

P1P2 = P2 ´ P1 and v =
#       »

P1P3 = P3 ´ P1, the area of
T can be computed by 1

2
}u ˆ v}. Therefore, the area of T 1

ij is given by

|T 1
ij| =

1

2

›

›

›

(
xi ´ xi´1, 0, f(xi, yj´1) ´ f(xi´1, yj´1)

)
ˆ

ˆ
(
0, yj ´ yj´1, f(xi´1, yj) ´ f(xi´1, yj´1)

)›
›

›
.

By the mean value theorem, there exist ξ˚
i P (xi´1, xi) and η˚

j P (yj´1, yj) such that

f(xi, yj´1) ´ f(xi´1, yj´1) = fx(ξ
˚
i , yj´1)(xi ´ xi´1) ,

f(xi´1, yj) ´ f(xi´1, yj´1) = fy(xi´1, η
˚
j )(yj ´ yj´1) ;

thus we obtain that

|T 1
ij| =

1

2

›

›

(
1, 0, fx(ξ

˚
i , yj´1)

)
ˆ
(
0, 1, fy(xi´1, η

˚
j )
)›
›

=
1

2

›

›

(
´fx(ξ

˚
i , yj´1),´fy(xi´1, η

˚
j ), 1

)›
›(xi ´ xi´1)(yj ´ yj´1)

=
1

2

b

1 + fx(ξ˚
i , yj´1)2 + fy(xi´1, η˚

j )
2(xi ´ xi´1)(yj ´ yj´1) .

Similarly, there exist ξ˚˚
i P (xi´1, xi) and η˚˚

j P (yj´1, yj) such that the area of the triangle
T 2
ij is given by

|T 2
ij| =

1

2

b

1 + fx(ξ˚˚
i , yj)2 + fy(xi, η˚˚

j )2(xi ´ xi´1)(yj ´ yj´1) .

Let M = max
(x,y)PR

(
|fx(x, y)

ˇ

ˇ +
ˇ

ˇfy(x, y)
ˇ

ˇ

)
, |R| = (b ´ a)(d ´ c), and ε ą 0 be a given (but

arbitrary) number. Suppose that
ˇ

ˇfx(α, β) ´ fx(ξ, η)
ˇ

ˇ+
ˇ

ˇfy(α, β) ´ fy(ξ, η)
ˇ

ˇ ă
ε

2|R|(1 +M)
@ (α, β), (ξ, η) P Rij . (14.3.1)



Then
ˇ

ˇ

ˇ

b

1 + fx(α, β)2 + fy(α˚, β˚)2 ´

b

1 + fx(ξ, η)2 + fy(ξ, η)2
ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

ˇ

fx(α, β)
2 + fy(α

˚, β˚)2 ´ fx(ξ, η)
2 ´ fy(ξ, η)

2

a

1 + fx(α, β)2 + fy(α˚, β˚)2 +
a

1 + fx(ξ, η)2 + fy(ξ, η)2

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

2

[
ˇ

ˇfx(α, β) ´ fx(ξ, η)
ˇ

ˇ

ˇ

ˇfx(α, β) + fx(ξ, η)
ˇ

ˇ

+
ˇ

ˇfy(α
˚, β˚) ´ fy(ξ, η)

ˇ

ˇ

ˇ

ˇfy(α
˚, β˚) + fy(ξ, η)

ˇ

ˇ

]
ď

2M

2

[
ˇ

ˇfx(α, β) ´ fx(ξ, η)
ˇ

ˇ+
ˇ

ˇfy(α
˚, β˚) ´ fy(ξ, η)

ˇ

ˇ

]
ď

Mε

2|R|(1 +M)
ă

ε

2|R|
.

Therefore, if (14.3.1) holds for all 1 ď i ď n and 1 ď j ď m, then for (ξij, ηij) P Rij, we have
ˇ

ˇ

ˇ
|T 1

ij| + |T 2
ij| ´

b

1 + fx(ξij, ηij)2 + fy(ξij, ηij)2(xi ´ xi´1)(yj ´ yj´1)
ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

1

2

b

1 + fx(ξ˚
i , yj´1)2 + fy(xi´1, η˚

j )
2 +

1

2

b

1 + fx(ξ˚˚
i , yj)2 + fy(xi, η˚˚

j )2

´

b

1 + fx(ξij, ηij)2 + fy(ξij, ηij)2
ˇ

ˇ

ˇ
(xi ´ xi´1)(yj ´ yj´1)

ď
ε

2|R|
(xi ´ xi´1)(yj ´ yj´1) ;

thus if (14.3.1) holds for all 1 ď i ď n and 1 ď j ď m, then for (ξij, ηij) P Rij,
ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i=1

m
ÿ

j=1

(
|T 1

ij| + |T 2
ij|
)

´

n
ÿ

i=1

m
ÿ

j=1

b

1 + fx(ξij, ηij)2 + fy(ξij, ηij)2(xi ´ xi´1)(yj ´ yj´1)

ˇ

ˇ

ˇ

ˇ

ˇ

ď

n
ÿ

i=1

m
ÿ

j=1

ˇ

ˇ

ˇ
|T 1

ij| + |T 2
ij| ´

b

1 + fx(ξij, ηij)2 + fy(ξij, ηij)2(xi ´ xi´1)(yj ´ yj´1)
ˇ

ˇ

ˇ

ď

n
ÿ

i=1

m
ÿ

j=1

ε

2|R|
(xi ´ xi´1)(yj ´ yj´1) =

ε

2
.

Finally, we state as a fact that there exists δ1 ą 0 such that (14.3.1) holds as long as
}P} ă δ1. This property is called the uniform continuity of continuous functions on
closed and bounded sets.

On the other hand, since the function z =
a

1 + fx(x, y)2 + fy(x, y)2 is continuous on R
(and R has area), it is Riemann integrable on R. Let

I =
ĳ

R

b

1 + fx(x, y)2 + fy(x, y)2 dA .



Then there exists δ2 ą 0 such that if P is a partition of R satisfying }P} ă δ2, then any
Riemann sum of f for the partition P belongs to

(
I ´

ε

2
, I + ε

2

)
. Therefore,

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i=1

m
ÿ

j=1

b

1 + fx(ξij, ηij)2 + fy(ξij, ηij)2(xi ´ xi´1)(yj ´ yj´1) ´ I
ˇ

ˇ

ˇ

ˇ

ˇ

ă
ε

2
.

Let δ = mintδ1, δ2u. Then δ ą 0, and if P =
␣

Rij

ˇ

ˇRij = [xi´1, xi] ˆ [yj´1, yj], 1 ď i ď

n, 1 ď j ď m
(

is a partition of R satisfying }P} ă δ, then by choosing a collection of points
␣

(ξij, ηij)
(

1ďiďn,1ďjďm
such that (ξij, ηij) P Rij, we conclude that

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i=1

m
ÿ

j=1

(
|T 1

ij| + |T 2
ij|
)

´ I
ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i=1

m
ÿ

j=1

(
|T 1

ij| + |T 2
ij|
)

´

n
ÿ

i=1

m
ÿ

j=1

b

1 + fx(ξij, ηij)2 + fy(ξij, ηij)2(xi ´ xi´1)(yj ´ yj´1)

ˇ

ˇ

ˇ

ˇ

ˇ

+

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i=1

m
ÿ

j=1

b

1 + fx(ξij, ηij)2 + fy(ξij, ηij)2(xi ´ xi´1)(yj ´ yj´1) ´ I
ˇ

ˇ

ˇ

ˇ

ˇ

ă ε .

This means that the approximation of the area of the surface S can be made arbitrarily
closed to I; thus the area of the surface S must be I. In general, we have the following
Theorem 14.11

Let R be a closed region in the plane, and f : R Ñ R be a continuously differentiable
function. Then the area of the surface S =

␣

(x, y, z)
ˇ

ˇ (x, y) P R , z = f(x, y)
(

is given
by

ĳ

R

a

1 + }(∇f)(x, y)}2 dA =

ĳ

R

b

1 + fx(x, y)2 + fy(x, y)2 dA .

Example 14.12. Find the surface area of the sphere with radius r.
Let f(x, y) =

a

r2 ´ x2 ´ y2 and R =
␣

(x, y)
ˇ

ˇx2 + y2 ď r2
(

. Then the surface area of
the sphere with radius r is given by

2

ĳ

R

b

1 + fx(x, y)2 + fy(x, y)2 dA = 2r

ĳ

R

1
a

r2 ´ x2 ´ y2
dA .

Since R can also be expressed as R =
␣

(x, y)
ˇ

ˇ ´ r ď x ď r,´
?
r2 ´ x2 ď y ď

?
r2 ´ x2

(

,
the Fubini Theorem then implies that

ĳ

R

1
a

r2 ´ x2 ´ y2
dA =

ż r

´r

( ż ?
r2´x2

´
?
r2´x2

1
a

r2 ´ x2 ´ y2
dy

)
dx .



By Theorem 5.63, we find that for each ´r ă x ă r,
ż

?
r2´x2

´
?
r2´x2

1
a

r2 ´ x2 ´ y2
dy = arcsin y

?
r2 ´ x2

ˇ

ˇ

ˇ

y=
?
r2´x2

y=´
?
r2´x2

= arcsin 1 ´ arcsin(´1) = π .

Therefore,
ż r

´r

( ż ?
r2´x2

´
?
r2´x2

1
a

r2 ´ x2 ´ y2
dy

)
dx =

ż r

´r

π dx = 2πr

which implies that the surface area of a sphere with radius r is 4πr2.

Example 14.13. In this example we consider the surface area of the upper hemi-sphere
z =

a

r2 ´ x2 ´ y2 that lies above the disk R =
␣

(x, y)
ˇ

ˇx2 + y2 ď σ2
(

, where 0 ă σ ă r.
Let f(x, y) =

a

r2 ´ x2 ´ y2. Since R can also be expressed by

R =
␣

(x, y)
ˇ

ˇ ´ rσ ď x ď σ,´
?
σ2 ´ x2 ď y ď

?
σ2 ´ x2

(

,

the Fubini Theorem implies that the surface area of interest is given by
ĳ

R

b

1 + fx(x, y)2 + fy(x, y)2 dA

=

ĳ

R

r
a

r2 ´ x2 ´ y2
dA = r

ż σ

´σ

( ż ?
σ2´x2

´
?
σ2´x2

1
a

r2 ´ x2 ´ y2
dy

)
dx .

By Theorem 5.63, we find that
ż σ

´σ

( ż ?
σ2´x2

´
?
σ2´x2

1
a

r2 ´ x2 ´ y2
dy

)
dx =

ż σ

´σ

(
arcsin y

?
r2 ´ x2

ˇ

ˇ

ˇ

y=
?
σ2´x2

y=´
?
σ2´x2

)
dx

= 2

ż σ

´σ

arcsin
?
σ2 ´ x2

?
r2 ´ x2

dx = 2

ż σ

´σ

arctan
?
σ2 ´ x2

?
r2 ´ σ2

dx

= 2
[
x arctan

?
σ2 ´ x2

?
r2 ´ σ2

ˇ

ˇ

ˇ

x=σ

x=´σ
´

ż σ

´σ

x
d

dx
arctan

?
σ2 ´ x2

?
r2 ´ σ2

dx
]

= ´2

ż σ

´σ

x ¨ 1?
r2´σ2

´x?
σ2´x2

1 + σ2´x2

r2´σ2

dx = 2
?
r2 ´ σ2

ż σ

´σ

x2 ´ r2 + r2

(r2 ´ x2)
?
σ2 ´ x2

dx

= ´2
?
r2 ´ σ2π + 2

?
r2 ´ σ2

ż σ

´σ

r2

(r2 ´ x2)
?
σ2 ´ x2

dx .

Using the substitution x = σ sin θ
2
, we find that

ż σ

´σ

r2

(r2 ´ x2)
?
σ2 ´ x2

dx =

ż π

´π

r2

2(r2 ´ σ2 sin2 θ
2
)
dθ =

ż π

´π

r2

2r2 ´ σ2(1 ´ cos θ) dθ

= r2
ż π

´π

1

(2r2 ´ σ2) + σ2 cos θ dθ .



and further substitution tan θ

2
= t implies that

ż σ

´σ

r2

(r2 ´ x2)
?
σ2 ´ x2

dx =

ż 8

´8

r2

(2r2 ´ σ2) + σ2 1´t2

1+t2

2dt

1 + t2

=

ż 8

´8

2r2

2r2(1 + t2) ´ σ2(1 + t2) + σ2(1 ´ t2)
dt

=

ż 8

´8

r2

r2 + (r2 ´ σ2)t2
dt

=
r

?
r2 ´ σ2

arctan
(?

r2 ´ σ2

r
t
)ˇ
ˇ

ˇ

8

t=´8
=

πr
?
r2 ´ σ2

.

Therefore, the surface area of interest is given by
ĳ

R

r
a

r2 ´ x2 ´ y2
dA = 2r

?
r2 ´ σ2

[
´ π +

πr
?
r2 ´ σ2

]
= 2πr

(
r ´

?
r2 ´ σ2

)
.

Example 14.14. Find the surface area of the paraboloid z = 1 + x2 + y2 that lies above
the unit disk.

Let f(x, y) = 1 + x2 + y2 and R =
␣

(x, y)
ˇ

ˇ ´ 1 ď x ď 1,´
?
1 ´ x2 ď y ď

?
1 ´ x2

(

, the
Fubini Theorem implies that the surface area of interest is given by

ĳ

R

b

1 + fx(x, y)2 + fy(x, y)2 dA =

ż 1

´1

( ż ?
1´x2

´
?
1´x2

a

1 + 4x2 + 4y2 dy
)
dx .

Using (8.3.1), we find that
ż ?

a2 + b2u2 du =
a2

2b

[
bu

?
a2 + b2u2

a2
+ ln

(
bu+

?
a2 + b2u2

)]
+C

if a, b ą 0; thus
ż

?
1´x2

´
?
1´x2

a

1 + 4x2 + 4y2 dy = 2

ż

?
1´x2

0

a

1 + 4x2 + 4y2 dy

=
1 + 4x2

2

[
2y
a

1 + 4x2 + 4y2

1 + 4x2
+ ln

(
2y +

a

1 + 4x2 + 4y2
)]ˇ
ˇ

ˇ

y=
?
1´x2

y=0

=
?
5
?
1 ´ x2 +

1 + 4x2

2
ln

?
5 + 2

?
1 ´ x2

?
1 + 4x2

.

Therefore,
ĳ

R

b

1 + fx(x, y)2 + fy(x, y)2 dA =

ż 1

´1

[?
5
?
1 ´ x2 +

1 + 4x2

2
ln

?
5 + 2

?
1 ´ x2

?
1 + 4x2

]
dx

=

?
5

2
π +

1

2

ż 1

´1

(1 + 4x2) ln
?
5 + 2

?
1 ´ x2

?
1 + 4x2

dx .



Integrating by parts,

ż 1

´1

(1 + 4x2) ln
?
5 + 2

?
1 ´ x2

?
1 + 4x2

dx

=
(
x+

4

3
x3
)

ln
?
5 + 2

?
1 ´ x2

?
1 + 4x2

ˇ

ˇ

ˇ

x=1

x=´1
´

ż 1

´1

(
x+

4

3
x3
) d
dx

ln
?
5 + 2

?
1 ´ x2

?
1 + 4x2

dx

= ´

ż 1

´1

(
x+

4

3
x3
) ?

1 + 4x2
?
5 + 2

?
1 ´ x2

´2x
?
1 ´ x2

?
1 + 4x2 ´

4x
?
1 + 4x2

(
?
5 + 2

?
1 ´ x2)

1 + 4x2
dx

= ´

ż 1

´1

(
x+

4

3
x3
) ´2x

?
5 + 2

?
1 ´ x2

5 + 2
?
5
?
1 ´ x2

(1 + 4x2)
?
1 ´ x2

dx

=

?
5

3

ż 1

´1

2x(3x+ 4x3)

(1 + 4x2)
?
1 ´ x2

dx =

?
5

3

ż 1

´1

´1 + 3(1 + 4x2) ´ 2(1 ´ x2)(1 + 4x2)

(1 + 4x2)
?
1 ´ x2

dx

=
´

?
5

3

ż 1

´1

1

(1 + 4x2)
?
1 ´ x2

dx+
?
5

ż 1

´1

1
?
1 ´ x2

dx ´
2
?
5

3

ż 1

´1

?
1 ´ x2 dx

=
´

?
5

3

ż 1

´1

1

(1 + 4x2)
?
1 ´ x2

dx+
2
?
5

3
π .

By the substitution of variable x = sin θ, we find that

ż 1

´1

1

(1 + 4x2)
?
1 ´ x2

dx =

ż π
2

´π
2

1

1 + 4 sin2 θ
dθ =

ż π
2

´π
2

1

1 + 2(1 ´ cos 2θ) dθ

=

ż π
2

´π
2

1

3 ´ 2 cos 2θ dθ =
1

2

ż π

´π

1

3 ´ 2 cosϕ dϕ .

By the substitution of variable tan ϕ
2
= t, we further obtain that

ż 1

´1

1

(1 + 4x2)
?
1 ´ x2

dx =
1

2

ż 8

´8

1

3 ´ 21´t2

1+t2

2dt

1 + t2
=

ż 8

´8

1

1 + 5t2
dt

=
1

?
5

arctan(
?
5t)

ˇ

ˇ

ˇ

t=8

t=´8
=

π
?
5
.

Therefore,

ĳ

R

b

1 + fx(x, y)2 + fy(x, y)2 dA =

?
5

2
π +

1

2

[
´

?
5

3
¨
π

?
5
+

2
?
5π

3

]
=
π

6
(5

?
5 ´ 1) .



14.3.2 Surface area of parametric surfaces
Definition 14.15: Parametric Surfaces

Let X, Y and Z be functions of u and v that are continuous on a domain D in the
uv-plane. The collection of points

Σ ”

!

r P R3
ˇ

ˇ

ˇ
r = X(u, v)i + Y (u, v) j + Z(u, v)k for some (u, v) P D

)

is called a parametric surface. The equations x = X(u, v), y = Y (u, v), and z =

Z(u, v) are the parametric equations for the surface, and r : D Ñ R3 given by
r(u, v) = X(u, v)i + Y (u, v) j + Z(u, v)k is called a parametrization of Σ.

Example 14.16. Let R be an open region in the plane, and f : R Ñ R be a continuous
function. Then the graph of f is a parametric surface. In fact,

the graph of f =
!

r P R3
ˇ

ˇ

ˇ
r =

(
x, y, f(x, y)

)
for some (x, y) P R

)

.

Therefore, a parametric surface can be viewed as a generalization of surfaces being graphs
of functions.

Example 14.17. Let S2 =
␣

(x, y, z) P R3
ˇ

ˇx2 + y2 + z2 = 1
(

be the unit sphere in R3.
Consider

r(θ, ϕ) =
(

cos θ sinϕ, sin θ sinϕ, cosϕ
)
, (θ, ϕ) P D = [0, 2π] ˆ [0, π].

Then r : D Ñ S2 is a continuous bijection; thus S2 is a parametric surface.

Example 14.18. Consider the torus shown below

2. Let S2 denote the unit sphere centered at the origin. Use (0.1) to compute

∫∫

S2

x2e2zdS .

You can use the formula

∫

xeaxdx = (
x

a
− 1

a2
)eax to reduce the computation.

Problem 4. Let D be the solid given by

(x, y, z) = Φ(u, v, w)

= ((2 + w cos v) cosu, (2 + w cos v) sin u, w sin v) , 0 ≤ u ≤ 2π , 0 ≤ v ≤ 2π , 0 ≤ w ≤ 1

whose surface T
2 is a torus obtained by rotating the curve

⇀
r (t) = (2 + cos t, sin t), 0 ≤ θ ≤ 2π, on

the xz-plane about the z-axis.

u

v

x

z

(x,y,z)

(  x2+y2,0,z)

y

1. Compute the volume of D.

2. Let
⇀
r (u, v) = Φ(u, v, 1). Then

⇀
r (u, v) with (u, v) ∈ [0, 2π]×

[

− π

2
,
π

2

]

is a parametrization of

Σ. Compute
⇀
r u×

⇀
r v, as well as ‖

⇀
r u×

⇀
r v ‖.

3. There are two unit normal vectors

⇀
r u×

⇀
r v

‖⇀
r u×

⇀
r v ‖

and −
⇀
r u×

⇀
r v

‖⇀
r u×

⇀
r v ‖

at each point
⇀
r (u, v) on Σ.

Determine which one is compatible with the outward pointing orientation.

4. Let
⇀

F (x, y, z) = (ln(x2 + y2), ln(x2 + y2), ln(x2 + y2)). Use the divergence theorem to compute

the surface integral

∫∫

T2

⇀

F ·
⇀

N dS, where
⇀

N is the outward point unit normal to T
2.

Problem 5. Let C be a smooth curve on the unit sphere parametrized by

⇀
r (t) = (cos(sin t) sin t, sin(sin t) sin t, cos t) , 0 ≤ t ≤ 2π .

1. Show that the corresponding curve of
⇀
r (t) on θφ-plane consists of two curves C1 and C2 given

by

C1 =
{

(θ, φ)
∣

∣ θ = sinφ , 0 ≤ φ ≤ π
}

, C2 =
{

(θ, φ)
∣

∣ θ = π − sinφ , 0 ≤ φ ≤ π
}

.

Figure 14.3: Torus with parametrization r(u, v). (temporary picture)



Note that the torus has a parametrization

r(u, v) =
(
(a+ b cos v) cosu, (a+ b cos v) sinu, b sin v

)
, (u, v) P [0, 2π] ˆ [0, 2π] .

Therefore, the torus is a parametric surface.

Remark 14.19. Similar to the case of curves, it is not required that the parametrization
r is one-to-one; thus self-intersection of surface is allowed for defining parametric surface.
However, we always assume that the “area” of the part of intersection is zero. This require-
ment is similar to the case that the parametrization of a curve that we discussed in Chapter
12 has non-overlapping property (see page 281).

Definition 14.20
A parametric surface

Σ ”

!

r P R3
ˇ

ˇ

ˇ
r = X(u, v)i + Y (u, v) j + Z(u, v)k for some (u, v) P D

)

.

is said to be regular if X, Y , Z are differentiable funcitons and

ru(u, v) ˆ rv(u, v) ‰ 0 @ (u, v) P D ,

where ru ” Xu i + Yu j + Zuk and rv ” Xv i + Yv j + Zvk.

Remark 14.21. Let V be an open region in the plane. A vector-valued function ψ : V Ñ R3

is differentiable if each component of ψ is differentiable, and the derivative of ψ, denoted by
Dψ, is defined by

[
Dψ(u, v)

]
=


Bψ1

Bu
(u, v)

Bψ1

Bv
(u, v)

Bψ2

Bu
(u, v)

Bψ2

Bv
(u, v)

Bψ3

Bu
(u, v)

Bψ3

Bv
(u, v)

 .

Therefore, a parametric surface

Σ ”

!

r P R3
ˇ

ˇ

ˇ
r = X(u, v)i + Y (u, v) j + Z(u, v)k for some (u, v) P D

)

.

is regular if for each (u, v) P D the derivative
[
Dψ(u, v)

]
has full rank.

Question: What does it mean by that a parametric surface is regular?



Suppose that

Σ ”

!

r P R3
ˇ

ˇ

ˇ
r = X(u, v)i + Y (u, v) j + Z(u, v)k for some (u, v) P D

)

.

is regular. Then at each point p = r(u0, v0), ru(u0, v0) and rv(u0, v0) are tangent vectors to
Σ so that ru(u0, v0) ˆ rv(u0, v0) is normal to the tangent plane of Σ at p. In other words, a
parametric surface is regular if every point p P Σ has a tangent plane (denoted by TpΣ).

Example 14.22. Let S2 be the unit sphere given in Example 14.17. Then

rθ(θ, ϕ) =
(

´ sin θ sinϕ, cos θ sinϕ, 0
)
,

rϕ(θ, ϕ) =
(

cos θ cosϕ, sin θ cosϕ,´ sinϕ
)

so that

(ru ˆ rv)(θ, ϕ) =
(

´ cos θ sin2 ϕ,´ sin θ sin2 ϕ,´ sinϕ cosϕ)
= ´ sinϕ

(
cos θ sinϕ, sin θ sinϕ, cosϕ

)
which is non-zero if ϕ ‰ 0 and π. Therefore, S2ztthe north and the south polesu is a regular
parametric surface (with the same parametrization except that the domain becomes [0, 2π]ˆ
(0, π)).

Example 14.23. Let the torus be given in Example 14.18. Then

ru(u, v) =
(

´ (a+ b cos v) sinu, (a+ b cos v) cosu, 0
)
,

rv(u, v) =
(

´ b sin v cosu,´b sin v sinu, b cos v
)

so that

(ru ˆ rv)(u, v) =
(
b(a+ b cos v) cosu cos v, b(a+ b cos v) cos v sinu, b(a+ b cos v) sin v

)
= b(a+ b cos v)

(
cosu cos v, sinu cos v, sin v

)
.

Since ru ˆ rv ‰ 0, we find that the torus is a regular parametric surface.

Question: How to compute the surface area of a regular parametric surface?
Let p = r(u0, v0) be a point in Σ, and we consider the surface area of the region r

(
[u0, u0+

h] ˆ [v0, v0 + k]
)
, where h, k are very small. This area can be approximated by the sum

of the area of two triangles, one with vertices r(u0, v0), r(u0 + h, v0), r(u0, v0 + k) and the
other with vertices r(u0 + h, v0), r(u0, v0 + k), r(u0 + h, v0 + k).



r(u0, v0)

r(u0, v0 + k)

r(u0 + h, v0)

r(u0 + h, v0 + k)

The area of the triangle with vertices r(u0, v0), r(u0 + h, v0), r(u0, v0 + k) is

A1 =
1

2

›

›

(
r(u0 + h, v0) ´ r(u0, v0)

)
ˆ
(
r(u0, v0 + k) ´ r(u0, v0)

)›
›

R3 .

By the mean value theorem,

r(u0+h, v0) ´ r(u0, v0)
=

[
X(u0+h, v0) ´ X(u0, v0)

]
i +

[
Y (u0+h, v0) ´ Y (u0, v0)

]
j

+
[
Z(u0+h, v0) ´ Z(u0, v0)

]
k

= h
[
Xu(u0 + θ1h, v0)i + Yu(u0 + θ2h, v0) j + Zu(u0 + θ3h, v0)k

]
for some θ1, θ2, θ3 P (0, 1). Suppose that r is continuously differentiable; that is, X, Y , Z
are continuously differentiable, then

Xu(u0 + θ1h, v0) = Xu(u0, v0) + E1(u0, v0, h) ,

Yu(u0 + θ2h, v0) = Yu(u0, v0) + E2(u0, v0, h) ,

Zu(u0 + θ3h, v0) = Zu(u0, v0) + E3(u0, v0, h) ,

where E1, E2, E2 approach zero as h Ñ 0. Therefore,

r(u0 + h, v0) ´ r(u0, v0) = h
[
ru(u0, v0) + E1(u0, v0, h)

]
,

where E1 = E1 i + E2 j + E3k satisfying that lim
hÑ0

E1(u0, v0;h) = 0. Similarly,

r(u0, v0 + k) ´ r(u0, v0) = k
[
ru(u0, v0) + E2(u0, v0, h)

]
,

where lim
hÑ0

E1(u0, v0;h) = 0. The discussion above shows that

lim
(h,k)Ñ(0,0)

(
r(u0+h, v0)´r(u0, v0)

)
ˆ
(
r(u0, v0+k)´r(u0, v0)

)
hk

´ ru(u0, v0)ˆ rv(u0, v0) = 0



which further implies that

A1 =
1

2

›

›ru(u0, v0) ˆ rv(u0, v0)
›

›hk + E1(u0, v0, h, k)hk

for some function E1 which is bounded and converges to 0 as (h, k) Ñ (0, 0). Similarly, the
area of the triangle with vertices r(u0 + h, v0), r(u0, v0 + k), r(u0 + h, v0 + k) is

A2 =
1

2

›

›ru(u0, v0) ˆ rv(u0, v0)
›

›hk + E2(u0, v0, h, k)hk

for some function E2 which is bounded and converges to 0 as (h, k) Ñ (0, 0). The two
formulas for A1 and A2 shows that

the surface area of r
(
[u0, u0 + h] ˆ [v0, v0 + k]

)
=
›

›ru(u0, v0) ˆ rv(u0, v0)
›

›hk + E(u0, v0, h, k)hk
(14.3.2)

for some bounded function E which converges to 0 as the last two variables h, k approach 0.
Now consider the surface area of r([a, a + L] ˆ [b, b +W ]). Let ε ą 0 be given. Choose

N ą 0 such that
ˇ

ˇE(u, v;h, k)
ˇ

ˇ ă
ε

2LW
@ 0 ă h ă

L

N
, 0 ă k ă

W

N
and (u, v) P [a, a+ L] ˆ [b, b+W ] .

Denote }ru ˆ rv} by ?g. Then
ˇ

ˇ

ˇ

m
ÿ

j=1

n
ÿ

i=1

c

g
(
a+

i´ 1

n
L, b+

j ´ 1

m
M

)L
n

W

m
´

ż

[a,a+L]ˆ[b,b+W ]

?g dA
ˇ

ˇ

ˇ
ă
ε

2
if n,m ě N .

Then for n,m ě N , with (h, k) denoting
(L
n
,
W

m

)
(14.3.2) implies that

ˇ

ˇ

ˇ
the surface area of r([a, a+ L] ˆ [b, b+W ]) ´

ż

[a,a+L]ˆ[b,b+W ]

?g dA
ˇ

ˇ

ˇ

=
ˇ

ˇ

ˇ

m
ÿ

j=1

n
ÿ

i=1

the surface area of r([a+ (i´ 1)h, a+ ih] ˆ [b+ (j ´ 1)k, b+ jk])

´

ż

[a,a+L]ˆ[b,b+W ]

?g dA
ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

m
ÿ

j=1

n
ÿ

i=1

b

g
(
a+ (i´ 1)h, b+ (j ´ 1)k

)
hk ´

ż

[a,a+L]ˆ[b,b+W ]

?g dA
ˇ

ˇ

ˇ

+
ˇ

ˇ

ˇ

m
ÿ

j=1

n
ÿ

i=1

f(a+ (i´ 1)h, b+ (j ´ 1)k;h, k)hk
ˇ

ˇ

ˇ

ă
ε

2
+

ε

2LW

m
ÿ

j=1

n
ÿ

i=1

hk = ε .



The discussion above verifies the following
Theorem 14.24

Let D be an open region in the plane, and

Σ ”

!

r P R3
ˇ

ˇ

ˇ
r = X(u, v)i + Y (u, v) j + Z(u, v)k for some (u, v) P D

)

.

be a regular parametric surface so that r is continuously differentiable; that is,
Xu, Xv, Yu, Yv, Zu, Zv are continuous. Then

the surface area of Σ =

ĳ

D

›

›ru(u, v) ˆ rv(u, v)
›

› d(u, v) .

Example 14.25. Let R be an open region in the plane, and f : R Ñ R is continuously
differentiable. Then Theorem 14.24 implies that the surface area of the graph of f is given
by

ĳ

R

›

›(rx ˆ ry)(x, y)
›

› dA ,

where the parametrization r is given by r(x, y) =
(
x, y, f(x, y)

)
, (x, y) P R. This formula

agrees with what Theorem 14.11 provides.

Example 14.26. With the parametrization of the unit sphere S2 given in Example 14.22,
by Theorem 14.24 the surface area of S2 is given by

ĳ

[0,2π]ˆ[0,π]

›

›(rθ ˆ rϕ)(θ, ϕ)
›

›d(θ, ϕ) =

ż π

0

( ż 2π

0

sinϕ dθ
)
dϕ = 4π .

Example 14.27. With the parametrization of the torus given in Example 14.23, by Theo-
rem 14.24 the surface area of the torus is given by

ĳ

[0,2π]ˆ[0,2π]

b(a+ b cos v) d(u, v) =
ż 2π

0

( ż 2π

0

(ab+ b2 cos v) du
)
dv = 4π2ab .

14.4 Triple Integrals and Applications
Let Q be a bounded region in space, and f : Q Ñ R be a non-negative function which
described the point density of the region. We are interested in the mass of Q.



We start with the simple case that Q = [a, b] ˆ [c, d] ˆ [r, s] is a cube. Let

Px = ta = x0 ă x1 ă ¨ ¨ ¨ ă xn = bu ,

Py = tc = y0 ă y1 ă ¨ ¨ ¨ ă ym = du ,

Pz = tr = z0 ă z1 ă ¨ ¨ ¨ ă zp = su ,

be partitions of [a, b], [c, d], [r, s], respectively, and P be a collection of non-overlapping
cubes given by

P =
␣

Rijk

ˇ

ˇRijk = [xi´1, xi] ˆ [yj´1, yj] ˆ [zk´1, zk], 1 ď i ď n, 1 ď j ď m, 1 ď k ď p
(

.

Such a collection P is called a partition of Q, and the norm of P is the maximum of the
length of the diagonals of all Rijk; that is

}P} = max
!
b

(xi ´ xi´1)2 + (yj ´ yj´1)2 + (zk ´ zk´1)2
ˇ

ˇ

ˇ
1 ď i ď n, 1 ď j ď m, 1 ď k ď p

)

.

A Riemann sum of f for this partition P is given by
n
ÿ

i=1

m
ÿ

j=1

p
ÿ

k=1

f(ξijk, ηijk, ζijk)(xi ´ xi´1)(yj ´ yj´1)(zk ´ zk´1) .

The mass of Q then should be the “limit” of Riemann sums as }P} approaches zero. In
general, we can remove the restrictions that f is non-negative on R and still consider the
limit of the Riemann sums. We have the following
Theorem 14.28

Let Q = [a, b] ˆ [c, d] ˆ [r, s] be a cube in space, and f : Q Ñ R be a function. f is
said to be Riemann integrable on Q if there exists a real number I such that for every
ε ą 0, there exists δ ą 0 such that if P is a partition of Q satisfying }P} ă δ, then
any Riemann sum of f for P belongs to (I ´ ε, I + ϵ). Such a number I (is unique if
it exists and) is called the Riemann integral or triple integral of f on Q and is

denoted by
¡

Q

f(x, y, z) dV .

For general bounded region Q in space, let r ą 0 be such that Q Ď [´r, r]3, and we
define

¡

Q

f(x, y, z) dV as
¡

[´r,r]3

rf(x, y, z) dV , where rf is the zero extension of f given by

rf(x, y, z) =

"

f(x, y, z) if (x, y, z) P R ,

0 if (x, y, z) R R .



Some of the properties of double integrals in Theorem 14.4 can be restated in terms of
triple integrals.

1.
¡

Q

(cf)(x, y, z) dV = c

¡

Q

f(x, y, z) dV .

2.
¡

Q

(f + g)(x, y, z) dV =

¡

Q

f(x, y, z) dV +

¡

Q

g(x, y, z) dV .

3.
¡

Q1YQ2

f(x, y, z) dV =

¡

Q1

f(x, y, z) dV +

¡

Q2

f(x, y, z) dV for all “non-overlapping”

solid regions Q1 and Q2.

Similar to Fubini’s Theorem for the evaluation of double integrals, we have the following
Theorem 14.29: Fubini’s Theorem

Let Q be a region in space, and f : Q Ñ R be continuous. If Q is given by Q =
␣

(x, y, z)
ˇ

ˇ (x, y) P R, g1(x, y) ď z ď g2(x, y)
(

for some region R in the xy-plane, then

¡

Q

f(x, y, z) dV =

ĳ

R

( ż g2(x,y)

g1(x,y)

f(x, y, z) dz
)
dA .

In particular, if R is expressed by R =
␣

(x, y)
ˇ

ˇ a ď x ď b, h1(x) ď y ď h2(y)
(

, then
¡

Q

f(x, y, z) dV =

ż b

a

[ ż h2(x)

h1(x)

( ż g2(x,y)

g1(x,y)

f(x, y, z) dz
)
dy

]
dx .

Example 14.30. Find the volume of the region Q bounded below by the paraboloid z =

x2 + y2 and above by the sphere x2 + y2 + z2 = 6.
Suppose Q is a solid region in space with uniform density 1 (or say, this region is occupied

by water). Then the volume of Q is identical to the mass (in terms of its numerical value);
thus we find that the volume of Q is given by

¡

Q

1 dV . To apply the Fubini Theorem, we

need to express Q as
␣

(x, y, z)
ˇ

ˇ (x, y) P R, g1(x, y) ď z ď g2(x, y)
(

. Nevertheless, if R is the
bounded region in the plane enclosed by the curve (x2 + y2)2 + x2 + y2 = 6 (which in fact
gives x2 + y2 = 2), then

Q =
␣

(x, y, z)
ˇ

ˇ (x, y) P R, x2 + y2 ď z ď
a

6 ´ x2 ´ y2
(



and the Fubini Theorem implies that

the volume of Q =

ż

R

( ż ?
6´x2´y2

x2+y2
1 dz

)
dA .

Solving for R, we find that R =
␣

(x, y)
ˇ

ˇ ´
?
2 ď x ď

?
2,´

?
2 ´ x2 ď y ď

?
2 ´ x2

(

; thus
by the Fubini Theorem we find that

the volume of Q =

ż

?
2

´
?
2

[ ż ?
2´x2

´
?
2´x2

( ż ?
6´x2´y2

x2+y2
1 dz

)
dy

]
dx .

Example 14.31. Evaluate
ż

?
π/2

0

[ ż ?
π/2

x

( ż 3

1
sin(y2) dz

)
dy

]
dx.

Let R =
␣

(x, y)
ˇ

ˇ 0 ď x ď
a

π/2, x ď y ď
a

π/2
(

, then the domain of integration is
given by

Q =
␣

(x, y, z)
ˇ

ˇ 0 ď x ď
a

π/2, x ď y ď
a

π/2, 1 ď z ď 3
(

and the iterated integral given above is the triple integral
¡

Q

sin(y2) dV .

Since R can also be expressed as R =
␣

(x, y)
ˇ

ˇ 0 ď y ď
a

π/2, 0 ď x ď y
(

, by the Fubini
Theorem we find that
ż

?
π/2

0

[ ż ?
π/2

x

( ż 3

1

sin(y2) dz
)
dy

]
dx =

¡

Q

sin(y2) dV

=

ż

?
π/2

0

[ ż y

0

( ż 3

1

sin(y2) dz
)
dx

]
dy =

ż

?
π/2

0

2y sin(y2) dy = ´ cos(y2)
ˇ

ˇ

ˇ

y=
?

π/2

y=0
= 1 .

Example 14.32. Compute the iterated integrals
ż 6

0

[ ż 3

z
2

( ż y

z
2

dx
)
dy

]
dz +

ż 6

0

[ ż 12´z
2

3

( ż 6´y

z
2

dx
)
dy

]
dz ,

then write the sum above as a single iterated integral in the order dydzdx and dzdydx.
We compute the two integrals above as follows:

ż 6

0

[ ż 3

z

2

( ż y

z

2

dx
)
dy

]
dz =

ż 6

0

[ ż 3

z

2

(
y ´

z

2

)
dy

]
dz =

ż 6

0

(
y2 ´ yz

2

ˇ

ˇ

ˇ

y=3

y= z
2

)
dz

=
1

2

ż 6

0

(
9 ´ 3z +

z2

4

)
dz =

1

2

(
9z ´

3z2

2
+
z3

12

)ˇ
ˇ

ˇ

z=6

z=0
= 9 ,



and
ż 6

0

[ ż 12´z
2

3

( ż 6´y

z
2

dx
)
dy

]
dz =

ż 6

0

[ ż 12´z
2

3

(
6 ´ y ´

z

2

)
dy

]
dz

=
1

2

ż 6

0

(
12y ´ y2 ´ yz

)ˇ
ˇ

ˇ

y= 12´z
2

y=3
dz

=
1

2

ż 6

0

[
6(12 ´ z) ´

144 ´ 24z + z2

4
´

(12 ´ z)z

2
´ 36 + 9 + 3z

)
dz

=
1

2

ż 6

0

(
72 ´ 6z ´ 36 + 6z ´

z2

4
´ 6z +

z2

2
´ 27 + 3z

)
dz

=
1

2

ż 6

0

(
9 ´ 3z +

z2

4

)
dz =

1

2

(
9z ´

3z2

2
+
z3

12

)ˇ
ˇ

ˇ

z=6

z=0
= 9 .

Therefore, the sum of the two integrals is 18.
Let

Q1 =
!

(x, y, z)
ˇ

ˇ

ˇ
0 ď z ď 6,

z

2
ď y ď 3,

z

2
ď x ď y

)

,

Q2 =
!

(x, y, z)
ˇ

ˇ

ˇ
0 ď z ď 6, 3 ď y ď

12 ´ z

2
,
z

2
ď x ď 6 ´ y

)

.

Then the Fubini Theorem implies that
ż 6

0

[ ż 3

z
2

( ż y

z
2

dx
)
dy

]
dz =

¡

Q1

dV ,

ż 6

0

[ ż 12´z
2

3

( ż 6´y

z
2

dx
)
dy

]
dz =

¡

Q2

dV .

Let Q = Q1 Y Q2. Since Q1 and Q2 are non-overlapping solid regions (their intersection is
a subset of the plane y = 3). Then

¡

Q1

dV +

¡

Q2

dV =

¡

Q

dV .

1. Let R be the projection of Q onto the xz-plane. Then R =
␣

(x, z)
ˇ

ˇ 0 ď x ď 3, 0 ď

z ď 2x
(

(where z = 2x is the projection of the plane x =
z

2
onto the xz-plane), and

Q can also be expressed as

Q =
␣

(x, y, z)
ˇ

ˇ (x, z) P R, x ď y ď 6 ´ x
(

.

Therefore, the volume of Q is given by
ż 3

0

[ ż 2x

0

( ż 6´x

x

dy
)
dz

]
dx =

ż 3

0

[ ż 2x

0

(6 ´ 2x) dz
]
dx

=

ż 3

0

2x(6 ´ 2x) dx =
(
6x2 ´

4x3

3

)ˇ
ˇ

ˇ

x=3

x=0
= 54 ´ 36 = 18 .



2. Let S be the projection of Q onto the xy-plane. Then S =
␣

(x, y)
ˇ

ˇ 0 ď x ď 3, x ď

y ď 6 ´ x
(

, and Q can also be expressed as

Q =
␣

(x, y, z)
ˇ

ˇ (x, y) P S, 0 ď z ď 2x
(

.

Therefore, the volume of Q is given by
ż 3

0

[ ż 6´x

x

( ż 2x

0

dz
)
dy

]
dx =

ż 3

0

[ ż 6´x

x

2x dy
]
dx =

ż 3

0

2x(6 ´ 2x) dx = 18 .

14.5 Change of Variables Formula
In this section, we consider the version of substitution of variables in multiple integrals. We
have used the technique of substitution of variable to evaluate the iterated integrals in, for
example, Example 14.13 and 14.14; however, these substitutions of variable always assume
that other variables are independent of the new variable introduced by the substitution of
variable. We would like to investigate the effect of making a change of variables such as
x = r cos θ, y = r sin θ in computing the double integrals.

14.5.1 Double integrals in polar coordinates

We start our discussion with double integrals in polar coordinates. Suppose that R is the
shaded region shown in Figure 14.4 and f : R Ñ R is continuous.

Figure 14.3: Rectangle in polar coordinates

Then to compute the double integral
ĳ

R

f(x, y) dA using the Fubini theorem directly,



we need to divide R into three sub-regions R1, R2, R3 given by

R1 =
!

(x, y)
ˇ

ˇ

ˇ
ρ1 cosΘ2 ď x ď ρ2 cosΘ2,

b

ρ21 ´ x2 ď y ď x tanΘ2

)

,

R2 =
!

(x, y)
ˇ

ˇ

ˇ
ρ2 cosΘ2 ď x ď ρ1 cosΘ1,

b

ρ22 ´ x2 ď y ď

b

ρ21 ´ x2
)

,

R3 =
!

(x, y)
ˇ

ˇ

ˇ
ρ1 cosΘ1 ď x ď ρ2Θ2, x tanΘ1 ď y ď

b

ρ22 ´ x2
)

,

and write
ĳ

R

f(x, y) dA =

ĳ

R1

f(x, y) dA+

ĳ

R2

f(x, y) dA+

ĳ

R3

f(x, y) dA .

However, we know that the region R above is a rectangle in rθ-plane, where (r, θ) is the
polar coordinates on the plane. To be more precise, in polar coordinate the region R can be
expressed as R 1 ”

␣

(r, θ)
ˇ

ˇ ρ1 ď r ď ρ2,Θ1 ď θ ď Θ2u, which means that every point (x, y)

in R can be written as (r cos θ, r sin θ) for (r, θ) P R 1, and vice versa. One should expect
that it should be easier to write down the iterated integral for computing

ĳ

R

f(x, y) dA.

Let Pr = tρ1 = r0 ă r1 ă ¨ ¨ ¨ ă rn = ρ2u and Pθ = tΘ1 = θ0 ă θ1 ă ¨ ¨ ¨ ă θm = Θ2u

be partitions of [ρ1, ρ2] and [Θ1,Θ2], respectively, Rij = [ri´1, ri] ˆ [θj´1, θj] be rectangles
in the rθ-plane, Sij be the sub-region in the xy-plane corresponds to Rij under the polar
coordinate; that is,

Sij =
␣

(r cos θ, r sin θ)
ˇ

ˇ r P [ri´1, ri], θ P [θj´1, θj]
(

.

The collection P =
␣

Sij

ˇ

ˇ 1 ď i ď n, 1 ď j ď m
(

is called a partition of rectangles in polar
coordinates, and the norm of P , denoted by }P}, is the maximum diameter of Sij.

Figure 14.4: Rectangle in polar coordinates



A Riemann sum of f for partition P is of the form
n
ř

i=1

m
ř

j=1

f(ξij, ηij)|Sij|, where |Sij| is

the area of Sij and
␣

(ξij, ηij)
(

1ďiďn,1ďjďm
be collection of points satisfying (ξij, ηij) P Sij.

Then intuitively
ĳ

R

f(x, y) dA is the limit of Riemann sums of f for P as }P} approaches
zero.

To see the limit of Riemann sums, we choose a particular partition P and collection
␣

(ξij, ηij)
(

1ďiďn,1ďjďm
. We equally partition [ρ1, ρ2] and [Θ1,Θ2] into n and m sub-intervals.

Let ∆r = ρ2 ´ ρ1
n

and ∆θ =
Θ2 ´ Θ1

m
, and ri = ρ1+i∆r and θj = Θ1+j∆θ, and ξij = ri cos θj

and ηij = ri sin θj. Noting that

|Sij| =
1

2
(r2i ´ r2i´1)(θj ´ θj´1) =

1

2
(ri + ri´1)∆r∆θ = ri∆r∆θ ´

1

2
∆r2∆θ ,

we find that
n
ÿ

i=1

m
ÿ

j=1

f(ξij, ηij)|Sij| =
n
ÿ

i=1

m
ÿ

j=1

f(ri cos θj, ri sin θj)ri∆r∆θ

´
∆r

2

n
ÿ

i=1

m
ÿ

j=1

f(ri cos θj, ri sin θj)∆r∆θ .

Let g(r, θ) = rf(r cos θ, r sin θ) and h(r, θ) = f(r cos θ, r sin θ), then
n
ÿ

i=1

m
ÿ

j=1

f(ξij, ηij)|Sij| =
n
ÿ

i=1

m
ÿ

j=1

g(ri, θj)∆r∆θ ´
∆r

2

n
ÿ

i=1

m
ÿ

j=1

h(ri, θj)∆r∆θ .

As n,m approach 8, we find that
n
ÿ

i=1

m
ÿ

j=1

g(ri, θj)∆r∆θ Ñ

ĳ

R 1

g(r, θ) d(r, θ) =

ĳ

R 1

f(r cos θ, r sin θ)r d(r, θ) ,

n
ÿ

i=1

m
ÿ

j=1

h(ri, θj)∆r∆θ Ñ

ĳ

R 1

h(r, θ) d(r, θ) =

ĳ

R 1

f(r cos θ, r sin θ) d(r, θ) ,

where the right-hand side integrals denotes the double integrals on the rectangle R 1. There-
fore, the limit of Riemann sums of f for P as }P} approaches zero is

ĳ

R 1

f(r cos θ, r sin θ)r d(r, θ) ;

thus
ĳ

R

f(x, y) d(x, y) =

ĳ

R 1

f(r cos θ, r sin θ)r d(r, θ) . (14.5.1)



14.5.2 Jacobian

Recall the substitution of variables formula for the integral of functions of one variable:
ż b

a

f
(
g(x)

)
g 1(x) dx =

ż g(b)

g(a)

f(u) du .

Suppose that g : [a, b] Ñ R is one-to-one. If g is increasing, then g 1 ě 0 and g([a, b]) =[
g(a), g(b)

]
; thus the formula above can be rewritten as

ż

g([a,b])

f(u) du =

ż

[a,b]

f(g(x))g 1(x) dx =

ż

[a,b]

f(g(x))
ˇ

ˇg 1(x)
ˇ

ˇ dx .

If g is decreasing, then g 1 ď 0 and g([a, b]) =
[
g(b), g(a)

]
; thus the formula above can be

written as
ż

g([a,b])

f(u) du = ´

ż

[a,b]

f(g(x))g 1(x) dx =

ż

[a,b]

f(g(x))
ˇ

ˇg 1(x)
ˇ

ˇ dx .

Therefore, in either cases we have a rewritten version of the substitution of variable formula
ż

g([a,b])

f(u) du =

ż

[a,b]

f(g(x))
ˇ

ˇg 1(x)
ˇ

ˇ dx .

In this section, we are concerned with the substitution of variable formula (usually called the
change of variables formula in the case of multiple integrals) for double and triple integrals,
here the substitution of variables is usually given by x = x(u, v), y = y(u, v) for the case
of double integrals and x = x(u, v, w), y = y(u, v, w), z = z(u, v, w) for the case of triple
integrals.

Consider the double integral
ĳ

R

f(x, y) dA. Suppose that we have the change of variables

x = x(u, v) and y = y(u, v), and the Fubini Theorem implies that the double integral can

be written as
ż ( ż

f(x, y) dy
)
dx, here we do not write the upper limit and lower limit

explicitly. Note the inner integral in the iterated integral is computed by assuming that x
is fixed. When x is a fixed constant, the relation x = x(u, v) gives a relation between u and
v, and the implicit differentiation provides that

du

dv
= ´

xv(u, v)

xu(u, v)



if xu ‰ 0. Making the substitution of the variable y = y(u, v) with u, v satisfying the relation
x = x(u, v), we find that

dy = yu(u, v)du+ yv(u, v)dv = yu(u, v)
du

dv
dv + yv(u, v)dv

=
xu(u, v)yv(u, v) ´ xv(u, v)yu(u, v)

xu(u, v)
dv ;

thus
ż

f(x, y) dy =

ż

f(x(u, v), y(u, v))
ˇ

ˇ

ˇ

xu(u, v)yv(u, v) ´ xv(u, v)yu(u, v)

xu(u, v)

ˇ

ˇ

ˇ
dv .

Therefore, the substitution of variable x = x(u, v), where “v is treated as a constant since
it has been integrated”, is

ż ( ż
f(x, y) dy

)
dx

=

ż ( ż
f(x(u, v), y(u, v))

ˇ

ˇ

ˇ

xu(u, v)yv(u, v) ´ xv(u, v)yu(u, v)

xu(u, v)

ˇ

ˇ

ˇ
dv

)
ˇ

ˇxu(u, v)
ˇ

ˇ du

=

ż ( ż
f(x(u, v), y(u, v))

ˇ

ˇxu(u, v)yv(u, v) ´ xv(u, v)yu(u, v)
ˇ

ˇ dv
)
du . (14.5.2)

Example 14.33. Consider the change of variables using polar coordinate x = r cos θ,
y = r sin θ (treat r, θ as the u, v variables, respectively). Then

|xuyv ´ xvyu| = | cos θ ¨ r cos θ ´ (´r sin θ) ¨ sin θ| = |r| = r ;

thus (14.5.2) implies the change of variables formula for polar coordinates (14.5.1).

Now we consider the possible change of variables formula for triple integrals. Suppose
that by the Fubini Theorem,

¡

Q

f(x, y, z) dV =

ż [ ż ( ż
f(x, y, z) dz

)
dy

]
dx ,

where again we do not state explicitly the upper and the lower limit of each integral. For a
given change of variables x = x(u, v, w), y = y(u, v, w) and z = z(u, v, w), the first integral
that we need to evaluate is

ż

f(x, y, z) dz, and this integral is computed by assuming that

x, y are fixed constants. When x and y are fixed constants, the relations x = x(u, v, w) and
y = y(u, v, w) give a relation among u, v, w. Suppose that these relations imply that u and v



are differentiable functions of w, then the implicit differentiation (when applicable) provides
that

0 = xu(u, v, w)
du

dw
+ xv(u, v, w)

dv

dw
+ xw(u, v, w) ,

0 = yu(u, v, w)
du

dw
+ yv(u, v, w)

dv

dw
+ yw(u, v, w) ;

thus if xuyv ´ xvyu ‰ 0, we have

du

dw
=
xv(u, v, w)yw(u, v, w) ´ xw(u, v, w)yv(u, v, w)

xu(u, v, w)yv(u, v, w) ´ xv(u, v, w)yu(u, v, w)
,

dv

dw
=
xw(u, v, w)yu(u, v, w) ´ xu(u, v, w)yw(u, v, w)

xu(u, v, w)yv(u, v, w) ´ xv(u, v, w)yu(u, v, w)
,

and these identities further imply that

dz = zu(u, v, w)du+ zv(u, v, w)dv + zw(u, v, w)dw

=
[
zu
xvyw ´ xwyv
xuyv ´ xvyu

+ zv
xwyu ´ xuyw
xuyv ´ xvyu

+ zw

]
(u, v, w)dw

=
[xvywzu ´ xwyvzu + xwyuzv ´ xuywzv + xuyvzw ´ xvyuzw

xuyv ´ xvyu

]
(u, v, w)dw .

Therefore,
ż

f(x, y, z) dz =

ż

f(x(u, v, w), y(u, v, w), z(u, v, w))ˆ

ˆ

ˇ

ˇ

ˇ

xvywzu´xwyvzu+xwyuzv´xuywzv+xuyvzw´xvyuzw
xuyv´xvyu

ˇ

ˇ

ˇ
(u, v, w) dw ,

and (14.5.2), by treating w as a constant since it has been integrated, implies that
ż [ ż ( ż

f(x, y, z) dz
)
dy

]
dx

=

ż [ ż ( ż
f(x(u, v, w), y(u, v, w), z(u, v, w))ˆ

ˆ

ˇ

ˇ

ˇ

xvywzu ´ xwyvzu + xwyuzv ´ xuywzv + xuyvzw ´ xvyuzw
xuyv ´ xvyu

ˇ

ˇ

ˇ
(u, v, w) dw

)
ˆ

ˆ
ˇ

ˇxu(u, v, w)yv(u, v, w) ´ xv(u, v, w)yu(u, v, w)
ˇ

ˇ dv
]
du

=

ż [ ż ( ż
f(x(u, v, w), y(u, v, w), z(u, v, w))ˆ

ˆ
ˇ

ˇxvywzu ´ xwyvzu + xwyuzv ´ xuywzv + xuyvzw ´ xvyuzw
ˇ

ˇ(u, v, w) dw
)
dv

]
du .

The naive (but wrong) computations above motivate the following



Definition 14.34
If x = x(u, v) and y = y(u, v), the Jacobian of x and y with respect to u and v,

denoted by B (x, y)

B (u, v)
, is

B (x, y)

B (u, v)
=

ˇ

ˇ

ˇ

ˇ

xu xv
yu yv

ˇ

ˇ

ˇ

ˇ

= xuyv ´ xvyu .

If x = x(u, v, w), y = y(u, v, w) and z = z(u, v, w), the Jacobian of x, y and z with

respect to u, v and w, denoted by B (x, y, z)

B (u, v, w)
, is

B (x, y, z)

B (u, v, w)
=

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

xu xv xw
yu yv yw
zu zv zw

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

= xuyvzw + xwyuzv + xvywzu ´ xwyvzu ´ xvyuzw ´ xuywzv .

In general, if g1, g2, ¨ ¨ ¨ , gn are functions of n-variables (whose variables are denoted by

u1, u2, ¨ ¨ ¨ , un), then the Jacobian of g1, g2, ¨ ¨ ¨ , gn (with respect to u1, u2, ¨ ¨ ¨ , un), denoted

by B (g1, ¨ ¨ ¨ , gn)

B (u1, ¨ ¨ ¨ , un)
, is

B (g1, ¨ ¨ ¨ , gn)

B (u1, ¨ ¨ ¨ , un)
=

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bg1
Bu1

Bg1
Bu2

¨ ¨ ¨
Bg1
Bun

Bg2
Bu1

Bg2
Bu2

¨ ¨ ¨
Bg2
Bun

... ... . . . ...
Bgn
Bu1

Bgn
Bu2

¨ ¨ ¨
Bgn
Bun

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

Example 14.35. The Jacobian of the change of variables given by the polar coordinate
x = a+ r cos θ, y = b+ r sin θ is

B (x, y)

B (r, θ)
=

ˇ

ˇ

ˇ

ˇ

cos θ ´r sin θ
sin θ r cos θ

ˇ

ˇ

ˇ

ˇ

= r .

The Jacobian of the change of variables given by the spherical coordinate x = ρ cos θ sinϕ,
y = ρ sin θ sinϕ, z = ρ cosϕ is

B (x, y, z)

B (ρ, θ, ϕ)
=

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

cos θ sinϕ ´ρ sin θ sinϕ ρ cos θ cosϕ
sin θ sinϕ ρ cos θ sinϕ ρ sin θ cosϕ

cosϕ 0 ´ρ sinϕ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

= ´ρ2 cos2 θ sin3 ϕ ´ ρ2 sin2 θ sinϕ cos2 ϕ ´ ρ2 cos2 θ sinϕ cos2 ϕ ´ ρ2 sin2 θ sin3 ϕ

= ´ρ2 cos2 θ sinϕ ´ ρ2 sin2 θ sinϕ = ´ρ2 sinϕ .



The Jacobian of the change of variables given by the cylindrical coordinate x = r cos θ,
y = r sin θ, z = z is

B (x, y, z)

B (r, θ, z)
=

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

cos θ ´r sin θ 0
sin θ r cos θ 0
0 0 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

= r .

Even though the derivation of the change of variables is wrong; however, the conclusion
is in fact correct, and we have the following
Theorem 14.36

Let O Ď R2 be an open set that has area, and g = (g1, g2) : O Ñ R2 be an one-to-one
continuously differentiable function such that g´1 is also continuously differentiable.
Assume that the Jacobian of g1, g2 (with respective to their variables) does not vanish
in O. If f : g(O) Ñ R is integrable (on g(O)), then

ĳ

g(O)

f(x, y) dA =

ĳ

O

f
(
g1(u, v), g2(u, v)

)ˇ
ˇ

ˇ

B (g1, g2)

B (u, v)

ˇ

ˇ

ˇ
dA1 ,

where the integral on the right-hand side is the double integral of the function

f
(
g1(u, v), g2(u, v)

)ˇ
ˇ

ˇ

B (g1, g2)

B (u, v)

ˇ

ˇ

ˇ
(with variables u, v) on O.

Theorem 14.37
Let O Ď R3 be an open set that has volume (that is, the constant function is Rie-
mann integrable on O), and g = (g1, g2, g3) : O Ñ R3 be an one-to-one continuously
differentiable function such that g´1 is also continuously differentiable. Assume that
the Jacobian of g1, g2, g3 (with respective to their variables) does not vanish in O. If
f : g(O) Ñ R is integrable (on g(O)), then

¡

g(O)

f(x, y, z) dV =

¡

O

f
(
g1(u, v, w), g2(u, v, w), g3(u, v, w)

)ˇ
ˇ

ˇ

B (g1, g2, g3)

B (u, v, w)

ˇ

ˇ

ˇ
dV 1 ,

where the integral on the right-hand side is the triple integral of the function

f
(
g1(u, v, w), g2(u, v, w), g3(u, v, w)

)ˇ
ˇ

ˇ

B (g1, g2, g3)

B (u, v, w)

ˇ

ˇ

ˇ
(with variables u, v, w) on O.

Remark 14.38. Suppose that O is an open set in the plane such that the boundary of
O, denoted by BO, has zero area. Under suitable assumptions (for example, if the set of



discontinuities of f has zero area and f is bounded above or below by a constant), we have
ĳ

O

f(x, y) dA =

ĳ

sO

f(x, y) dA . (14.5.3)

Example 14.39. Let B =
␣

(x, y)
ˇ

ˇx2 + y2 ă R2
(

´ [0, 1) ˆ t0u. Then the polar coordinate
x = x(r, θ) = r cos θ and y = y(r, θ) = r cos θ is an one-to-one continuously differentiable
function from O ” (0, R) ˆ (0, 2π) Ñ R2 and the inverse function r = r(x, y) =

a

x2 + y2

and

θ = θ(x, y) =

$

’

’

’

’

&

’

’

’

’

%

arccos x
a

x2 + y2
if y ą 0 ,

π if y = 0 ,

2π ´ arccos x
a

x2 + y2
if y ă 0 ,

is also continuously differentiable (which you proved in Quiz). Therefore, the change of
variables formula implies that

ĳ

B

f(x, y)dA =

ĳ

(0,R)ˆ(0,2π)

f(r cos θ, r sin θ)r dA1 .

Let D(R) =
␣

(x, y)
ˇ

ˇx2 + y2 ď R2
(

. Then D = B Y BB and [0, R] ˆ [0, 2π] = (0, R) ˆ

(0, 2π) Y B
[
(0, R) ˆ (0, 2π)

]
; thus (14.5.3) further implies that

ĳ

D(R)

f(x, y)dA =

ĳ

[0,R]ˆ[0,2π]

f(r cos θ, r sin θ)r dA1 .

In general, if a region R, in polar coordinate, can be expressed as

R =
␣

(r, θ)
ˇ

ˇ a ď θ ď b, g1(θ) ď r ď g2(θ)
(

,

then
ĳ

R

f(x, y) dA =

ż b

a

( ż g2(θ)

g1(θ)

f(r cos θ, r sin θ)r dr
)
dθ ,

while if R, in polar coordinate, can be expressed as

R =
␣

(r, θ)
ˇ

ˇ c ď r ď d, h1(r) ď θ ď h2(r)
(

,

then
ĳ

R

f(x, y) dA =

ż d

c

( ż h2(r)

h1(r)

f(r cos θ, r sin θ)r dθ
)
dr .



Example 14.40. In this example we compute the double integral
ĳ

R

a

1 + 4x2 + 4y2 dA

that appears in Example 14.14, where R =
␣

(x, y)
ˇ

ˇx2 + y2 ď 1
(

.

Using the polar coordinate, R =
␣

(r, θ)
ˇ

ˇ 0 ď r ď 1, 0 ď θ ď 2π
(

; thus
ĳ

R

a

1 + 4x2 + 4y2 dA =

ż 2π

0

( ż 1

0

?
1 + 4r2 ¨ r dr

)
dθ =

ż 2π

0

[ 1

12
(1 + 4r2)

3
2

]ˇ
ˇ

ˇ

r=1

r=0
dθ

=

ż 2π

0

(5
?
5 ´ 1) dθ = 2π(5

?
5 ´ 1) .

Example 14.41. In this example we compute the double integral
ĳ

R

r
a

r2 ´ x2 ´ y2
dA that

appears in Example 14.13, where R =
␣

(x, y)
ˇ

ˇx2 + y2 ď σ2
(

with 0 ă σ ă r.
Using the polar coordinate (here we let ρ be the radial variable instead of r since r in

this integral is a fixed constant), R =
␣

(ρ, θ)
ˇ

ˇ 0 ď ρ ď σ, 0 ď θ ď 2π
(

; thus
ĳ

R

r
a

r2 ´ x2 ´ y2
dA =

ż 2π

0

( ż σ

0

r
a

r2 ´ ρ2
¨ ρ dρ

)
dθ =

ż 2π

0

(
´ r

a

r2 ´ ρ2
)ˇ
ˇ

ˇ

ρ=σ

ρ=0
dθ

=

ż 2π

0

(
r2 ´ r

?
r2 ´ σ2) dθ = 2π

(
r2 ´ r

?
r2 ´ σ2) .

Example 14.42. Let S be the subset of the upper hemisphere z =
a

1 ´ x2 ´ y2 enclosed
by the curve C shown in the figure below

Figure 14.5: Curve S on the upper hemisphere

where each point of C corresponds to some point (cos t sin t, sin2 t, cos t) with t P
[
´
π

2
,
π

2

]
.

Find the surface of S.



Let (x, y) be a boundary point of R. The (x, y) = (cos t sin t, sin2 t) for some t P
[
´
π

2
,
π

2

]
;

thus

x2 + y2 = cos2 t sin2 t+ sin4 t = (cos2 t+ sin2 t) sin2 t = sin2 t = y .

Therefore, the boundary of R consists of points (x, y) satisfying x2 + y2 = y which shows
that R is a disk centered at

(
0,

1

2

)
with radius 1

2
. Therefore,

R =
␣

(x, y)
ˇ

ˇ 0 ď y ď 1,´
a

y ´ y2 ď x ď
a

y ´ y2
(

,

and by Theorem 14.11 the surface area of S is given by
ĳ

R

1
a

1 ´ x2 ´ y2
dA.

Now we apply the change of variables using the polar coordinates to compute this double
integral. Since we have found the Jacobian of this change of variables, we only need to find
the corresponding region R 1 of R in the rθ-plane and the change of variables formula shows
that the surface area of S is

ĳ

R 1

r
?
1 ´ r2

dA 1.

By the fact that the boundary of R 1 maps to the boundary of R under the change
of variables x = r cos θ and y = r sin θ, we find that if (r, θ) is a boundary point of R 1,
then (r, θ) satisfies r2 = r sin θ; thus the boundary of R 1 consists of points (r, θ) satisfying
r = sin θ or r = 0 in the rθ-plane. Since R locates on the upper half plane, 0 ď θ ď π, and
the center of the disk R corresponds to point

(1
2
,
π

2

)
in the rθ-plane, we conclude that

R 1 =
␣

(r, θ)
ˇ

ˇ 0 ď θ ď π, 0 ď r ď sin θ
(

.

Therefore,
ĳ

R 1

r
?
1 ´ r2

dA 1 =

ż π

0

( ż sin θ

0

1
?
1 ´ r2

rdr
)
dθ =

ż π

0

[(
´

?
1 ´ r2

)ˇ
ˇ

ˇ

r=sin θ

r=0

]
dθ

=

ż π

0

(
1 ´ | cos θ|

)
dθ = π ´ 2

ż π
2

0

cos θ dθ = π ´ 2
(

sin θ
ˇ

ˇ

ˇ

θ=π
2

θ=0

)
= π ´ 2 .

Example 14.43. In this example we compute the improper integral
ż 8

0
e´x2

dx. First

we note that this improper integral converges since 0 ď e´x2
ď e´x for all x ě 1 and

ż 8

1
e´x dx = e´1 ă 8, the comparison test implies that

ż 8

1
e´x2

dx converges.



Let I =
ż 8

0
e´x2

dx. Then I =
ż 8

0
e´y2 dy; thus

I2 =
( ż 8

0

e´x2

dx
)( ż 8

0

e´y2 dy
)
=

ż 8

0

( ż 8

0

e´y2 dy
)
e´x2

dx

=

ż 8

0

( ż 8

0

e´x2

e´y2 dy
)
dx =

ż 8

0

( ż 8

0

e´(x2+y2) dy
)
dx =

ĳ

R

e´(x2+y2) dA ,

where R is the first quadrant of the plane. In polar coordinate, the first quadrant can be
expressed as 0 ă r ă 8 and 0 ă θ ă

π

2
; thus using the polar coordinate we find that

I2 =

ż π
2

0

( ż 8

0

e´r2r dr
)
dθ =

ż π
2

0

(
´
1

2
e´r2

)ˇ
ˇ

ˇ

r=8

r=0
dθ =

π

4
.

By the fact that I ě 0, we conclude that I =

?
π

2
.

Example 14.44. The Jacobian in the change of variable using spherical coordinate is
ρ2 sinϕ Let Q be a solid region in space, and f : Q Ñ R be continuous. Suppose that Q, in
spherical coordinate, can be expressed as

␣

(ρ, θ, ϕ)
ˇ

ˇ a ď ϕ ď b, g1(ϕ) ď θ ď g2(ϕ),

Example 14.45. In this example we reconsider the volume of Q in Example 14.30, where

Q =
␣

(x, y, z)
ˇ

ˇ (x, y) P R, x2 + y2 ď z ď
a

6 ´ x2 ´ y2
(

,

and R is a disk centered at the origin with radius
?
2.

Using the cylindrical coordinate, the region Q can be expressed as

␣

(r, θ, z)
ˇ

ˇ 0 ď r ď
?
2, 0 ď θ ď 2π, r2 ď z ď

?
6 ´ r2

(

.

Therefore, the volume of Q is given by

¡

Q

dV =

ż 2π

0

[ ż ?
2

0

( ż ?
6´r2

r2
r dz

)
dr
]
dθ =

ż 2π

0

[ ż ?
2

0

r
(?

6 ´ r2 ´ r2
)
dr
]
dθ

=

ż 2π

0

[
´
1

3
(6 ´ r2)

3
2 ´

1

4
r4
]ˇ
ˇ

ˇ

r=
?
2

r=0
dθ =

ż 2π

0

(
´

8

3
´ 1 + 2

?
6
)
dθ = 2π

(
2
?
6 ´

11

3

)
.



Example 14.46. Find the volume of the solid region Q bounded below by the cone z =
a

x2 + y2 and above by the sphere x2 + y2 + z2 = 9.
Using spherical coordinate, Q can be expressed as

!

(ρ, θ, ϕ)
ˇ

ˇ

ˇ
0 ď ρ ď 3, 0 ď θ ď 2π, 0 ď ϕ ď

π

4

)

.

Therefore, the volume of Q is given by
¡

Q

dV =

ż π
4

0

[ ż 2π

0

( ż 3

0

ρ2 sinϕ dρ
)
dθ
]
dϕ = 18π

ż π
4

0

sinϕ dϕ = 18π
(
1 ´

?
2

2

)
.

Example 14.47. Find the double integral
ĳ

R

e´
xy
2 dA, where R is the region given in the

following figure.

Consider the following change of variables: x =
b

v

u
and y =

?
uv. In order to apply

the change of variables formula to find the double integral, we need to know

1. What is the Jacobian of this change of variable?

2. What is the corresponding region of integration in the uv-plane?

We first note that for the change of variables to make sense, u, v have the same sign.
W.L.O.G., we assume that the corresponding region in the uv-plane lies in the first quadrant.
We compute the Jacobian and find that

B (x, y)

B (u, v)
=

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

2

b

u

v
¨

´v

u2
1

2

b

u

v
¨
1

u
1

2

v
?
uv

1

2

u
?
uv

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

=
1

4
¨

´1

u
´

1

4
¨
1

u
= ´

1

2u
.

Now we find the corresponding region R 1 in the uv-plane. The rule of thumb is that a
one-to-one continuously differentiable function whose Jacobian does not vanish maps the



boundary of a region to the boundary of its image. Therefore, the boundary of R 1 is given
by u =

1

2
, u = 2 and v = 1, v = 4. Since the point (x, y) satisfying xy = 2 and y

x
= 1

corresponds to u = 1 and v = 2, we find that R 1 =
[1
2
, 2
]

ˆ [1, 4]. Therefore, the change of
variable formula implies that

ĳ

R

e´
xy
2 dA =

ĳ

[ 1
2
,2]ˆ[1,4]

e´ v
2
1

2u
dA 1 =

ż 2

1
2

( ż 4

1

e´ v
2

2u
dv

)
du

=

ż 2

1
2

[(
´e´ v

2

u

)ˇ
ˇ

ˇ

v=4

v=1

]
du =

(
e´ 1

2 ´ e´2
) ż 2

1
2

1

u
du = 3 ln 2

(
e´ 1

2 ´ e´2
)
.

A more fundamental question is: why do we choose this change of coordinate? The
general philosophy is to “straighten” the boundary so that in the new coordinate system
the corresponding region becomes a region bounded by straight lines. Observing that the
boundaries of the region R consists of four curves y

x
=

1

4
, y
x
= 2, xy = 1 and xy = 4, it is

quite intuitive that we choose u =
y

x
and v = xy as our change of variables (in a reverse

order). Solving for x, y in terms of u, v, we find that x =
b

v

u
and y =

?
uv.

14.6 Exercise
Problem 14.1. Evaluate the following iterated integrals.

(1)
ż 1

´1

( ż 1

0
yex

2+y2 dx
)
dy (2)

ż 2

0

( ż

?
8´y2

y

a

x2 + y2 dx
)
dy (3)

ż 1

0

( ż 1

?
y
ex

3
dx

)
dy

(4)
ż 1

0

( ż 1

y

1

1 + x4
dx

)
dy (5)

ż 4

0

( ż 2

x
2

sin(y2) dy
)
dx (6)

ż 4

0

( ż 2

?
x

1

y3 + 1
dy

)
dx

(7)
ż 2

0

( ż 2

x
x
a

1 + y3 dy
)
dx (8)

ż 2

0

( ż 1

y
2

exp(x2) dx
)
dy (9)

ż 1

0

( ż 1

0

y

1 + x2y2
dx

)
dy

(10)
ż π

2

0

( ż π
2

x

sin y
y

dy
)
dx (11)

ż 2

0

( ż 4

y2

?
x sinx dx

)
dy (12)

ż 2

0

( ż 4´x2

0

xe2y

4 ´ y
dy

)
dx

(13)
ż 1

0

( ż π
2

arcsin y
cosx

?
1 + cos2 x dx

)
dy (14)

ż 5

´5

[ ż ?
25´x2

0

( ż 1
x2+y2

0

a

x2 + y2 dz
)
dy

]
dx

(15)
ż 4

0

[ ż 1

0

( ż y

2y

2 cos(x2)
?
z

dx
)
dy

]
dz (16)

ż 1

0

[ ż 1

0

( ż 1

x2

xz exp(zy2) dy
)
dx

]
dz



(17)
ż 1

0

[ ż 1

3
?
z

( ż ln 3

0

πe2x sin(πy2)
y2

dx
)
dy

]
dz (18)

ż 2

0

[ ż 4´x2

0

( ż x

0

sin(2z)
4 ´ z

dy
)
dz

]
dx

Problem 14.2. Evaluate the double integral
ĳ

R

f(x, y) dA with the following f and R.

(1) f(x, y) = y2exy, and R is the region bounded by y = x, y = 4 and x = 0.

(2) f(x, y) = xy, and R is the region bounded by the line y = x ´ 1 and parabola
y2 = 2x+ 6.

(3) f(x, y) = sin4(x + y), and R is the triangle enclosed by the lines y = 0, y = 2x, and
x = 1.

(4) f(x, y) = x2 + x2y3 ´ y2 sinx, and R =
␣

(x, y)
ˇ

ˇ |x| + |y| ď 1
(

.

(5) f(x, y) = |x| + |y|, and R =
␣

(x, y)
ˇ

ˇ |x| + |y| ď 1
(

.

(6) f(x, y) = xy, and R is the region in the first quadrant bounded by curves x2+ y2 = 4,
x2 + y2 = 9, x2 ´ y2 = 1 and x2 ´ y2 = 4.

(7) f(x, y) = x, and R is the region in the first quadrant bounded by curves 4x2 ´ y2 = 4,
4x2 ´ y2 = 16, y = x and the x-axis.

(8) f(x, y) = exp(´x2 ´ 4y2), and R =
␣

(x, y)
ˇ

ˇx2 + 4y2 ď 1
(

.

(9) f(x, y) = exp
(2y ´ x

2x+ y

)
, and R is the trapezoid with vertices (0, 2), (1, 0), (4, 0) and

(0, 8).

Problem 14.3. Evaluate the triple integral
¡

D

f(x, y, z) dV with the following f and D.

(1) f(x, y, z) = x ´ y + z2, and D is the solid region bounded above by z = 1 + x2 + y2,
bounded below by z = 0, and inside x2 + y2 = 4.

(2) f(x, y, z) = 1, and D is the solid region bounded by z = x2 + y2, x2 + y2 = 4 and
z = 0.

(3) f(x, y, z) = 1, and D =
!

(x, y, z) P R3
ˇ

ˇ

ˇ

x2

a2
+
y2

b2
+
z2

c2
ď 1

)

, where a, b, c ą 0.



Problem 14.4. Evaluate the integral
ż 2

0

[
arctan(πx) ´ arctanx

]
dx by converting the in-

tegral into a double integral and evaluating the double integral by changing the order of
integration.

Problem 14.5. Let a, b be positive constants. Evaluate the integral
ż a

0

( ż b

0

exp
(

maxtb2x2, a2y2u
)
dy

)
dx .

Problem 14.6. Show that if λ ą
1

2
, there does not exist a real-valued continuous function

u such that for all x in the closed interval [0, 1],

u(x) = 1 + λ

ż 1

x

u(y)u(y ´ x) dy .

Hint: Assume the contrary that there exists such a function u. Integrate the equation
above on the interval [0, 1].

Problem 14.7. Find the surface area for the portion of the surface z = xy that is inside
the cylinder x2 + y2 = 1.

Problem 14.8. Let Σ be a parametric surface parameterized by

r(u, v) = X(u, v)i + Y (u, v) j + Z(u, v)k , (u, v) P R .

Define E = ru ¨ ru, F = ru ¨ rv and G = rv ¨ rv. Show that

}ru ˆ rv}2 = EG ´ F 2 .

Hint: You can try to make use of εijk, the permutation symbol.
Remark: This quantity EG´ F 2 is called the first fundamental form (associated with the
parametrization r).

Problem 14.9. Let k ą 0 be a constant. Show that the surface area of the cone z =

k
a

x2 + y2 that lies above the circular region x2 + y2 ď r2 in the xy-plane is πr2
?
k2 + 1 by

the following methods:

1. Use the formula
ĳ

R

a

1 + }(∇f)(x, y)}2 dA directly.



2. Find a parametrization of the cone above using r, θ (from the polar coordinate) as the
parameters and make use of the formula

ĳ

D

›

›(rr ˆ rθ)(r, θ)
›

› d(r, θ).

Problem 14.10. Let Σ be the surface formed by rotating the curve

C =
!

(x, y, z) P R3
ˇ

ˇ

ˇ
x = cos z, y = 0,´

π

2
ď z ď

π

2

)

about the z-axis. Find a parametrization for Σ and compute its surface area.

Problem 14.11. The figure below shows the surface created when the cylinder y2 + z2 = 1

intersects the cylinder x2 + z2 = 1. Let Σ be the part shown in the figure.

Σ

(1) Find the area of Σ using the formula
ĳ

R

a

1 + }(∇f)(x, y)}2 dA.

(2) Parameterize Σ using θ, z as parameters (from the cylindrical coordinate) and find the

area of this surface using the formula
ĳ

D

›

›(rθ ˆ rz)(θ, z)
›

› d(r, θ).

(3) Parameterize Σ using θ, ϕ as parameters (from the spherical coordinate) and find the

area of this surface using the formula
ĳ

D

›

›(rθ ˆ rϕ)(θ, z)
›

› d(r, θ).

(3) Find the volume of this intersection using triple integrals.

Problem 14.12. Let Σ be the surface obtained by rotating the smooth curve y = f(x),
a ď x ď b about the x-axis, where f(x) ą 0.

1. Show that

r(x, θ) = xi + f(x) cos θ j + f(x) sin θk, (x, θ) P [a, b] ˆ [0, 2π] ,

is a parametrization of Σ, where θ is the angle of rotation about the x-axis (see the
accompanying figure).



2. Show that the surface area of Σ is
ż b

a

2πf(x)
a

1 + f 1(x)2 dx

using the formula
ĳ

D

›

›(rr ˆ rθ)(r, θ)
›

› d(r, θ).

Problem 14.13. Let S be the subset of the upper hemisphere z =
a

1 ´ x2 ´ y2 enclosed
by the curve C shown in the figure below

where each point of C corresponds to some point (cos t sin t, sin2 t, cos t) with t P
[
´
π

2
,
π

2

]
.

Find the surface of S via the following steps:

(1) Let R be the region obtained by projecting S onto the xy-plane along the z-axis. Sup-
pose that R can be expressed as R =

␣

(x, y)
ˇ

ˇ c ď y ď d, g1(y) ď x ď g2(y)
(

. Find c, d

and g1, g2, and find the surface area of S using the formula
ĳ

R

a

1 + }(∇f)(x, y)}2 dA.



(2) The surface S is a parametric surface parameterized by

S =
!

r
ˇ

ˇ

ˇ
r = cos θ sinϕi + sin θ sinϕ j + cosϕk for some (θ, ϕ) P D

)

.

Find the domain D inside the rectangle [0, 2π] ˆ [0, π], and find the surface area of S

using the formula
ĳ

D

›

›(rθ ˆ rϕ)(θ, ϕ)
›

› d(θ, ϕ).

Problem 14.14. Rewrite the following iterated integrals as an equivalent iterated integral
in the five other orders.

(1)
ż 1

0

[ ż 1

y

( ż y

0
f(x, y, z) dz

)
dx

]
dy (2)

ż 1

0

[ ż 1

y

( ż z

0
f(x, y, z) dx

)
dz

]
dy

(3)
ż 1

0

[ ż 1´x2

0

( ż 1´x

0
f(x, y, z) dy

)
dz

]
dx (4)

ż 3

0

[ ż x

0

( ż 9´x2

0
f(x, y, z) dz

)
dy

]
dx

(5)
ż 1

0

[ ż 1

?
x

( ż 1´y

0
f(x, y, z) dz

)
dy

]
dx (6)

ż 1

´1

[ ż 1

x2

( ż 1´y

0
f(x, y, z) dz

)
dy

]
dx

Problem 14.15. Find volume of the solid that lies under z = x2+ y2 and above the region
R in the xy-plane bounded by the line y = 2x and parabola y = x2.

Problem 14.16. Evaluate the triple integral
¡

D

dV , where D is bounded by z = x2 + y2,

x2 + y2 = 4 and z = 0.

Problem 14.17. Evaluate the double integral
ĳ

R

arctan y

x
dA using the polar coordinate,

where
R =

␣

(x, y) P R2
ˇ

ˇ 1 ď x2 + y2 ď 4, 0 ď y ď x
(

.

Problem 14.18. Evaluate the triple integral
¡

D

x exp(x2 + y2 + z2) dV , where D is the

portion of the unit ball x2 + y2 + z2 ď 1 that lies in the first octant.

Problem 14.19. Evaluate the triple integral
¡

D

a

x2 + y2 + z2 dV , where D is the region

lying above the cone z =
a

x2 + y2 and between the spheres x2+y2+z2 = 1 and x2+y2+z2 =
4.

Problem 14.20. Use the cylinder coordinate to find the volume of the ball x2+y2+z2 = a2.



Problem 14.21. Use the spherical coordinate to find the volume of the cylindricality x2 +
y2 = r2, where 0 ď z ď h.

Problem 14.22. Compute the volume of D given below using triple integrals in cylindrical
coordinates.

(1) D is the solid right cylinder whose base is the region in the xy-plane that lies inside
the cardioid r = 1+ cos θ and outside the circle r = 1 and whose top lies in the plane
z = 4.

(2) D is the solid right cylinder whose base is the region between the circles r = cos θ and
r = 2 cos θ and whose top lies in the plane z = 3 ´ y.

Problem 14.23. Compute the volume of D given below using triple integrals in spherical
coordinates.

(1) D is the solid between the sphere ρ = cosϕ and the hemisphere ρ = 2, z ě 0.



(2) D is the solid bounded below by the sphere ρ = 2 cosϕ and above by the cone z =
a

x2 + y2.

Problem 14.24. Convert the integral
ż 1

´1

[ ż ?
1´y2

0

( ż x

0

(x2 + y2) dz
)
dx

]
dy

to an equivalent integral in cylindrical coordinates and evaluate the result.

Problem 14.25. Find the integrals given below with specific change of variables.

(1) Find
ż 2

0

( ż
y+4
2

y
2

y3(2x ´ y)e(2x´y)2 dx
)
dy using change of variables x = u+

1

2
v, y = v.

(2) Find
ĳ

[0,1]ˆ[0,1]

1

(1 + xy) ln(xy) dA by making the change of variables u = xy and v = y.

(3) Find
ż 2

1

( ż y

1
y

(x2+y2) dx
)
dy+

ż 4

2

( ż 4
y

y
4

(x2+y2) dx
)
dy using change of variables x =

u

v
,

y = uv.

(4) Find
ż 1

0

( ż 2
?
1´x

0

a

x2 + y2 dy
)
dx using change of variables x = u2 ´ v2, y = 2uv.

(5) Let R be the region in the first quadrant of the xy-plane bounded by the hyperbolas

xy = 1, xy = 9 and the lines y = x, y = 4x. Find
ĳ

R

(c
y

x
+

?
xy

)
dA using the

change of variables x =
u

v
, y = uv.



(6) Let D be the solid region in xyz-space defined by

D =
␣

(x, y, z)
ˇ

ˇ 1 ď x ď 2, 0 ď xy ď 2, 0 ď z ď 1
(

.

Find
¡

D

(x2y + 3xyz) dV using change of variables u = x, v = xy, w = 3z.

Problem 14.26. Evaluate the double integral
ĳ

R

(x + y)ex
2´y2 dA, where R is rectangle

enclosed by the lines x ´ y = 0, x ´ y = 2, x+ y = 0, and x+ y = 3.

Problem 14.27. Let f be continuous on [0, 1] and let R be the triangular region with
vertices (0, 0), (1, 0), and (0, 1). Show that

ĳ

R

f(x+ y) dA =

ż 1

0

uf(u) du .

Problem 14.28. Let A be the area of the region in the first quadrant bounded by the line
y =

1

2
x, the x-axis, and the ellipse 1

9
x2 + y2 = 1. Find the positive number m such that

A is equal to the area of the region in the first quadrant bounded by the line y = mx, the
y-axis, and the ellipse 1

9
x2 + y2 = 1.

Hint: Try to make change of variables so that the computation of the area of the region
in the first quadrant bounded by the line y = mx, the y-axis, and the ellipse 1

9
x2 + y2 = 1

looks the same as the former one.
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