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Chapter 0O

Preliminary

0.1 Functions and Their Graphs
Definition 0.1: Real-Valued Functions of a Real Variable

Let X,Y < R be subsets of real numbers. A real-valued function f of a real variable

x from X to Y is a correspondence that assigns to each element x in X exactly one
number y in Y. Here X is called the domain of f and is usually denoted by Dom(f),
Y is called “the” co-domain of f, the number y is called the image of x under f and is
usually denoted by f(x), which is called the value of f at x. The range of f, denoted

by Ran(f), is a subset of Y consisting of all images of numbers in X. In other words,

Ran(f) = the range of f = {f(a:)‘a:eX}.

Remark 0.2. Given a way of assignment x — f(z) without specifying where x is chosen

from, we still treat f as a function and Dom(f) is considered as the collection of all x € R
2

such that f(z) is well-defined. For example, f(z) = = + 1 and g(z) = Z__

considered as functions with

1
. are both

Dom(f) =R  and Dom(g) = R\{1}.

Since Dom(f) # Dom(g), f and g are considered as different functions even though f(x) =
g(x) for all = # 1.

Terminologies:

1. Explicit form of a function: y = f(x);



2. Implicit form of a function: F(z,y) =0. (%3 # 5 )

Definition 0.3

A function f is a polynomial function if f takes the form
f(z) = apz™ 4+ ap_12" 7t + -+ ayz + ag,

where ag, a1, a9, -+ ,a, are real numbers, called coefficients of the polynomial, and
n is a non-negative integer. If a, # 0, then a, is called the leading coefficient, and
n is called the degree of the polynomial. A rational function is the quotient of two

polynomials.

Definition 0.4

The graph of the function y = f(x) consists of all points (z, f(x)), where z is in the
domain of f. In other words,

G(f) = the graph of f = {(a:,f(:c)) ’:1: € Dom(f)}.

Definition 0.5: Composite Functions

Let f and g be functions. The function f o g, read f circle g, is the function defined
by (fog)(z) = f(g(x)) The domain of f o g is the set of all z in the domain of ¢
such that g(z) is in the domain of f. In other words,

Dom(f o ) = {« € Dom(g) | g(x) € Dom(f)} .

0.2 Trigonometric Functions

Detfinition 0.6

An angle consists of an initial ray, a terminal ray and a vertex where two rays inter-
sects. An angle is in standard position when its initial ray coincides with the positive
x-axis and its vertex is at the origin. Positive angles are measured counterclockwise,
and negative angles are measured clockwise.

Let 6 be a central angle of a circle of radius 1. The radian measure of 8 is defined to
be the length of the arc of the sector.




Remark 0.7. Using radian measure of 8, the length s of a circular arc of radius r is given

by s = 6.

: o)
C}f(_'.‘(-_‘ of fué\\-

Figure 1: The radian measure of the central angle A’C'B’ is the number u = s/r. For a unit
circle of radius r = 1, u is the length of arc AB that central angle AC'B cuts from the unit
circle.

Remark 0.8. For a point P on the plane with Cartesian coordinate (z,y), let r = /22 + y?
and 6 be the angle in standard position with ODP as the terminal ray. The ordered pair (r, )

is called the polar coordinate of the point P.
Pir,8)
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Figure 2: Polar coordinate

Definition 0.9

Let 6 be an angle in standard position, and the terminal ray intersects the circle
centered at the origin of radius r at point (x,y). The trigonometric functions sine,
cosine, tangent, cotangent, secant and cosecant, abbreviated as sin, cos, tan, cot, sec
and csc, respectively, of angle 6 are defined by
sinf = Q’ cosf = f, tanf = g, cotf = f’ secl=_ and csch = z,
r r x Y x Yy

provided that the quotients make sense.

Remark 0.10. Suppose that a point P has polar coordinate (r,0). Then the Cartesian

coordinate of P is (rcosf,rsin®).



Proposition 0.11: Properties of Trigonometric Functions

1. For all real numbers 6,

sinf 4+ cos?f =1, 1+tan’f =sec’d, 1+ cot?f = csc?f.

2. For all real numbers 6,

sin(—f#) = —sinf, cos(—0) = cosf, tan(—6f)= —tanb,
cot(—0) = —cot @, sec(—0)=sect, csc(—0)= —csch.

3. For all real numbers 6,
sin (¢9+ g) =cosf, cos (9+ g) = —sinf, tan («9+ g) = —cotf,

sin(f +7) = —sinf, cos(0+m)=—cosf, tan(fd+m)=tanb.

4. (Law of Cosines): Let a, b, ¢ be the length of sides of a triangle, and 6 be the
angle opposite to the side with length c¢. Then ¢ = a? + b* — 2abcos 6.

5. (Sum and Difference Formulas): Let 0, ¢ be real numbers. Then

sin(f + ¢) =sinfcos¢ £ singcosd, cos(f £ ¢) = cosfhcosd F sinfsing.

6. (Double-Angle Formulas): For all real numbers 6,

sin(20) = 2sinfcosd, cos(20) =2cos’f —1=1—2sin’6.

7. (Half-Angle Formulas): For all real numbers 6,

COSQQ_I—H:OSH Sigg_l—COSQ tang— sin #
2 2 7 2 2 7 2 l+cosf’

8. (Triple-Angle Formulas): For all real numbers 6,

cos(30) = 4cos® 0 — 3cosf, sin(30) = 3sinf — 4sin®0.

9. (Sum-to-Product Formulas): For all real numbers 6 and ¢,

sin«9+sinq5:2sin0+¢c030;¢, sin@—sinqS:Qsing;qbcose;(ﬁ,
cos@+cosgb:2cose—i2_¢cosgg¢, cos@—cos¢:2sin9;¢sin¢;9.




Theorem 0.12: de Moivre (§ % %)

For each real number # and natural number n,

(cosf + isinB)" = cos(nf) + isin(nb). (0.2.1)

Proof. Clearly (0.2.1) holds for n = 1. Suppose that (0.2.1) holds for n = k for some natural

number k. Then by the sum and difference formulas,

(cosf + isin0)F = (cosf + isinf)* - (cos§ + isin6)
= [cos(kf) + isin(kf)] - (cosd + isin 6)
= cos(kf) cos § — sin(k#) sin 0 + i | sin(k) cos 6 + cos(k#) sin 0|
= cos|(k + 1)8] + isin[(k + 1)0]

which shows that (0.2.1) holds for n = k + 1. By induction, we find that (0.2.1) holds for

all natural number n. Il

Theorem 0.13

Let 8 be a real number and 0 < § < g Then

sinf < 6 < tand. (0.2.2)

Proof. Inequality (0.2.2) follows from the following figure

sin|0

1

Figure 3: The area of the sector is larger than the area of the blue triangle
but is smaller than the green triangle

0 < %tan@. 0

. 1 . 1
which shows 5 sinf < 5



0.3 Exercise

f;lroblem 0.1. Let 8 be a real number such that ¢ = tang also be a real number. Show
that
2t 1 —¢?

Sinezl_i_t2 and cos9:1+t2.




Chapter 1

Limits and Continuity

1.1 Limits of Functions

Goal: Given a function f defined “near ¢”, find the value of f at x when z is “arbitrarily
close” to c. (%~ Sl fo AP v T 0F c 2 ehBLT] ¢ SPRERLE K T A S
BT R ET )

Notation: When there exists such a value, the value is denoted by lim f(x).

2
Example 1.1. Consider the function g(x) = a;

-1 given in Remark 0.2, and

—1

z2—1 .
hz) = o ife#1,
0 ife=1.

Then the limit of g at 1 should be the same as the limit of h at 1. Therefore, to consider
the limit of a function at a point ¢, the value of the function at ¢ is not important at all.

2 _
Example 1.2. Let g(x) = ’ 11. Then Dom(g) = R\{1} and g(z) = o + 1 if x # 1.
R

Therefore, the graph of ¢ is given by

1
2 =1

r—1

Figure 1.1: The graph of function g(x) =

7



Then (by looking at the graph of g we find that) lirri g(z) = 2.

1 ifx#2,

0 ifre2 The graph of f is given by

Example 1.3. Let f(x) = {

Y

2

Figure 1.2: The graph of function f(x)
Then (by looking at the graph of f we find that) lin% f(z) =1.

Next we give some examples in which the limit of functions (at certain points) do not

exist.

Example 1.4. (L% ) Let f(z) = sin é Then Dom( f) = R\{0}. For the graph of f,

we note that if x € [, = [ﬁ, QL} for some n € N, the graph of f on [,, must touch
nmw ™ nm

x =1 and x = —1 once. Therefore, the graph of f looks like
Y

L

1
Figure 1.3: The graph of function f(x) = sin —
X
In any interval containing 0, there are infinitely many points whose image under f is
1, and there are always infinitely many points whose image under f is —1. In fact, in any
interval containing 0 and L € [—1, 1] there are infinitely many points whose image under f
is L. Therefore, lir% f(x) D.N.E. (does not exist).
Example 1.5. Let f(x) = i
of f is given by

. Then f(z)=1if 2 > 0, f(x) = =1 if x < 0, and the graph

X



Figure 1.4: The graph of function f(x) = Jzl

X

By observation (that is, looking at the graph of f), hII(l) f(z) D.N.E.

Example 1.6. (2 82% ) Consider the Dirichlet function

(0 itzreQ,
f@)_{l ifo¢Q,

where Q denotes the collection of rational numbers (§ & # ) . Then lim f(z) D.N.E. for

all c.
Example 1.7. (2% % ) Let f:(0,00) — R be given by

fa) 21) ifx:%,wherep,quand(p,q)zl,
) =

0 if z is irrational (&£ 2 &) .

Then lim f(z) = 0 for all ¢ € (0, o).

r—C

Definition 1.8

Let f be a function defined on an open interval containing ¢ (except possibly at c),

and L be a real number. The statement

lim f(z) = L, read “the limit of f at cis L”,

r—C

means that for every € > 0 there exists a 6 > 0 such that

|f(z) —L| <& whenever0 < |z —¢| < 4.

Explanation: (328 %) F15 |f(z)—L| <ec 2§ f(x)e (L—e,L+e) #T11 T &4
e e VARG KRR f(o) » LieBEkE? PR - TERMTEApFHEL L TR
PR e>00 - T U F B e T B (0F] ¢ PREYN AT 0 R AT ) B &



prge Y gk S fiEE r BREFE AR BB (L Lte) 2 p ot r%ﬂf c 2
‘b enBLT] ¢ ﬁvﬁ&%@p,ﬁ iﬁﬁrfﬁ  Handeige L EP | g Lo

Example 1.9. In this example we show that lirri (x + 1) = 2 using Definition 1.8.
Let € > 0 be given. Define § =¢. Then § > 0 and if 0 < |z — 1| < §, we have

(z+1)—=2|=|z—-1<d=¢.
One could also pickézgso that if 0 < |z — 1| < 4,
|(:1c—|—1)—2|:|x—1|<5:§<6.

Example 1.10. Show that 1ir% 22 =4. If e = 1, we can choose § = min {\/5 —-2,2 — \/3}

so that § > 0 and if 0 < |z — 2| < § we must have |z* — 4| < 1.
For general e, we can choose § = min{\/4+5 — 2,2 — /4 - 5} so that 6 > 0 and if

0 < |z — 2| < d we must have |z? — 4| < e.

Example 1.11 (Proof of Example 1.7). Let ¢ > 0 be given. Then there exists a prime

1
number p such that — < e. Let ¢q1,¢s,- - , g, be rational numbers in (g, %) satisfying
p
s
q]':;,(r,S):l,l <T'<p,
1
and define 0 = imin ({\c— @l le—al - le—aal} — {O}) Then 6 > 0. Suppose that z

satisfies that 0 < |z — ¢| < 0.
1. If z € Q°, then f(x) = 0 which shows that |f(z)| < e.

2. If x € Q, then x = ® for some natural numbers r, s satisfying (r, s) = 1. By the choice
T

of 9, we find that r» > p; thus

In cither case, |f(z)| < e; thus we establish that
|f(x) = 0] <& whenever 0<|z—c|<34.

Therefore, lim f(z) = 0.

r—cC



Proposition 1.12

Let f, g be functions defined on an open interval containing ¢ (except possibly at ¢),
and f(x) = g(z) if © # c. If lim g(x) = L, then lim f(x) = L.

Proof. Let € > 0 be given. Since lim g(z) = L, there exists 6 > 0 such that

r—cC

lg(x) — L] <e if 0<|z—¢| <.

Since f(x) = g(z) if © # ¢, we must have if 0 < |z — ¢| < 6,

[f(x) = Ll = [g(x) = L| <. O

$2—

Example 1.13. Let f(z) = 2+ 1 and g(x) = T
l’ —_—

proposition above implies that

Since f(z) = g(x) if © # 1, the

li_r)r%g(x) = lim f(x) =2.

r—1

1.2 Properties of Limits

Let b, c be real numbers, f, g be functions defined on an open interval containing c

(except possibly at ¢) with lim f(z) = L and lim g(z) = K.

1. limb =0, limx = ¢, lim |z| = |c[;
r—C Tr—C

r—C

2. lim [f(z) £ g(2)] = L+ K; (frs £ &' TE 2048 Tenfo st £ )

r—cC

3. lim [f(x)g(x)] = LE; (AR UE 4R e ff)

r—cC

f(z)

im I L g 20 (428 5 1 0 BIB RIS RIS )
a—e g(z) K

Proof. 1. Let € > 0 be given.

(a) Define § = 1. Then § > 0 and if 0 < |z — ¢| < J, we have |[b—b| =0 < ¢.
(b) Define 6 =e. Then § > 0 and if 0 < |z — ¢| < J, we have |z —¢| < d =¢.



(c) Define 6 = e. Then 0 > 0 and if 0 < |z — ¢| < ¢, by the triangle inequality we
have

x| = |c|| < Jz—¢] <d=e.

. Let € > 0 be given. Since lim f(x) = L and lim g(z) = K, there exist 1,y > 0 such
that

|f(x)—L| < g whenever 0 < |z —¢| <d;

and

l9(z) — K| < % whenever 0 < |z —¢| < ds.
Define § = min{d;, d2}. Then 6 > 0 and if 0 < |z — ¢| < §, we have

3

f(z) + g(z) — (L + K)| < |f() = L| + |g(z) — K| < §+2

=e£.

. Let £ > 0 be given. Since lim f(x) = L, there exist d;, o > 0 such that

Tr—C

|f(x) —L| <1 whenever 0<|z—c|<d

and

IR

Moreover, since lim g(x) = K, there exists 63 > 0 such that

r—cC

whenever 0 < |z —c| < dy.

‘g(x)—K‘ < 5

m whenever 0 < |z —c| < 3.

Define § = min{dy, d2,03}. Then 6 > 0 and if 0 < |z — ¢| < 0, we have

|f(2)g(z) — LE| = |f(x)g(z) — f(x)K + f(z)K — LK|
<|f@)lg(w) = K| + K| f(2) - L|

£ € IS £

(|K|+1) 2 2

. W.L.O.G. (Without loss of generality), we can assume that K > 0 for otherwise we
have lim(—g)(z) = —K > 0 and

i (5) ) =t (L) == =L 2



Let € > 0 be given. Since lim g(z) = K, there exist d1,d2 > 0 such that

K
lg(z) — K| < 5 whenever 0 < |z —c| < §

and

K2
lg(z) — K| < 2 °  Wwhenever 0< |z —c| < dy.

4(|L1 + 1)

Moreover, since lim f(x) = L, there exists d3 > 0 such that

K
|f(z)—L| < Tg whenever 0 < |z —c¢| < 3.

Define § = min{dy, d2,03}. Then 6 > 0 and if 0 < |z — ¢| < 0, we have

f(z) L‘ [Kf(2) — Lo(w)| 1 |Kf(z) = KL|+|KL — Lg(z)|

(r) K Klg(x)] l9(x)] K
< 2(1f@) ~ LI+ Digla) - K1)
<2(K5 |Z] K2 > cELE .
K\4 "TK4L[+n) S27 27
where we have used % < 7 (196)| if 0 < |x—c| < 0 to conclude the inequality. Therefore,
we conclude that lim J) L it K > 0. [
r—C g(ﬂ?) K

Example 1.15. Find lin% 22. By 1 of Theorem 1.14 lir%x = 3; thus 3 of Theorem 1.14
implies that

lim o* = (lim ) (lim o) = 9.
z—3 z—3 r—3

The above equality further shows that

lim 2® = <lim x2> <lim x) =27.

r—3 r—3 r—3

In particular, if n is a positive integer, then (by induction) lim 2" = ¢".

Tr—C



Corollary 1.16

Assume the assumptions in Theorem 1.14, and let n be a positive integer.

1. lim [f(z)"] = L™

r—cC

2. If p is a polynomial function, then lim p(z) = p(c).

3. If r is a rational function given by r(z) = p(z) for some polynomials p and ¢,

q(z)
and ¢(c) # 0, then limr(z) = r(c).

An illustration of why 2 in Corollary 1.16 is correct: Suppose that p(z) = 322 +

5z — 10. Then applying 1-3 in Theorem 1.14, we obtain that

lim p(z) = lim(32% + 5z) — lim(10) = lim(3z* + 5z) — 10

= (1m(3)) (1ma?) + (1m(5)) (Hma) - 10

=3¢+ 5¢— 10 = p(c) .

If ¢ > 0 and n is a positive integer, then lim Tw = cn.

r—C

n—1

¢ new e
27 2

Proof. Let ¢ > 0 be given. Define § = min{ } Then 6 > 0 and if 0 < |z — ¢| < 6,

we must have

n—1 n—2 1 n—3 2 1 n-2 n—1 n n-1
rn» +xncr+xncr+---F+xnCcn FCn >§Cn
Therefore, if 0 < |z — | < 4,
1 1 r —cC
‘m" _C”‘: n—1 2 1 n—3 2 1 n2 n—1
€Tr n —'—l‘nCn—’—xnCn—f—~--—|—xn0n +Cn
n—1
2 n—1 n—1MNC n &

2 n—1 _n-1 2_7
K—c nl|lr—cd<—c i< —c
n n n

which implies that lim Tw = cn.

r—C



Theorem 1.18

If f and g are functions (defined on open intervals) such that limg(z) = K,
hHIl(f(ZL‘) =L and L = f(K), then

lim(fog)(z)=L.

r—cC

Proof. Let ¢ > 0 be given. Since il_)ﬂi f(z) = L, there exists §; > 0 such that
|f(z) — L] <e whenever 0< |z — K| <.
Since L = f(K), the statement above implies that
|f(z) — L| <e whenever |x— K| <d;.

Fix such d;. Since lim g(x) = K, there exists 6 > 0 such that

Tr—cC

lg(x) — K| <, whenever 0<|z—c|<9d.

Therefore, if 0 < |z —¢| < 6, [(fog)(x) — L| = |f(g9(x)) — L| < € which concludes the

theorem. OJ

Example 1.19. Find lim ;1:71—1

z—0 T

vr+1-—1
T

Let f(x) = e #0,

f(2) = Wz+1-1)(Wor+1+1) 1
B z(vz+1+1) Ve 141

To see the limit of g, note that

g(z).

limvz+1=1 (by Theorem 1.18);

x—0

thus by Theorem 1.14 liII(l) g(x) = % :

Remark 1.20. In Theorem 1.18, the condition L = f(K) is important, even though intu-
itively if g(x) - K as ¢ — c and f(z) — L as v — K then (f o g)(x) should approach
L as x approaches c. A counter-example is given by the following two functions: f is the
function given in Example 1.3 and ¢ is a constant function with value 2. This example/
theorem demonstrates an important fact: intuition could be wrong! That is the reason why

mathematicians develop the -0 language in order to explain ideas of limits rigorously.



Theorem 1.21: Squeeze Theorem ( % #3732 )

Let f, g, h be functions defined on an open interval containing ¢ (except possibly at
c), and h(z) < f(z) < g(x) if © # c. If lim h(z) = lim g(z) = L, then lim f(x) exists

and is equal to L.

Proof. Let € > 0. Since lim h(z) = lim g(x) = L, there exist 01,5 > 0 such that

Tr—C Tr—C

\h(z) — L] <& whenever 0<|z—c| <&

and

lg(x) — L| <e whenever 0 < |z —c| < dy.
Define § = min{d;,d2}. Then 6 > 0 and if 0 < |z — ¢| < 0,
L—ec<h(z) < f(r)<glx)<L+e¢
which implies that |f(x) — L| < & whenever 0 < |z — ¢| < . O

Example 1.22. Let f : R — R be defined by

x if x is rational ,

o) =1

Then lim f(z) D.N.E. if ¢ # 0 and lir% f(z)=0.

r—C

—x if x is irrational .

1. If ¢ # 0, then as x # ¢ approaches ¢ and = € Q, f(z) approaches ¢, while as = # ¢
approaches ¢ and = ¢ Q, f(z) approaches —c. This implies that as = approaches c,

f(z) does not approaches a fixed number; thus lim f(z) D.N.E.

2. Note that |f(z)| = |z]; thus —|z| < f(z) < |z for all z € R. Since lirr(l)]x] =0, the

Squeeze theorem implies that 1iII(1J f(x)=0.

Example 1.23. In this example we consider the limit of the sine function at a real number

c. Before proceeding, let us first establish a fundamental inequality
|sinz| < |z for all real numbers z (in radian unit). (1.2.1)

Recall (0.2.2) that

siny <z <tanzx Vo< <

N N

(0.2.2)

To see (1.2.1), it suffices to consider the case when x ¢ [O, g} Nevertheless,



1. it trivially holds that |sinz| < z if z > g;
2. if x <0, then |sinz| = |sin(—z)| < | — x| = |z].

Having establish (1.2.1), now note the sum-to-product formula implies that

. . . T—cC T+ . T—cC
|sinz — sine| = 2 Sin ——cos ——| < 2‘ sin ?‘ < |z — ¢ for all real number z.

Therefore, sinc — | — ¢| < sinz < sinc + |x — ¢| for all real number x, and the Squeeze

Theorem then implies that lim sin z = sin ¢ since lim |z — ¢| = 0.

r—C r—C

Similarly, using the sum-to-product formula
r+c . xr—c

cosT — cosc = —2sin sin ,
2 2
we can also conclude that lim cosz = cosc. The detail is left as an exercise.
r—cC

By Theorem 1.14, Example 1.23 shows the following

Theorem 1.24

Let ¢ be a real number in the domain of the given trigonometric functions.

1. limsinx =sin¢; 2. limcosx =sine; 3. limtanx = tanc;

r—cC Tr—C Tr—C

4. limcotx =cotc; 5. limsecx =secc; 6. limcscx = csce.
r—C r—C r—C

1
Example 1.25. In this example we compute lir% x sin - if it exists. Note that if the limit

exists, we cannot apply 3 of Theorem 1.14 to find the limit since lim sin — does not exist.
T

z—0
On the other hand, since |z sin%‘ < x| if z # 0, —|z| < xsin% < |z| if © # 0. By the fact

. . . . . .1
that hng) |z| = hr%(—|x]) = 0, the Squeeze Theorem implies that hrr[l)xsm - =0.
r— r— T—> T

y=—x

1
Figure 1.5: The graph of function y = xsin -



1.2.1 Omne-sided limits and limits as © — +o

Suppose that f is a function defined (only) on one side of a point ¢, it is also possible to

consider the one-sided limit lim f(z) or lim f(x), where the notation x — ¢t and x — ¢~
r—C r—Cc

means that z is taken from the right-hand side and left-hand side of ¢, respectively, and

becomes arbitrarily close to c. In other words, lim f (x) means the value to which f(x)

r—C

approaches as = approaches to ¢ from the right, while lim f(x) means the value to which

Tr—Cc

f(x) approaches as = approaches to ¢ from the left.

Definition 1.26: One-sided limits

Let f be a function defined on an interval with ¢ as the left /right end-point (except

possibly at ¢), and L be a real number. The statement

lim f(z)=L / lim f(z)=1L,

z—ct T—c

read “the right/left(-hand) limit of f at ¢ is L” or “the limit of f at ¢ from the right/
left is L”, means that for each € > 0 there exists a 6 > 0 such that

|f(z) = Ll <e whenever 0<z—c<d/—-d<az—c<0.

Example 1.27. In this example we show that lim+ zw = 0. Let ¢ > 0 be given. Define
z—0

0 =¢". Then 6 > 0 and if 0 < x < 9, we have
pw — 0] = z7 < 67 = €.

We note that Theorem 1.14, Theorem 1.17 and 1.21 are also valid when the limits are
replaced by one-sided limits, and the precise statements are provided below.

Theorem 1.28

Let b, ¢ be real numbers, f, g be functions with lim f(z) = L and lim_ g(x) =K.

r—ct T—C

L lim b=b, lim z =¢, lim lz| = |c]; 2. lim [f(z) £ g(z)] =L+ K;

r—ct T—C
i _ LK m @) _ L
3. lim [f(2)g(z)] = LK; 4. lim o)~ K if K # 0.

The conclusions above also hold for the case of left limits (that is, with z — ¢*

replaced by z — ¢7).




Theorem 1.29

. e . 1 1 : 1 1
If ¢ > 0 and n is a positive integer, then lim x» = c¢» and lim x» = cn

z—ct x—c
Theorem 1.30

If f and g are functions such that lim g(x) =K, lirr}{ f(z)=Land L = f(K), then

Tr—C

lim+(f og)(x)=1L.

r—C

The conclusions above also hold for the case of left limits (that is, with z — ¢*

replaced by z — ¢7).

Remark 1.31. Theorem 1.30 is not true if one only has the one-sided limit lim flz)=1L
:L’—)K
instead of the full limit liIIIl{ f(z) = L. For example, consider g(z) = —x and f(z) be the

function
f(2) = 1 ifz>0,
. 0 ifz<O.
Then 111%1+ g(z) =0 and lirglJr f(z) = f(0); however,
0 ifz>0,
Foa@={ | oy

which implies that lim (f o g)(z) =0 % f(0).

z—07F

Theorem 1.32: Squeeze Theorem ( % #3732 )

1. Let f, g, h be functions defined on an interval with c as the left end-point (except
possible at ¢), and h(z) < f(z) < g(z) if 2 > c. If lim+ h(z) = lim g(x) = L,

then lim f(z) exists and is equal to L.

r—C

2. Let f, g, h be functions defined on an interval with ¢ as the right end-point (ex-
cept possible at ¢), and h(z) < f(z) < g(v) if z < c. If lim h(z) = lim g(z) =

L, then lim f(z) exists and is equal to L.
Tr—Cc

The following theorem shows the relation between the limit and one-sided limits of

functions.



Theorem 1.33

Let f be a function defined on an open interval containing ¢ (except possibly at c).

The limit lim f(x) exists if and only if lin@L f(z) and lim f(x) both exist and are

identical. In either case,

lim f(z) = lim f(z) = lim f(x).

T—C T—C r—Cc™

Explanation on “A if and only if B” in Theorem 1.33: It should be clear that “A if B”
means “A happens when B happens” (which is the same as “B implies A”). The statement
“A only if B” means that “A happens only when B happens”; thus “A only if B” means that
“A implies B”.

Proof of Theorem 1.33. (=) - the “only if” part: Suppose that lim f(x) = L, and let € > 0
be given. Then there exists § > 0 such that

|f(z) — L| <e whenever 0<|z—c| <.
Therefore, there exists 0 > 0 such that
|f(z) —L| <e whenever 0<z—c<d;

thus lim f(z) = L. Similarly, lim f(z) = L.

r—ct r—c”

(<) - the “if” part: Suppose that lim+ f(z) = lim f(z) = L. Let € > 0. Then there exist
01,09 > 0 such that

|f(z) — L| <e whenever 0<z—c<d

and
|f(z) — L| <e whenever —d <z—c<0.

Define 6 = min{dy,ds}. Then 6 > 0 and if 0 < |z —¢| < 9, we must have 0 < x—c¢ <
and —0 < x — ¢ < 0; thus if 0 < |z — ¢| < §, we must have |f(z) — L| < e. O

Example 1.34. In this example we compute a very important limit

lim 22% — 1, (1.2.2)
z—0 X

To see this, we recall (0.2.2) that

sine <x <tanx forall ) <z <

b

(0.2.2)



Now using (0.2.2), we find that

sinx
CoOsST <

<1 forall()<a:<z.
T 2

The Squeeze Theorem (Theorem 1.32) then implies that lim ST _ 1. On the other hand,

z—0t T

. sinzx . sin(—x . sinz
lim :thth—:l;
z—0—- X z—0~ —X z—0t X

sin x

=1.

thus Theorem 1.33 implies that lin%
xr— x

Remark 1.35. The function ——— is the famous (unnormalized) sinc function; that is,

xr
sinc(z) = 2T and sinc(0) = 1. The example above shows that lin% sinc(x) = sinc(0).
x I
. . .. 1. l—cosz
Example 1.36. In this example we compute the limit lim 5— DBy the half-angle
T T

formula, 1 — cos z = 2sin? g; thus

_ 24in? & in2 2
1 —cosz _ 2sin"35 1sin 3 lsinc2(z).
x? x? 2 (E) 2 2
2
Therefore, Theorem 1.18 implies that liH(l) w = %
r— x

An open interval in the real number system can be unbounded. When the open interval
on which f is defined is not bounded from above (which means there is no real number
which is larger than all the numbers in this interval), we can also consider the behavior of

f(z) as x becomes increasingly large and eventually outgrow all finite bounds.

Definition 1.37: Limits as z — +w

Let f be a function defined on an infinite interval bounded from below/above, and L

be a real number. The statement

lim f(r) =L / lim_f(r)=L.

r—00

read “the right/left(-hand) limit of f at ¢ is L” or “the limit of f at ¢ from the right/

left is L”, means that for each € > 0 there exists a real number M > 0 such that

‘f(m)—L‘ <e whenever z>M/x<—M.

Similar to the case of one-sided limit, Theorem 1.28, Theorem 1.30 and 1.32 are also

valid when the notation # — ¢* are replaced by x — +o.



Example 1.38. In this example we show that lim ‘1’ =0 and lim ‘1’ =0.
r—00 (T r—>—00 |T

Let € > 0 be given. Define M = é Then if 2 > M or x < —M, we must have |x| > M;
thusif 2 > M or x < —M,
1
-

Example 1.39. Recall that the sinc function is defined by

' sinz . 20,
sinc(z) = T
1 ifx=0.
i 1 1 i 1
Then Smx’ < Tl for all x # 0 and this provides the inequality T < T < Tl for all
X T X X X

x # 0. By the Squeeze Theorem and the previous example, we find that

lim sinc(z) = lim sinc(z) =0.
r—00 r——00

Theorem 1.40
1

Let f be a function defined on an open interval, and g(z) = f(;) it x # 0.

1. Suppose that the open interval is not bounded from above. Then lim f(z) exists
r—0

if and only if lim g(x) exists. In either case,

xz—07t
lim f(x) = lim g(z).

Tr—00 x—0t

2. Suppose that the open interval is not bounded from below. Then lim f(z)

Tr——00
exists if and only if lim g(z) exists. In either case,

y—0~
lim f(z)= lim g(x).

T—>—00 z—0~

The theorem above should be very intuitive, and the proof is left as an exercise.

Example 1.41. Find the limit lim £0 >0~
amo 41

By Theorem 1.40, we have

1 .1 o1

. r4sing . — 4 sin - _ 1+ xsin -

hm—:hmx1 L — lim L
s

1
= lim —i—(lim )(limxsin—)zl—l—l-():l.
z—0+ 1+ 2 z—0+ T+ 1/ \z—0+ T



Here we note that in the process of computing the limit we have used results analogous to
T +sinx
<1
z+1

~

Theorem 1.28. We can also apply the Squeeze theorem to the inequality ;; J_r 1

for all z > 0 and obtain the same limit.

Corollary 1.42

Let p and ¢ be polynomial functions.

1. If the degree of p is smaller than the degree of ¢, then
lim M = lim M =0.
2= ¢(x) =0 q()

2. If the degree of p is the same as the degree of ¢, then

. plz) . p(z)  the leading coefficient of p
lim —% = lim = i ‘ .
z—w q(x) 2—-»qg(x)  the leading coefficient of ¢

1.3 Continuity of Functions

Let f be a function defined on an interval I, and c e I.

1. f is said to be right-continuous at ¢ (or continuous from the right at c) if
Tim_ f(r) = f(c).
2. f is said to be left-continuous at ¢ (or continuous from the left at ¢) if

Tim f(2) = f(c).

3. If cis the left end-point of I, f is said to be continuous at cif f is right-continuous

at c.

4. If cis the right end-point of I, f is said to be continuous at cif f is left-continuous

at c.

5. If ¢ is an interior point of I; that is, c is neither the left end-point nor the right

end-point of I, then f is said to be continuous at ¢ if lim f(x) = f(c).

f is said to be discontinuous at c if f is not continuous at ¢, and in this case c is called
a point of discontinuity (or simply a discontinuity) of f. f is said to be continuous

(or a continuous function) on I if f is continuous at each point of I.




Example 1.44. Consider the the greatest integer function (also known as the Gauss func-
tion or the floor function) [-] : R — R defined by

[x] = the greatest integer which is not greater than .

s | o
2 - [ B
1 o O -
0 |- O -
1 o O B
2 - e O m
3 -e—0O B
! | | | | |

Figure 1.6: The greatest integer function y = [z]

For example, [2.5] = 2 and [-2.5] = —3. If ¢ is not an integer, lim [x] = ¢, while if ¢ is

an integer, we have

lim [z] =¢ and lim [z] =c¢—1.

zoct zc
Let f :]0,2] — R be given by f(z) = [z]. Then the conclusion above shows that f is
continuous at every non-integer number, while f is not continuous at 1 (since :161_>m1 f(z) does
not exist) and 2 (since JL%L f(z) # f(2)). On the other hand, zlir& f(z) = f(0), so f is
continuous at 0.
Therefore, f is continuous at c if ¢ is not an integer, and f is right-continuous at c if ¢

is an integer.

Example 1.45. Let f(x) = 2™, where n is a positive integer. We have shown that

limz" ="

r—C
for all real numbers ¢; thus f is continuous on R. In general, polynomial functions are

continuous on R (because of Corollary 1.16).

Example 1.46. Let n be a positive integer, and f : [0,00) — R be defined by f(x) = T
By Theorem 1.17 and Example 1.27,

.1 1 . 1
limxn =cn ifc>0 and lim z» =0;
r—C rz—0+t

thus f is continuous on [0, c0).



Example 1.47. Recall the Dirichlet function f: R — R in Example 1.6 given by

0 ifre@Q,
f(x):{ 1 ifz¢Q,

We have explained (but not proven) that the limit lim f(z) does not exist for all ¢ € (0, o0);

Tr—C

thus f is discontinuous at all real numbers.

Example 1.48. Recall the function f : R — R given by

r ifzxeQ,

f(”:):{ _r ifzé¢Q.

in Example 1.22. We have shown that hH(l) f(z) = 0; thus f is continuous at 0.

Example 1.49. Recall the function f: (0,00) — R in Example 1.7 given by

! ifx:g,wherep,quand (p,q) =1,
fay=4 v " Tp

0 if z is irrational .

We have shown that lim f(z) = 0 for all ¢ € (0,20). Therefore, f is continuous at all

irrational numbers but is discontinuous at all rational numbers.

Example 1.50. Let f : R — R be continuous, and f(z) = 2 if z € Q. Then intuitively
f(z) =2 for all z € R. We now prove this using the definition of continuity.
Suppose the contrary that there exists ¢ € R such that f(c) # 2. Define € = !f(c) - 2‘.

Then € > 0. Since f is continuous at ¢, there exists 6 > 0 such that
|f(x) — f(c)| <& whenever |z —c|<d.
Choose x € Q such that |z — ¢| < §. Then the triangle inequality implies that
e = |f(e) =2 < |f(0) - F@)| + |f() — 2| < ¢
which is a contradiction.

Remark 1.51. Let I be an interval, ce I, and f : I — R be a function. The continuity of

f at ¢ is equivalent to that for every € > 0, there exists 6 > 0 such that

|f(z) — f(¢)] <e whenever |r—¢|/<d and zel.



To see this, we first consider the case that ¢ is an interior point of 7. Then by the definition,

f is continuous at c if for every £ > 0 there exists 4 > 0 such that
|f(z) — f(c)| <e whenever 0<|z—c|<9.

Since |f(z) — f(c)| < € automatically holds if |x — ¢| = 0, the statement above is equivalent

to that
|f(z) — f(c¢)| <e whenever |z —c|<0.

Now let us look at the case when c is the left end-point of I (so in this case ¢ € I'). Then by

definition, f is continuous at c if for every € > 0 there exists 6 > 0 such that
|f(z) — f(c)] <e whenever 0<z—c<39.

Again |f(z) — f(c)| < € automatically holds if z — ¢ = 0, the statement above is equivalent

to that
|f(x) — f(¢)] <e whenever c<z<c+9.

Note that since ¢ is the left end-point, the set {x ’ ¢ <& < c+6} is the same as {z ‘ |z —c| <

o,xel }; thus the statement above is equivalent to that
|f(z) — f(¢)| <e whenever |r—¢|<d and z€el.
Similar argument can be applied to the case when c is the right end-point of I.

Remark 1.52. Discontinuities of functions can be classified into different categories: re-
movable discontinuities and non-removable discontinuities. Let ¢ be a discontinuity of a
function f. Then either (1) lim f(x) exists but lim f(z) # f(c) or (2) lim f(z) does not
exist. If it is the first case, tﬁgrf c is called a re'nx%_c;cvable discontinuit;_;nd that means
we can adjust/re-define the value of f at ¢ to make it continuous at ¢. For the second case,
no matter what f(c) is, f cannot be continuous at c.

If xlijg f(z) and xlir?* f(z) both exist but are not identical, ¢ is also called a jump

discontinuity.

Proposition 1.53

Let f, g be defined on an interval I, ¢ € I, and f, g be continuous at ¢. Then

1. f + g is continuous at c.

2. fg is continuous at c.

3. I is continuous at ¢ if g(e) #0.
)




Corollary 1.54

Let f, g be continuous functions on an interval I. Then
1. f £ g is continuous on /.

2. fg is continuous on [

3. ! is continuous (on its domain).
g

Theorem 1.55

Let I,J be opew intervals,, g : I — R, f : J — R be functions, and J contains the

range of g. If g is continuous at ¢, then f o g is continuous at c.

Proof. Let € > 0 be given. Since f is continuous at g(c), there exists d; > 0 such that
‘f(y) - f(g(c))‘ <e whenever !y - g(c)‘ <6, and ye J.
For such a 9y, by the continuity of g at ¢ there exists 6 > 0 such that
l9(z) — g(c)| < & whenever | —c¢| <d and z €.

Suppose that |x — ¢| < § and x € I. Let y = g(x). By the condition that J contains the
range of g,
‘y—g(c)| <4 and yeJ.

Therefore, if [t —¢| < 0 and x € I,

|flg(@) = flg(c)| < e

which shows the continuity of f o g at c. 0

Corollary 1.56

Let I,J be opetrintervals, and g : I — R, f : J — R be continuous functions. If J

contains the range of g, then f o g is continuous on [.

Example 1.57. Let g be continuous on an interval I, and n be a positive integer. We
show that ¢" and | g|% are also continuous on /. Note that ¢g" is the function given by

g"(z) = g(z)" and |g|~ is the function given by |g|» = |g(x)|=.



1. Let f(x) = a™. Then Theorem 1.14 (or Corollary 1.16) implies that f is continuous
on R. Since R contains the range of g, by the corollary above we find tat f o g (= ¢")

is continuous on .

2. Let h(x) = |z|. Then Theorem 1.14 implies that h is continuous on R. Since R
contains the range of g, by the corollary above we find that ho g (= |g|) is continuous

on /.

Let f(x) = zw. Then Theorem 1.17 and Example 1.27 imply that f is continuous on
the non-negative real axis [0, 00). Since [0,0) contains the range of |g|, the corollary

above shows that f o |g|(= |g|=) is continuous on 1.

Theorem 1.58: Intermediate Value Theorem - ¢ & iz T 32

If f is continuous on the closed interval [a,b], f(a) # f(b), and k is any number
between f(a) and f(b), then there is at least one number ¢ in [a, b] such that f(c) = k.

Example 1.59 (Bisection method of finding zeros of continuous functions). Let f be a
function and f(a)f(b) < 0. Then the intermediate value theorem implies that there exists

a zero ¢ of f between a and b. How do we “find” (one of) this ¢? Consider the middle point

ath of a and b. If f(a ;L b) = 0, then we find this zero, or otherwise we either have
a+b a+b
fla)f(==) <0 o fO)f(——) <0

and only one of them can happen. In either case we can consider the middle point of the two
points at which the value of f have different sign. Continuing this process, we can locate

one zero as accurate as possible.

Example 1.60. Let f : [0,1] — [0, 1] be a continuous function. In the following we prove
that there exists ¢ € [0, 1] such that f(c) = ¢. To see this, W.L.O.G. we assume that f(0) # 0
and f(1) # 1 for otherwise we find ¢ (which is 0 or 1) such that f(c) = c.

Define g(z) = f(z) —x. Then g is continuous (by Proposition 1.53). Since f : [0,1] —
[0,1], f(0) # 0 and f(1) # 1, we must have ¢g(0) > 0 and g(1) < 0. By the intermediate
value theorem, there exists ¢ € (0,1) such that g(c) = 0, and this implies that there exists
c € (0,1) such that f(c) = c¢. So either (1) f(0) =0, (2) f(1) =1, or (3) there ia c € (0,1)
such that f(c) = c.



1.4 Infinite Limits and Asymptotes

Let f be defined on an open interval containing ¢ (except possible at ¢). The statement,

lim f(z) = o0,

r—cC

read “f(x) approaches infinity as x approaches ¢”, means that for every N > 0 there
exists 0 > 0 such that

f(z) > N whenever 0<|z—c|<d.

The statement
lim f(z) = w©,

r—C

read “f(z) approaches minus infinity as x approaches ¢”, means that for every N > 0
there exists 0 > 0 such that

f(z) < =N whenever 0<|z—¢|<9.

To define the infinite limit from the left/right, replace 0 < |[x —¢| < d by ¢ < z <
c+9d/c—0 < x < c. To define the infinite limit as * — oo/x — —o0, replace

O<|r—c/<dbyz>d/z <-4

Note that the statement lim f(x) = o0 does not mean that the limit exists. It is a simple
notation for saying that the value of f becomes unbounded as x approaches ¢ and the limit

fail to exist.

1 1 1
Example 1.62. lim ——— = oo, lim = o0, and lim = —o0.
-1 (x —1)2 et o — 1 a—l1-x — 1

Example 1.63. Later we will talk about the exponential function in detail. In the mean

time, assume that you know the graph of y = 2*. Then lim 2* = o0 and lim 2% = 0.
Tr—00 Tr——00

e Asymptotes (iBriT4 ) : If the distance between the graph of a function and some fixed
straight line approaches zero as a point on the graph moves increasingly far from the origin,

we say that the graph approaches the line asymptotically and that the line is an asymptote

of the graph.
Definition 1.64: Vertical Asymptotes - T & j#riT 4

If f approaches infinity (or minus infinity) as x approaches ¢ from the left or from the

right, then the line x = ¢ is called a vertical asymptote of the graph of f.




Definition 1.65: Horizontal and Slant (Oblique) Asymptotes - -k - 22 &l #3174

The straight line y = max + k is an asymptote of the graph of the function y = f(z) if

lim [f(z) —ma—k] =0 or lim [f(z) —mz—k] =0.

r—00 r——00

The straight line y = ma + k is called a horizontal asymptote of the graph of f if
m = 0, and is called a slant (oblique) asymptote of the graph of f if m # 0.

By the definition of horizontal asymptotes, it is clear that if lim f(z) = kor lim f(z) =

T—00 Tr——00

k, then y = k is a horizontal asymptote of the graph of f.

2 3 | , .
m' Then lim f(z) = lim f(z) = 5; thusy = 2 is

a horizontal asymptote of the graph of f.

Example 1.66. Let f(z) =

3
Example 1.67. Let f(z) = ?lef—i-f) Then lim f(z) = and lim f(z) = —oo; thus
— T—>00 T——00

the graph of f has no horizontal asymptote. However,

32% 4+ 9 r(32? — 4z + 5)

lim [f(:v)—q—lim[ - ]— im 42® — 5o +9 1.
T—0 3] a5 3322 —4x+5) 3322 —4x+5)] 2503322 -4z +5) 9’

thus lim [f(x) - = f] = 0. Therefore, y = § + % is a slant asymptote of the graph of f.

r—00

Theorem 1.68

Let f and g be continuous on an open interval containing c. If f(c) # 0, g(c) = 0,

and there exists an open interval containing c¢ such that g(x) # 0 for all z # ¢ in

the interval, then the graph of the function h(x) = =) has a vertical asymptote at

g9(z)

Tr = C.

Example 1.69. Let f(x) = tanx. Note that tanz = %. For n € Z, sin (mr—l—g) # 0 and

. . 3
cos (mr + g) = 0. Moreover, cosx # 0 for every z in the open interval (mr + %, nm + er)

except nmw + g Therefore, by the theorem above we find that © = nm + % is a vertical

asymptote of the graph of the tangent function for all n € Z.



Theorem 1.70

If y = max + k is a slant asymptote of the graph of the function y = f(z), then

m = lim —f(x) or m = lim —f<x>
r—0 X Tr—>—00 €T
and
k= lim [f(z) — mz] of k= lim [f(z) —maz].
Candts T——00
Proof. 1t suffices to shows that m = lim fEUOC) or m = lim f(xa:) W.L.O.G., we assume
r—0 Tr——00
that lim [f(z) — ma — k] = 0. Then
Tr—0
lim {@ =M=k _
r—00 T
On the other hand, lim mr+k _ m. By the fact that f(@) = f(w) = mz =k 4+ T + k, we
z—0 T x x x
find that lim ) exists and
r—0 T
lim@:hm [f(x)—mx—k +1immx+k:m [
r—00 T T—00 X r—00 i

Example 1.71. In this example, we find all asymptotes of the graph of the function

flz) = 32 (x — ;3/2x_3 I 1?2 + ) ‘

Since the denominator vanishes at © = +1, there are two possible vertical asymptotes

x =1 or x = —1. Since the denominator also vanishes at x = 1, we need to check further
the behavior of f(x) as « approaches 1. Note that for  # +1,

r—Vad -2+ T ‘
x? =1 (ZL’+1)[CB2+$\3/1‘3—I2—|—ZL'+(ZI)3—1‘2—1—1')§]7

thus for x # +1,
3z
(x4 1)[2?2 4+ 2V23 — 22 + z + (23 — 22 —i—a:)%] .
Therefore, lin% f(z) = 0 exists which shows that x = 1 is not a vertical asymptote of the
graph of f. On the other hand,

fz) =

lim f(z) =00 and lim f(z) = -0,

z——11 T——1"



we find that = —1 is the only vertical asymptote of the graph of f.

For slant or horizontal asymptotes, we note that for x # +1,0,

fl@) _ o . (1.4.1)
0=+ (- )7
Since lim 1o 0, we find that lim ) =1 and lim f(=) = 1. It remains to find the
r—+00 T r—00 T r—>—0 T
limit lim [f(a:) —x} and lim [f(a:) —az}. Using (1.4.1),
r—00 r——00
3 — 11 1-1 133 1-1 133
f(.CE)—JT: z (.T—l— )[+( :c—i_x?) +( a:+wz)]
(+ D0+ -+ 2+ a1 2]

Noting that the denominator approaches 3 as x approaches +oo, we only focus on the limit

of the numerator. Since

=3— (@ +1)[3+ ((1—i+$)5 ~1) + ((1—i+%)3 ~1)]
- 3 [(1—§+$)§ 1 [(1—§+$)§+2}
—x[(1—i+%)§ 1 [1—E+é)5+2],

to find the limit of the numerator as x — +oo it suffices to find the limit
1 1.1 1 1.1
lim x[(l——+—)3 —1} and lim x[(l——+—2)3 —1] :
T T

T—0 r a2 P

Now, by Theorem 1.40,

. 1 1.2 .
Jim 2 (1-2-+27)" — 1] = Jim

and similarly, lim =z [(1—%—#%)5 — 1} = —%. Therefore,

Z——00
| 1 1. 1 1.2 |
dim (32— (24 D)[1-—+ )T+ (1-—+5)7]| = =3+ -3=—2;

thus lim [ f(z)— x] = —; which implies that y = = — ; is the only slant asymptote of the

r—+00

graph of f.



1.5 Exercise

Problem 1.1. Let f be given in Example 1.7 and g : R — R be defined by

flx) ifx>0,
1 ifz=0.

Find lim g(z).

z—0

Problem 1.2. Let f be a function defined on an open interval containing ¢ (except possibly
at c).
1. Prove that if lim f(z) = L, then lim |f(z)| = |L|.

r—cC

2. Prove that lim f(z) = L if and only if lim ‘f(x) — L‘ = 0.

Tr—C Tr—C

Problem 1.3. Let f be a function defined on an open interval containing ¢ and lim f(x)
exists. Show that there exist 6 > 0 and M > 0 such that

|f(x)| < M whenever |z —¢| <.

Problem 1.4. Let f,g be a function defined on an open interval containing ¢ (except
possibly at ¢), and f(z) < g(x) for all x # ¢. Prove that if lim f(z) = L and lim g(z) = K
both exist, then L < K.

Problem 1.5. 1. Suppose that lir% f(@) _25 = 3. Find lin; f(z).

x€r —

2. Suppose that lim J() _25 = 4. Find lim f(z).

T—2 T — T—2
3. Suppose that limM = L exists, where p is a polynomial function. Find
x—cC Tr —cC
lim f(z).
r—C
Problem 1.6. Suppose that you are given lirr(l) M. Compute the following limits:
T— i
L lim sin(z?) 9 1lim rsinx 3 lim sin(sin(sin z))
a0 T " 2—01—cosx’ C a0 T '
4. lim sin(a +¢) - Smc, where ¢ is a real number.

z—0 xT



Problem 1.7. Show that lim z1 cos % = 0 using (1) e-0 definition and (2) the Squeeze

z—0+
theorem.
2 . 2 _
Problem 1.8. 1. Find the limits lim w and lim w Determine whether
a2t |z —2| a—2-  |x — 2]
2 _
the limit lim Zrz—6 exists or not.

T—2 |.T—2|

2. Let f:R — R be defined by

a+sin(z —2) ifx>2,
fay =1t |
x> —3x+b ifr<2.

Find the relation between a and b so that the limit lir% f(z) exists.
xr—>

3. Let g : R — R be defined by

1+sin(z —2) ifz>2,
gl@) =4 .
r*—=3x+3 ifr<2.

9(z) _21 using the left limit and right limit criteria.

Find the limit lim
r—2 X —

Problem 1.9. Let I be an open interval in R, c € I, and f : I — R be a function. Show
that f is continuous at ¢ if and only if }Lir% fle+h) = f(e).

Problem 1.10. Let f : R — R be a function satisfying f(a+b) = f(a)f(b) for all a,b e R.
1. Show that f(z) > 0 for all z € R.

2. Show that if f is continuous at 0, then f is continuous on R (that is, f is continuous

at every point of R).

Problem 1.11. Let [ be an interval in R and f,g: I — R be continuous functions. Show
that if f(x) = g(x) for all z € Q n I, then f(z) = g(z) for all x € I.

Problem 1.12. Let I be an interval, ce I, and f : I — R be a continuous function. Show
that if f(c) # 0, there exists 6 > 0 such that f(x)f(c) > 0 whenever |z — ¢| < ¢ and z € I.

Problem 1.13. Construct a function f : R — R so that f is continuous at all integers but

nowhere else.

Problem 1.14. Find the following limits:



1. lim (22 ++/42%2 4 3z —2).

xr——00
2. lim (x — a3+ 2r — 3).
Tr—0

3. lim M, where [-] is the floor function.
r—0 T

Problem 1.15. Show that the equation 2® — 152 + 1 = 0 has three solutions in the interval
[_4a 4]
Problem 1.16. Suppose that a and b are positive constants. Show that the equation

a n b B
3 4+22 -1 3+ x-—2

has at least one solution in the interval (—1,1).

Problem 1.17. True or False: Determine whether the following statements are true or
false. If it is true, prove it. Otherwise, give a counter-example.

1. If f and g are functions such that lim ¢g(z) = K, lim f(y) = f(K), then

z—ct y—>K+

lim (f o g)() = J(K)

z—ct

How about if z — ¢* and y — K are replaced by x — ¢~ and y — K, respectively?

2. Let f, g be a function defined on an open interval containing ¢ (except possibly at ¢),
and f(x) < g(x) for all x # ¢. If lim f(z) = L and lim g(x) = K both exist, then
L < K.

3. If | f] is continuous at ¢, so is f.

4. Let I be an interval and f : I — R be a continuous function. If f(z) # 0 for all z € I,
then f never change signs; that is, either f(z) > 0 for all z € I or f(z) < 0 for all
xel.

5. If lim f(z) = o0 and lim [f(z) — g(z)] = 0, then lim g(z) = o.

r—C r—cC r—cC



Chapter 2

Differentiation

2.1 The Derivatives of Functions

Let f be a function defined on an open interval containing c. If the limit
L et A~ f(0
Az—0 Az

m is the tangent line to the graph of f at point ((c, f(c))

= m exists, then the line passing through (c, f (c)) with slope

Definition 2.2

Let f be a function defined on an open interval I containing c. f is said to be
differentiable at ¢ if the limit

L fet A — f(0)

Az—0 Ax
exists. If the limit above exists, the limit is denoted by f’(c) and called the derivative
of f at c. When the derivative of f at each point of I exists, f is said to be differentiable

on I and the derivative of f is a function denoted by f’.

e Notation: The prime notation ’

is associated with a function (of one variable) and is
used to denote the derivative of that function. For a given function f defined on an open

interval I and x being the name of the variable, the limit operation

iy J @+ Az) — f(z)

Axz—0 Az

36



is denoted by %f{x) (or d{j(j) or even (C% if y = f(z)), and the limit

p Fe+ 8) = 1)

Az—0 Az

is denoted by 4 x) but not 4 c 4 c) is in fact 0). The operator 4 is a
d d d d
X X X X

differential operator called the differentiation and is applied to functions of variable .
if(az:) is sometimes denoted by (f(x))’

dx
d d
(so that ' is treated as the differential operator %) and f’ is sometimes denoted by % (so

However, for historical (and convenient) reason,

that f is always treated as a function of variable x).
Remark 2.3. Letting z = ¢ + Az in the definition of the derivatives, then
f/<C) — lim f(ﬂ?) — f(C)
z—c X —C
if the limit exists.
Example 2.4. Let f be a constant function. Then f’ is the zero function.
Example 2.5. Let f(x) = 2™, where n is a positive integer. Then

flx+Ax) = 2"+ Cla" ' Ax + Cpa™ ?(Ax)* + - + C"_2(Ax)" ' + (Az)";

thus if Az # 0,

flat AXZ — @) na™ '+ Cra" 2 Ar + -+ C"_w(Ax)" 2+ (Ax)" L.

The limit on the right-hand side is clearly naz"~!, so we establish that

ix" = ng" !
de” '
Example 2.6. Now suppose that f(x) = 27", where n is a positive integer. Then if
x4+ Az # 0,
1
flz+Ar) =

a4 CPan Az + Chan2(Ax)2 + - + CF_jx(Ax)"—1 + (Ax)" ;
thus if  # 0, Az # 0, and  + Az # 0 (which can be achieved if |Az| « 1),
f(z+ Azx) — f(x) —[Cpam =t + Ca" Az + - + O x(Az)" % + (Az)" ]

Az a2 + CPan 1Az + Cfam2(Az)? + - - - + Cr_jz(Az)"~ ' + (Az)"]



Therefore, if x # 0,

n —n—1

which shows dix_ = —nx

X

Combining the previous three examples, we conclude that

d nz" ! VxeR ifneNuU{0},
—a" = o . (2.1.1)
dz nx" Ver#0 ifneZandn<0.
Combining Example 2.4-2.6, we conclude that

d , o na"! VeeR ifneNu{0}, (2.1.2)
de” | na™! Ve#0 ifneZandn<0. o

AR 0 LR AR | o s mR AR c£0 AP EE
$ di AV =nc"I EB I e AT S RATIUA GL R e o 3B H - BEF

T lx=c

EL L | A REES
Example 2.7. Let f(x) = sinz. By the sum and difference formula,

f(z+ Az) — f(x) = sin(xz + Ax) — sinz = sinz cos Az + sin Az cosx — sinx
= sinx(cos Ax — 1) + sin Az cosx ;

thus by the fact that lim "MT _ 1 and lim cosw—1_ 0, we find that

z—0 X z—0 T

cos Az — 1 n sin Az
Ax Ax

lim flz+Az) - f(z) = lim |:SiIlZL‘

Az—0 Ax Az—0 COoS :L"] = COST. (2.1.3)

In other words, the derivative of the sine function is cosine.
On the other hand, let g(z) = cosz. Then g(z) = — f(z — g) Then if Az # 0,

iy v
gz +Azx) —g(x) _ f(x—§+Ax)—f(x—§) _
Ax Az ’
thus
AlimO g(z+A§; —9(2) = — oS (x - g) = —sinzx.

In other words, the derivative of the cosine function is minus sine. To summarize,

d . .
oo sinz = cosx and 4 COST = —sinz. (2.1.4)



Example 2.8. Consider the function g : R — R defined by

x?  if x is rational
g(x) =

—x? if z is irrational .

Then g(x) = zf(z), where f is given in Example 1.22. By the fact that lim f(x) = 0,

x—0

- 9(Ar) —g(0) _
Algz»lo Az B Alolgrilo f(Az)=0.

In other words, g is differentiable at 0. Moreover, similar argument used to explain that the
function f in Example 1.22 is only continuous at 0 can be used to show that the function g
is only continuous at 0. Therefore, we obtain a function which is differentiable at one point

but discontinuous elsewhere.

Remark 2.9. If f is a function defined on a interval I, and c is one of the end-point. Then
it is possible to define the one-sided derivative. For example, if ¢ is the left end-point of I,
then we can consider the limit

fle+ A= (&) f@) = f(c)

Az—0t Ax r—ct Tr —cC

if it exists. The limit above, if exists, is called the derivatives of f at ¢ from the right.

Theorem 2.10: ¥ fr ¢ 4

Let f be a function defined on an open interval I, and c € I. If f is differentiable at

¢, then f is continuous at c.

f(x) = f(c)

Proof. If © # ¢, f(z) — f(c) = W(m — ¢). Since the limit lim P exists and
lim(z — ¢) = 0, by Theorem 1.14 we conclude that

, (i L@ = SN (1 _

tim [(2) ~ f(e)] = (Jim =7 =77 ) (lm(x — ) =0.
Therefore, lim f(z) = f(c¢) which shows that f is continuous at c. O

r—cC
Remark 2.11. When f is continuous on an open interval I, f is not necessary differentiable

on I. For example, consider f(x) = |z|. Then Theorem 1.14 implies that f is continuous

on I, but lim faz) = 1(0) = lim [az] D.N.E.
Az—0 Ax Az—0 Az



2.2 Rules of Differentiation

Theorem 2.12

We have the following differentiation rules:

d
1. If k is a constant, then d—k; =0.
X
. . d
2. If n is a non-zero integer, then d—a:" = nz" ! (whenever 2"~ makes sense).
x

d . d .
3. —sinx =cosx, — cosx = —sinx.
dzx dzx

4. If k is a constant and f : (a,b) — R is differentiable at ¢ € (a,b), then kf is

differentiable at ¢ and p

dx

[kf(@)] =kf'(c).

5. If f,g: (a,b) — R are differentiable at ¢ € (a,b), then f + g is differentiable at

¢ and
d

dx

Proof of 5. Let h(x) = f(x) + g(x). Then if Az # 0,
hic+ Ax) —h(e) _ flet Az) = f(e) | glet Az) —g(c)

Azx Az Az

Since f, g are differentiable at c,

Algiclrilo flet AA? — /) = f'(c) and lim

exist. Therefore, by Theorem 1.14,

h'(c) = f'(c) +g'(c).
The conclusion for the difference can be proved in the same way.

Example 2.13. Let f(z) = 32* — 5z + 7. Then

i d. d_ d, o, d
_ad o d 6y
= 3%x 5da:x_3 (2x) —5=6x—5.



In general, for a polynomial function
p(l‘) = an$n + an—lmn_1 + -4 ax+ag= Z akxk ,

where ag,ay,--- ,a, € R, by induction we can show that

d
%p(x) = na, 2" '+ (n— Dap_12" 2+ Fa; = Z kayx"1.

Theorem 2.14: Product Rule

Let f,g : (a,b) — R be real-valued functions, and ¢ € (a,b). If f and g are differen-
tiable at ¢, then fg is differentiable at ¢ and

d

dzx

(f9)(x) = f'(c)g(c) + flc)g'(c).-

Tr=cC

Proof. Let h(x) = f(x)g(x). Then

h(c+ Ax) — h(c) = f(c+ Az)g(c + Az) — f(c)g(c)
= fle+ Az)g(c+ Az) — f(c)g(c + Az) + f(c)g(c + Az) — f(c)g(c)
= [flc+ Az) — f(0)]g(c+ Az) + f(c)[g(c + Az) — g(c)] .

Therefore, if Az # 0,

het Az) —hie) _ fletAr) = fle) |\ nyy o)

glc+ Az) —g(c)
Az Az '

Az

Since f, g are differentiable at c,

i CEAD @) alet An) (0

Az—0 Az Az—0 Az

, and Alimog(c + Az) = g(c)

exist. By Theorem 1.14,
h'(c) = f'(c)g(e) + flc)g'(c)

which concludes the product rule.

Example 2.15. Let f(z) = z3sinz. Then the product rule implies that

f'(x) = 32*sinz + 2® cos .



Theorem 2.16: Quotient Rule

Let f,g : (a,b) — R be real-valued functions, and ¢ € (a,b). If f and g are differen-

tiable at ¢ and g(c) # 0, then / is differentiable at ¢ and
g

A) £y Ll = S0
dx z=c{ 9(0)2 '
Proof. Let h(x) = gég Then

_ fle+Az) o) fle+Ar)g(c) — flc)g(c + Az)
h(e+ Az) — h(c) = g(c+ Ax) B glc) g(c)g(c+ Ax)
fle+Ax)g(c) — f(e)g(e) + fle)g(c) — f(c)g(c + Ax)
g(c)g(c+ Ax)

[f(c+ Az) = f(e)]g(c) — f(c)[g(c + Az) — g(c)] '

g(c)g(c + Ax)
Therefore, if Ax # 0,
h(c+ Az)—h(c) 1 flc+ Az) — f(e) g(c+ Ax) — g(c)
Ax ~ g(c)g(c+ Ax) [ Ax 9e) = J(¢) Az ]

Since f, g are differentiable at c,

_ fle+Az) = f(o) _ . gle+Ax) —g(c) ) B
AT e m TR and limgle+ A7) = g()

exist. By Theorem 1.14,

which concludes the quotient rule. [

Remark 2.17. Suppose that in addition to the assumption in Theorem 2.16 one has already
known that h = f/g is differentiable at ¢, then applying the product rule to f = gh one
finds that o)
c
f'(e) = g'(e)h(c) + g(c)h'(c) = g’(C)@ +g(c)h/(c)
which, after rearranging terms, shows the quotient rule. The proof of Theorem 2.16 indeed

is based on the fact that we do not know the differentiability of h at c yet.



Example 2.18. Let n be a positive integer and f(z) = z=". We have shown by definition
that f'(z) = —nz ™ ! if z # 0. Now we use Theorem 2.16 to compute the derivative of f:
if v #0,

d ., .
71‘ n—
d —n _ d 1 o dx . nx B S
T B
dx dx x" x2n x2n
. sinx
Example 2.19. Since tanx = , by Theorem 2.16 we have
Cos T
cos’ x + sin® x 1 )
—tanzx = 5 = 5 = sec” .
dx cos? x cos?x
Similarly, we also have
—sin?z — cos?x 9
—cotx = — = —cscow,
dx sin“ x
d —sinx
—secr = — 5 —secrtan,
dx cos’ x
d cosx
——CSCT = ———— = —cscxrcotx.
dx sin® x

We note that without using the quotient rule, the derivative of the tangent function can be

found using the sum-and-difference formula

tanx — tany

t —y) = . 2.2.1
an(z —y) 1+ tanxtany ( )
Using (2.2.1), we find that
tan(z + Az) — tanz = tan Az [1 + tan(z + Az) tanz] ;
thus if Ax # 0,
tan(z + Az) —tanz  sinAx 1+ tan(z 4+ Az)tanx
Az Az cos Az
which, using (1.2.2), shows that
. tan(z + Az) —tanz . sinAz . 14 tan(z + Az) tanx 9
lim = ( lim )( lim ) =sec x.
Az—0 Az Az—0 Az Az—0 cos Ax

e Higher-order derivatives:
Let f be defined on an open interval I = (a,b). If f’ exists on I and possesses derivatives
at every point in I, by definition we use f” to denote the derivative of f’.In other words,

@ = Ly = Ly = &gy = T (LT ey - ).




The function f” is called the second derivative of f. Similar as the “first” derivative case,
2

, d
f"(e) = Iz l:cf(f)-
The third derivatives and even higher-order derivatives are denoted by the following: if

y = f(x),

. . d* d*f(x)
Third derivative: y”  f"(x) Rf(x) 773
. d* d'f(x)
Fourth derivative: y®  f4(x) e (x) o

n-th derivative: y™ £ (z) d—f(as) de;Elx) .

2.3 The Chain Rule

The chain rule is used to study the derivative of composite functions.

Theorem 2.20: Chain Rule - i 4 =
Let I,J be open intervals, f : J — R, g : I — R be real-valued functions, and the

range of g is contained in J. If g is differentiable at ¢ € I and f is differentiable at

g(c), then f o g is differentiable at ¢ and
d

dz lz=c

(f o g)(x) = f'(g(c))g'(c).

Proof. To simplify the notation, we set d = g(c).
Let € > 0 be given. Since f is differentiable at d and g is differentiable at ¢, there exist
01,02 > 0 such that

f(d+k) _f(d) / €
. —f (d)‘ < ST @D whenever 0 < |k| < 01,
‘W —g'(c)‘ < min{l)M} whenever 0 < |h| < d5.
Therefore,
|f(d+ k)= f(d) — f'(d)k] < mﬂd whenever |k| < dy,

/ . €
lg(c+ h) — g(c) — g'(c)h| < min {1, m}w whenever |h| < 0.



By Theorem 2.10, g is continuous at c; thus ,llirr(l) g(c+ h) = g(c). This fact provides d3 > 0
such that

lg(c+h) —g(c)| <61 whenever |h| < 4.

Define 6 = min{ds, d3}. Then ¢ > 0. Moreover, if |h| < §, the number k = g(c+h) — g(c)

satisfies |k| < ;. As a consequence, if |h| < 9,

(fog)c+h) = (fog)(c) = f'(d)g'(c)h| = |f(glc+n)) = f(d) = f'(d)g’(c)h]
= |f(d+k) = f(d) = f'(d)g'( \

=|f(d+k) = f(d) = f'(d)k + f'(d)k — f'(d)g'(c)h|

(d) — f'(d)

f

< |f(d+ k) — f(d) — f'(@d)k| +|f/(d)||k — g"(c)h]
<m|’ﬂ+} '(d)|g(c+h) = g(c) = g'(c)h]

£

«__ & 5
2(1+1g'(c)])

(1 = 9" (1 +19' @I + |l ey

: ” N )

< aarfgran M ) Dl ra
_e 7@

— 2"

The inequality above implies that if 0 < |h| < §,

o+t = (700)(E) _ prggrie| < £ (@)

-t <
A + e<e

2 201+ (1))

which concludes the chain rule. O]

How to memorize the chain rule? Let y = g(z) and u = f(y). Then the derivative

B duidudy

Example 2.21. Let f(x) = (3z — 22?)%. Then f'(z) = 3(3z — 22%)?(3 — 4xz).

3r—1
243

2
Example 2.22. Let f(x) = ( ) . Then

(3:5 — 1)21i3x -1 _2Bz—-1) 3(z* +3) — 22(3z — 1)
x2+3 dr x* + 3 22+ 3 (2 +3)?
23z —1)(=32% + 2z +9)

(22 + 3)3 '

f(x) =




Example 2.23. Let f(z) = tan® [(z? — 1)?]. Then

f(z)= {3tan2 [(z% = 1)*] sec® [(2® — 1)2]} x [2(z* — 1) - (2z)]
= 12z(2® — 1) tan® [(2” — 1)*] sec® [(z* — 1)] .

Example 2.24. Let f : R — R be defined by

1
x2sin= ifx #0

f(x) = x
0 ifz=0.

Then if x # 0, by the chain rule we have

= ( - 1
I(x) <dd x2> sinl + x2<dd sin l) = stinl + 7 COSl(i,)
£ z T x T

xz \dx x

1 1 1 o1 1
:2xsmf+x2cosf<——2> = 2xsin — — cos — .
T T T T T

Next we compute f'(0). If Az # 0, we have

W’ = ’Aa:siné‘ < |Azl;

thus —|Az| < f(Ax)A—f(O) < |Az| for all Az # 0 and the Squeeze Theorem implies that
X

Az—0 Ax

Therefore, we conclude that

o1 1 .
2esin — —cos — ifx #0,
X X

0 ifz=0.

Definition 2.25

Let f be a function defined on an open interval I. f is said to be continuously

differentiable on I if f is differentiable on I and f’ is continuous on I.

The function f given in Example 2.24 is differentiable on R but not continuously differ-
entiable since lir% f'(z) D.N.E.



2.4 Implicit Differentiation

An implicit function is a function that is defined implicitly by an equation that x and y
satisfy, by associating one of the variables (the value y) with the others (the arguments x).
For example, 22 + 4> = 1 and & = cosy are implicit functions. Sometimes we know how
to express y in terms of z from the equation (such as the first case above y = /1 — 22

or y = —/1 —2?), while in most cases there is no way to know what the function y of x

exactly is.

Given an implicit function (without solving for y in terms of x from the equation),
can we find the derivative of y? This is the main topic of this section. We first focus on
implicit functions of the form f(z) = g(y). If f(a) = g(b), we are interested in how the set
{(z,y)| f(z) = g(y)} looks like “mathematically” near (a,b).

Theorem 2.26: Implicit Function Theorem - *£ S #ic T2 f§ ¥ 'x

Let f, g be continuously differentiable functions defined on some open intervals, and
fla) = g(b). If g’(b) # 0, then there exists a unique continuously differentiable

function y = h(z), defined in an open interval containing a, satisfying that b = h(a)

and f(z) = g(h(z)).

Example 2.27. Let us compute the derivative of h(x) = x", where r = P for some p,q €N
q
and (p,q) = 1. Write y = h(z). Then y? = 2P. Since diyq =qu?t # 0if y # 0, by the
Y

Implicit Function Theorem we find that h is differentiable at every x satisfying x # 0. Since
h(z)? = 2P, by the chain rule we find that

qh(x)"'h! (z) = paP~? Vo #0;

thus
h'(z) = ]Zh(a:)l_qxp_l = DphOatp-t _ Vo #0.
q q
If r is a negative rational number, we can apply the quotient and find that
d d 1 ra" 1

_xT:_ — I’)",I'ri V:E;éO
dx dr x=" x—2r

Therefore, we conclude that

—a" =zt Vo #0. (2.4.1)



Remark 2.28. The derivative of 2" can also be computed by first finding the derivative of

1 1
v (that is, find the limit lim (x+ Az)p —
Azxz—0 Az

) and then apply the chain rule.
Example 2.29. Suppose that y is an implicit function of x given that y3+y?—5y—2? = —4.
. dy
1. Find ==.
ind .
2. Find the tangent line passing through the point (3, —1).

Let f(z) = 2% — 4 and g(y) = v* + y*> — 5y. Then ¢'(y) = 3y*> + 2y — 5; thus if y # 1 or

; ‘ 283
y# —5 (or cquivalently,  # +1 or & # 4/ 57),
dy 2z

dr 32+2y—5
Since (1, —3) satisfies the relation y* + y* — 5y — 22 = —4, the slope of the tangent line
2-3
3(-1)2+2(-1)—5

passing through (3, —1) is —g; thus the desired tangent line is

y:—;(x—?))—l.

Example 2.30. Find % implicitly for the equation siny = .
X
Let f(x) =z and g(y) = siny. Then ¢'(y) = cosy; thus if y # nr + g (or equivalently,

z# +1),
dy 1

de  cosy

(2.4.2)

Similarly, for function y defined implicitly by cosy = x, we find that if y # nr (or equiva-

lently, x # +1),
dy 1

= . 2.4.3
dx siny ( )

Remark 2.31. The curve consisting of points (x,y) satisfying the relation siny = z cannot
be the graph of a function since one x may corresponds to several y; however, the curve
consisting of points (x,y) satisfying the relation siny = x as well as —g <y< g is the

graph of a function called arcsin. In other words, for each z € (—1, 1), there exists a unique

Y € (—g, g) satisfying siny = x, and such y is denoted by arcsinz. Since for y € (—g, g)
we must have cosy > 0, by the fact that sin?y + cos?y = 1, using (2.4.2) we find that

d ) 1

—arcsine = —— Vre(—1,1). (2.4.4)

dz 1 — x2



Similarly, the curve consisting of points (z,y) satisfying the relation cosy = = as well as

0 <y < 7 is the graph of a function called arccos, and (2.4.3) implies that

d 1

d 1 Wae(-11). 2.4.5

7a arccos T N ze(-11) ( )
Yy Yy

"/smy:l’
1 = arccos

siny = x cosy =&
- T

Yy = arcsinx

siny Hx )

Figure 2.1: The graph of functions y = arcsinx and y = arccos x

There are, unfortunately, many implicit functions that are not given by the equation
of the form f(z) = g(y). Nevertheless, there is a more powerful version of the Implicit
Function Theorem that guarantees the continuous differentiability of the implicit functions
defined through complicated relations between = and y (written in the form f(x,y) = 0).
In the following, we always assume that the implicit function given by the equation that x

and y satisfy is differentiable.

Example 2.32. Find the second derivative of the implicit function given by the equation
y = cos(bz — 3y).

Differentiate in z once, we find that dy_ _ sin(5z — 3y) - (5 — 3@); thus
dz dz
dy  —5sin(dz —3y) 5 1

dr  1—3sin(5z —3y) 3 [ 1 —3sin(5z — 3y)} '
Differentiate the equation above in x, we obtain that

Py 5 3cos(br — 3y)(5 —3y’) _5cos(5x —3y)(5—3y’)

dz2 3 [1 — 3sin(bx — 3y)}2 [1 — 3sin(bz — i’)y)]2

d? _
and (2.4.6) further implies that “ay__ cos(5z — 3y)

dx? [1— 3sin(5z — 3y)]3 .

(2.4.6)




Example 2.33. Show that if it is possible to draw three normals from the point (a,0) to
the parabola x = y?, then a > %

Suppose that the line L connecting (a,0) and (b,b), where b # 0, is normal to the
parabola 2 = y2. The derivative of the function defined implicitly by x = y? satisfies that

dy
1:2?/%;

1
thus the slope of the tangent line passing through (b%,b) is % Since line L is perpendicular

to the tangent line passing through (b2, b), we must have

1 b-0

A
2b b2 —a

1 1
Therefore, a = 5T b%. Since b # 0, a > 3

2.5 Exercise

Problem 2.1. Let f be a function defined on an open interval containing ¢. Show that f is
differentiable at c if and only if there exists a real number L satisfying that for every € > 0,

there exists 6 > 0 such that
|f(c+h) = f(c) — Lh| < €lh] whenever |h| < 0.
Hint: See the (first part of the) proof of the chain rule for reference.

Problem 2.2. Let f, g be functions defined on an open interval, and n € N. Show that if

the n-th derivatives of f and ¢ exist on I, then

dn
T (F)(@) = P (@)g(x) + CL "V (@)g (@) + C3g" P (w)g"(2) + -
+ Coaf"(@)g" 2 (@) + Oy f ' (@)g" D (@) + f(a)g"™ (2)
= N P ()g P (a),
k=0
where O} = k;'(nn'k:)' is “n choose k”.

Hint: Prove by induction.



Problem 2.3. Let [ be an open interval and ¢ € I. The left-hand and right-hand derivative
of f at ¢, denoted by f’(ct) and f’(c¢7), respectively, are defined by

f'(c") = lim fleth) = 19 and f'(c7) = lim flex hli —f

h—0+ h h—0—

provides the limits exist.

1. Show that if f is differentiable at ¢ if and only if f'(¢*) = f'(¢7), and in either case
we have f'(¢) = f'(ct) = f'(¢7).

z? if x <2,

, Find the value of m and k such that f is differen-
mx+k ifx>2.

2. Let f(z) = {

tiable at 2.

3. Is there a value of b that will make

(2) x+0b ifr <0,
i =
g cosx ifx=0.

continuous at 07 Differentiable at 07 Give reasons for your answers.

(n—1)z" —na™ 141

n—1
Problem 2.4. 1. Let n € N. Show that ] ka*~! = @17 if v # 1.
k=1 -
n -1 ) 1) sin Z si 1 z 1
2. Show that >, kcos(kz) = *(2n+lsing sm(n'—i; )@ + os j cos(n + )z ifxe (—mm).
=1 4sin® 5
n—1 n—1 n—1 d
Hint 1. Find the sum Y] 2* first and then observe that > kz*~1 = 3] %xk.
k=1 k=1 k=1

n

2. Find the sum )] sin(kx) first and then observe that > kcos(kx) = > % sin(kz).
k=1 k=1 k=1

Problem 2.5. For a fixed constant a > 1, consider the function f(x) = log, z. Suppose

that you are given the fact that the limit

lim ~ 0.43429

logo(1+ h)
h—0 h

exists.
1. Show that f is differentiable on (0,0) for all a > 1.

2. Show that there exists a > 1 such that f'(z) = Lorallze (0, 00).
T



Hint: 1. Use the “change of base formula” (3 & = ;%) for logarithm.

d . .
2. Define g(a) = d—‘ » log, x. Apply the intermediate value theorem to g.

X lr=

Problem 2.6. Let f(x) = ay sin z+4ay sin(2z)+as sin(3z)+- - -+a, sin(nx), where a1, as, - - - , ay,

are real numbers and n € N. Show that if ‘f(x)‘ < }sin :13} for all x € R, then

a1 + 2az + 3ag + - - + na,| < 1.

a1 pn(x)
Problem 2.7. Let £ € N. Suppose that D=1 @k 1)

Find the degree of p,
and p,(1).

Problem 2.8. Let fi, fo,---, fn : R = R be differentiable functions (that is, f; is differen-
tiable on R for all 1 < j < n), and

h(ﬂf) = (fno facr10---0 fyo f1)(33) .
Show that
W(x) = fo(gn-1(x)) - foo(gn2(@)) - f3 (92 (2)) - fi(2) .

where gy = fro fr—10---0 fa0 f1.

Hint: Prove by induction.

Problem 2.9. 1. Let r € Q, and f : (0,50) — R be defined by f(z) = z". Find the

derivative of f.

2. Find the derivatives of y = 21 and Yy = g by the fact that zi = v~/ and zi =

3. Let g : (a,b) — R be differentiable. Find the derivative of y = |g(x)|.

Problem 2.10. Let f : R — R be differentiable and satisfy f(Tb = x for all x > 0.
Find f/(0).

$2 —
22

Problem 2.11. 1. Let n € N. Show that d

. [sin™ 2 cos(nz)] = nsin™ ' zcos(n + 1)z .
X

2. Find a similar formula for the derivative of cos™ x cos(nz).

Problem 2.12. Find the derivative of the following functions:



1. y = cos/sin(tan(mz)). 2. y = [z + (z+ sin’ x)3}4.

Problem 2.13. Note that in class we have introduced two new functions “arcsin” and
“arccos” whose graphs are (the blue and green) part of the curve consisting of points (x,y)

satisfying siny = x and cosy = x, respectively, given below

Y Y

NN Y = arccos»

siny =x cosy =x
x T
Yy = arcsinx

siny = x )

Figure 2.2: The graph of functions y = arcsinx and y = arccos x

1. Find the domain and the range of the two functions arcsin and arccos.

2. Show that sin(arcsinz) = x for all x in the domain of arcsin and cos(arccosz) = =

whenever x in the domain of arccos.
3. Is it true that arcsin(sinx) = x or arccos(cosx) = x?
4. Find sin(arccos x) and cos(arcsin z).

5. Show that di

T lx=c

(arcsinx + arccos z) = 0 for all ¢ in both domains.

Cd 1 d ,
6. Find - aresin — and %(arccos x)?.

Problem 2.14. The function arctan is defined similarly to functions arcsin and arccos:
consider the collection of all points (z,y) satisfying tany = x (see the figure below), and

the blue part is the graph of a function called “arctan”.



T=tany - y = arctanx
x
r =tany L
T = tany

Figure 2.3: The graph of function y = arctanx
1. Find the domain and the range of the function arctan.
2. Show that tan(arctanz) = « for all z in the domain of arctan.
3. Is is true that arctan(tanz) = « for all x in the domain of tan?

4. Find i arctan x.
dx

. dy d2y . . 2
Problem 2.15. Find -~ and —— if sin(z + y) = y* cos z.
dx dx?

Problem 2.16. The line that is normal to the curve z* 4+ 2zy — 3y* = 0 at (1,1) intersects

the curve at what other point?

Problem 2.17. Show that the sum of the z- and y-intercepts of any tangent line to the
curve \/z + /y = +/c is equal to c.

Problem 2.18. The Bessel function of order 0, denoted by y = Jy(z), satisfies the differ-
ential equation

zy"+y +axy=0
for all values of x and its value at 0 is Jy(0) = 1.
1. Find JJ(0).

2. Use implicit differentiation to find J;'(0).



Chapter 3

Applications of Differentiation

3.1 Extrema on an Interval

Definition 3.1

Let f be defined on an interval I containing c.

1. f(c) is the minimum of f on I when f(c) < f(z) for all z in I.
2. f(c) is the maximum of f on I when f(c) > f(z) for all z in 1.

The minimum and maximum of a function on an interval are the extreme values, or
extrema (the singular form of extrema is extremum), of the function on the interval.
The minimum and maximum of a function on an interval are also called the absolute
minimum and absolute maximum, or the global minimum and global maximum, on the
interval. Extrema can occur at interior points or end-points of an interval. Extrema

that occur at the end-points are called end-point extrema.

Theorem 3.2: Extreme Value Theorem - & g T 32

If f is continuous on a closed interval [a,b], then f has both a minimum and a
maximum on the interval. (i S BB B &G S x B ©)

When f is continuous on an open interval (a,b) (or a half-open half-closed interval), it is
still possibly that f attains its maximum or minimum but there is no guarantee. Moreover,
it is also possible that f does not attain its extrema when f is continuous on an interval

which is not closed.

95



Definition 3.3

Let f be defined on an interval I containing c.

1. If there is an open interval containing ¢ on which f(c) is a maximum, then f(c)

is called a relative maximum of f, or you can say that f has a relative maximum
at (c, f (c))

2. If there is an open interval containing ¢ on which f(c¢) is a minimum, then f(c)

is called a relative minimum of f, or you can say that f has a relative minimum
at (c, f(c)).
The plural of relative maximum is relative maxima, and the plural of relative minimum

is relative minima. Relative maximum and relative minimum are sometimes called

local maximum and local minimum, respectively.

Definition 3.4

Let f be defined on an open interval containing ¢. The number/point ¢ is called a

critical number or critical point of f if f’(c) = 0 or if f is not differentiable at c.

Theorem 3.5

If f has a relative minimum or relative maximum at x = ¢, then ¢ is a critical point

of f.

Proof. W.L.O.G., we assume that f is differentiable at ¢. If f’(c¢) > 0, then there exists
01 > 0 such that

f(z) = (o) F'(e)| < 1) it 0<|z—c| <dp;
r—c 2
thus
F10) S0 =FE@) 310y e <4,
2 T —c 2 '

1. f0<x—c<dy,

£+ L o) < ) < £+ L — 0

which implies that f cannot attain a relative maximum at z = ¢ since f(x) > f(c) on
the right-hand side of c.



2. if =6 <x—c<0,

1@+ 90— > 1) > 10+ L -0

which implies that f cannot attain a relative minimum at x = ¢ since f(c) > f(z) on

the left-hand side of c.

Therefore, we conclude that if f’(c) > 0, then f cannot attain either a relative maximum
or minimum at = c¢. Similar conclusion can be drawn for the case f’(c) < 0; thus if f

attains a relative extremum at = = ¢, then f’(c) = 0. O

Remark 3.6. A more strict version of Theorem 3.5 is called Fermat’s Theorem which

is stated as follows:

If f has a local maximum or minimum at ¢, and if f’(c) exists, then f’(c) = 0.

The way to find extrema of a continuous function f on a closed interval [a, b]:
1. Find the critical points of f in (a,b).
2. Evaluate f at each critical points in (a, b).

3. Evaluate f at the end-points of [a, b].

4. The least of these values is the minimum, and the greatest is the maximum.

Example 3.7. Find the extrema of f(x) = 2sinz — cos 2z on the interval [0, 27].

Since f is differentiable on (0, 27), a critical point ¢ satisfies

0= f'(c) =2cosc+ 2sin2c = 2cosc(l 4 2sinc).

Therefore, ¢ = g, c= %T, c= %T or ¢ = 11%7 and the values of f at these critical points
are
T 3
f(3)=21-(1=3, J(G)=2-(=) = (1) =-1,
7 1 1 3 117 1 1 3
G =230 —3=—% JEF)=2(=5) 5=

On the other hand, the values of f at the end-points are
F(0)=2-0-1=-1 and f(21)=2-0—1=—1.
Therefore, f (g) = 3 is the maximum of f on [0, 27], while the minimum of f on [0, 27]

7 11 .. . 3
occurs at ¢ = g and ¢ = TW and the minimum is —5



3.2 Rolle’s Theorem and the Mean Value Theorem

Theorem 3.8: Rolle’s Theorem
Let f : [a,b] — R be a continuous function and f is differentiable on (a,b). If
f(a) = f(b), then there is at least one point ¢ € (a, b) such that f’(c) = 0.

Proof. If f is a constant function, then f’(x) = 0 for all = € (a,b). Now suppose that f
is not a constant function on [a,b], by the Extreme Value Theorem implies that f has a
maximum and a minimum on [a, b], and the maximum and the minimum of f on [a, b] are
different. Therefore, there must be a point ¢ € (a,b) at which f attains its extreme value.
By Theorem 3.5, f'(c) = 0. O

Theorem 3.9: Mean Value Theorem

If f:[a,b] — Ris continuous and f is differentiable on (a, b), then there exists a point
c € (a,b) such that

Proof. Define g : [a,b] — R by g(z) = [f(z) — f(a)] (b —a) — [f(b) — f(a)](z — a). Then
g : la,b] — R is continuous and g is differentiable on (a, ). Moreover, g(a) = g(b) = 0; thus
the Rolle Theorem implies that there exists ¢ € (a,b) such that g’(c) = 0. On the other
hand,

0=2g'(c) = (b—a)f'(c) = [f(b) — f(a)] ;
f

(4) - f(a) .

thus there exists ¢ € (a, b) satisfying f'(c) = r—

Remark 3.10. In fact, by modifying the proof of the mean value theorem a little bit, we
can show the following: Let f, g : [a,b] — R be continuous on [a,b] and differentiable on
(a,b). If g'(x) # 0 for all x € (a,b), then there exists ¢ € (a, b) such that

The statement above is a generalization of the mean value theorem and is called the Cauchy

mean value theorem (see Theorem 5.45).



Example 3.11. Note that the sine function is continuous on any closed interval [a, b] and is
differentiable on (a, b). Therefore, the mean value theorem implies that there exists ¢ € (a, b)
such that

) sinb —sina
cosc = — sing = ———

X lz=c b—a
which implies that |sina — sinb| = |cosc||a — b| < |a — b|. Therefore,
|sinz — siny| < |z — y| Ve, yeR.
Similarly,
|cosz — cosy| < |x — y Va,yeR.

3.3 Monotone Functions and the First Derivative Test

Definition 3.12

Let f be defined on an interval I.

1. f is said to be increasing on [ if

flz1) < f(xo) Vay,wo €l and 1y < 5.
2. f is said to be decreasing on [ if

flx1) = f(x9) Vo, 2z0€l and 1 < 2.
3. f is said to be strictly increasing on [ if

f(zy) < f(x9) Vay,x0€l and x1 < 2.
4. f is said to be strictly decreasing on I if

f(z) > f(x2) Va,x0€l and x1 < 2.

When f is either increasing on I or decreasing on I, then f is said to be monotone.
When f is either strictly increasing on I or strictly decreasing on I, then f is said to

be strictly monotone on I.

Remark 3.13. Note that f is increasing on [ if
f(z1) — f(x2)

X1 — X2

>0 Vai,29 €I and 21 # x5.

Therefore, f is increasing on I if the slope of each secant line of the graph of f is non-

negative. Similar conclusions hold for the other cases.



Example 3.14. The function f(z) = z? is strictly increasing on R, and f(z) = —a? is

strictly decreasing on R.
Example 3.15. The sine function is strictly increasing on [Qnﬂ — g,2n7r + g} for all

n € Z, but decreasing on [2n7r — g, 2nm + 3%] for all n € Z. However, the sine function

e}
is not strictly increasing on | J [2n7r — g,er + g] and is not strictly decreasing on
n=—a
®© T 37
2nm — =, 2nm + —|.
L, g ]

Theorem 3.16

Let f :[a,b] — R be continuous and f is differentiable on (a,b).

1. If f'(x) =0 for all z € (a,b), then f is increasing on [a, b].
2. If f/(z) <0 for all z € (a,b), then f is decreasing on [a, b].
3. If f'(z) > 0 for all € (a,b), then f is strictly increasing on [a, b].
() (a,b)

4. If f'(x) < 0 for all = € (a,b), then f is strictly decreasing on [a, b].

Proof. We only prove 1 since all the other conclusion can be proved in a similar fashion.
Suppose that f’(z) > 0, and z; < x9. By the Mean Value Theorem, there exists

c € (1, x2) such that

f(x1) — f(x9)

= () = 0;
1 — T2
thus f(x1) < f(x2) if 21 < . O

Remark 3.17. The condition f’(x) > 0 is just a sufficient condition for that f is strictly
increasing, but not a necessary condition. For example, f(z) = x? is strictly increasing on
R, but f'(0) = 0.

Example 3.18. Show that

.%‘2

cosa:>1—7 Ve =>0. (3.3.1)
2
Let f(x) =cosxz —1+ % In order to show (3.3.1), we need to show that f(x) > 0 for
all z > 0. Since f’(x) = —sinz + z, by Theorem 0.13 we find that f’ is non-negative on
[0,00). Therefore, Theorem 3.16 implies that f is increasing on [0, c0) which further shows

that f(x) = f(0) =0 for all z > 0.



Example 3.19. Using (3.3.1), we can show that
: a®
Smx}x—g Ve =>0.

3
In fact, by defining g(z) = sinz — x + %, using (3.3.1) we find that

2
g’(a:)zcosa:—l—i—%?() Va>=0;
thus ¢ is increasing on [0,00) which shows that g(z) > ¢(0) = 0 for all x > 0. Similar

argument then shows that

2 7t
<l——+— >
cos T 5 + o V=0
and the inequality above in turn implies that
DA
ne <r——+ — V=0
sinxy < 6 + 120 T
By induction, we can show that for all k € N U {0},
23 Ak L Ak+3 23 LAk
- — 4 ... — < si <r——+- - V=0,
SR Ty s TR e T T T DT
22 24k L Ak+2 22 ak
1— ... - < <l——+--- Vo >0.
o T T e T @k ray SO SRR AT .

Theorem 3.20: The First Derivative Test

Let f be a continuous function defined on an open interval I containing c. If f is

differentiable on I, except possibly at ¢, then
1. If f’ changes from negative to positive at ¢, then f(c) is a local minimum of f.
2. If f’ changes from positive to negative at ¢, then f(c) is a local maximum of f.

3. If f’is sign definite on I'\{c}, then f(c) is neither a relative minimum or relative

maximum of f.

Proof. We only prove 1. Assume that f’ changes from negative to positive at ¢. Then there

exists a and b in I such that
f'(x) <0forall x € (a,c) and f'(x)>0forall xz € (c,b).

By Theorem 3.16, f is decreasing on (a,c) and is increasing on (¢, b). Therefore, f(c) is a

minimum on an open interval (a, b); thus is a relative minimum on I. 0]



1
Example 3.21. Find the relative extrema of f(z) = 5%~ sinz in the interval (0, 27).
By Theorem 3.5 the relative extrema occurs at critical points. Since f is differentiable
on (0,27), a critical point x satisfies

1
O:f'(x)zﬁ—cosx

which implies that ¢ = % and ¢ = ?ﬂ are the only critical points. To determine if f (g) or
Y . .. .

f (g) is a relative minimum, we apply Theorem 3.20 and found that, since f’ changes from
negative to positive at g and changes from positive to negative at g, f(g) is a relative
minimum of f on (0, 27).

Remark 3.22. When a differentiable function f attains a local minimum at an interior
point ¢, it is not necessary that f’ changes from positive to negative. For example, consider
the function f : R — R defined by

f(x):{ x2(1+sin%) ifx#0,

0 ifx=0.
Then . .
() = 2x(1+sin5)—cosg ifx#0,
0 ifxr=0.
Therefore,

1. 0 is a critical point of f.
2. f attains a (global) minimum at 0 since obviously f(z) = 0 = f(0) for all z € R.

3. It is impossible to determine if f’ changes “from negative to positive” or “from positive

to negative” at 0.

3.4 Concavity (") and the Second Derivative Test

Definition 3.23

Let f be differentiable on an open interval I. The graph of f is concave upward (™
w + ) on I if f’ is strictly increasing on the interval and concave downward (™ =

T ) on [ if f’is strictly decreasing on the interval.




Remark 3.24. It does not really matter if f’ has to be strictly monotone, instead of just
monotone, in order to define the concavity of the graph of f. Here we define the concavity

by the strict monotonicity.
e Graphical interpretation of concavity: Let f be differentiable on an open interval I.

1. If the graph of f is concave upward on I, then the graph of f lies above all of its
tangent lines on I.

2. If the graph of f is concave downward on I, then the graph of f lies below all of its
tangent lines on /.

The following theorem is a direct consequence of Theorem 3.16.

Theorem 3.25: Test for Concavity

Let f be a twice differentiable function on an open interval I.

1. If f”(x) > 0 for all  in I, then the graph of f is concave upward on I.

2. If f"(x) <0 for all z in I, then the graph of f is concave downward on I.

Example 3.26. Determine the open intervals on which the graph of f(x) = 0 is

2?2 +3
concave upward or concave downward.

First we compute the second derivative of f:

—12z _ (2% +3)* = 2(z* + 3)(2x)x  36(z* — 1)
(@1 3 @ia @y

f(a) =

Therefore, the graph of f is concave upward if > 1 and is concave downward if x < 1.

Definition 3.27: Point of inflection ( ¥ & 2t)

Let f be a differentiable function on an open interval containing c. The point (c, f(c))
is called a point of inflection (or simply an inflection point) of the graph of f if the
concavity of f changes from upward to downward or downward to upward at this

point.

36(x? — 1)
243 (2 +3)3
changes sign at x = +1, (il, g) are both points of inflection of the graph of f.

Example 3.28. Recall Example 3.26 (f(x) = with f"(z) = ) Since f”



Theorem 3.29

Let f be a differentiable function on an open interval containing c. If (c, f (c)) is a

point of inflection of the graph of f, then either f”(c) =0 or f”(c) does not exist.

Remark 3.30. A point (c, f (c)) may not be an inflection point of the graph of f even
if f”(c) = 0. For example, the point (0,0) is not an inflection point of f(z) = z* since

f"(x) > 0 for all z # 0 which implies that the concavity of f does not change at ¢ = 0.

Example 3.31. Determine the points of inflection and discuss the concavity of the graph
of f(z) = z* — 4z®. Note that the zero of f” is x = 0 or x = 2 (since f”(z) = 122> — 24x).
Since f"(z) > 0if x <0 orx > 2, and f"(z) > 0if 0 < 2 < 2, we find that (0,0) and
(2, —16) are points of inflection of the graph of f.

Theorem 3.32

Let f be a twice differentiable function on an open interval I containing ¢, and c is a

critical point of f.
1. If f"(c) > 0, then f(c) is a relative minimum of f on I.

2. If f"(c) <0, then f(c) is a relative maximum of f on I.

Remark 3.33. If f”(c) = 0 for some critical point ¢ of f, then f may have a relative
maximum, a relative minimum, or neither at c¢. In such cases, you should use the First

Derivative Test.
Proof of Theorem 3.32. Since f”(c) > 0, there exist 6 > 0 such that
f'(z) = f'(e) f"(e)

2

Tr —cC

— fe)] <
Since ¢ is a critical point of f, f’(c) = 0; thus the inequality above implies that

F1(0) _ £ _ 3
2 Tr—c 2

if0<|x—cl <o.

if 0 <|z—c|l <.

In particular,

(x —c) < f'(x) if0<z—c<d,

—~(r—0¢)<0 if -0 <z—c<0.



Therefore, f’ changes from negative to positive at ¢; thus f(c) is a relative minimum of f

on I. O]

Example 3.34. Recall Example 3.21 (f(x) = %x—sin :1:) We have established that f(g) is
a relative minimum of f on (0, 27) using the First Derivative Test. Note that f”(x) = sin ;

thus f” (g) = sing = \f > (. Therefore, without using the First Derivative Test, we can

still conclude that f (g) is a relative minimum of f on (0, 27) by the second derivative test.
Example 3.35. Show that for all 1 < p, ¢ < oo satisfying 1 + 1o 1, we have
p g

ab< —+—  VYa,b>0. (3.4.1)

1 1
The inequality above is called Young’s inequality. We remark that if — + — = 1, then
P P q

p—1
For the moment we only show (3.4.1) for the case that p,q € Q (because we have not

q:

talked about what it means by the p-th power if p is irrational). To show (3.4.1), we prove
that for each given b > 0, the function f : (0,00) —» R

P b
f@) =2 o+ =
p q

is non-negative. In other words, we have to show that the “minimum” of f is non-negative.
To find the minimum of f, we differentiate and find that f’(z) = 2P~ — b which implies

that ¢ = b1 is the only critical point. Since
f'(€) = (p= 1) = (p = b= =0,

the second derivative test implies that f attains a local minimum at c¢. Since there is no

other critical points, f must attain its global minimum at ¢; thus

f(@) = fle)  Vae(0,x)

P
1 ¢ B a
and (3.4.1) is established since f(c) = bt BT L b? + " 0.
p q p q
Remark 3.36. Suppose that ¢ is a critical point of a differentiable function f with f”(c) =
0. For f to attain a local extremum at ¢, f"”(¢) must be zero if the third derivative of f is

continuous. If in addition f® is continuous, then



1. f attains a local maximum at ¢ provided that f®(c) < 0.
2. f attains a local minimum at ¢ provided that f*(c) > 0.

In general, if f is 2k-times continuously differentiable (which means f(*) exists every-
where and is continuous) and f'(c) = f”(c) = --- = f@*I(c) = 0, then

1. f attains a local maximum at ¢ provided that f®*(c) < 0.
2. f attains a local minimum at ¢ provided that f*(c) > 0.

On the other hand, if f is (2k + 1)-times continuously differentiable and f'(c) = f"(c) =

o= f@R(c) = 0 but fC*(c) # 0, then f cannot attain its local extremum at c.

3.5 A Summary of Curve Sketching

When sketching the graph of functions, you need to have the following on the plot.
1. z-intercepts and y-intercepts;
2. asymptotes;
3. absolution extrema and relative extrema;

4. points of inflection.
3z — 2
V22 +1°
First, we note that the z-intercepts and y-intercepts are (g, 0) and (0, f(0)) = (0,-2).

Example 3.37. Sketch the graph of the function f(z) =

To determine the asymptotes, since 4/2x2 + 1 are never zero, there is no vertical asymptote.

As for the horizontal and slant asymptotes, by the fact that

3z —2 3_ 2 3_9 5
. . . = . — &y
lim f(z) = lim —— = lim —%—= = lim —— = —
T—>00 f( ) r—00 \/m T—00 \/E y—>0+ \/W \/5
X X
and

3z — 2 -3-2 3-2 3
lim f(z)= lim f(—2z) = L m L = lim Y 2



we find that there are two horizontal asymptotes y = \f
By the quotient rule,

) 3207 +1— (30 -2 (202 + 1)} 3v227 +1— (30— 2)5(202 + 1)1 - (4a)

212 + 1 222+ 1
3224+ 1) — 223z —2) 4x+3
(222 + 1)2 (222 + 1)2
and
3 3 1
() 4222 +1)2 = (4o +3)5(222 + 1)2 - (42)  4(22% + 1) — 6a(dx + 3)
€Xr) = g
(21’2 ) (23;2 + 1)%
—162? — 18z + 4 _ —2(82% + 9z — 2)
(222 +1)3 (222 4+1)2
Therefore, x = —Z is the only critical point and since f’ changes from negative to positive
at —g, f(—%) is a relative minimum of f.
—9 — /145 -9 4145

f"(x) =0 occurs at x; = 6 and xy = T . Since f” changes sign at x;

and xq, (x1, f(x1)) and (x2, f(x2)) are inflection points of the graph of f.

3.6 Optimization Problems

Explanation of examples in Section 3.7 in the textbook:

1 - P REF - BARNMLE A 2 af 1083202 134 Brdifsd o B
EREF AR B

2. Which points on the graph of y = 4 — 2% are closest to the point (0,2)? #4 &
y=4—2> rvRpEEn] (0,2) &if ?

3P NENRFO AT R RN T TFIZ AL LG ALY R e F 216
I = \/,,\:q’ﬁg—;qj‘gpﬁs?%%&}ﬁ;ljo

4 BB 5 12 28 2 28 2% Feofk 3 ApEE 30 % o HdiG b - B2 A {E
2 B iRz fedfod | o



5. Four meters of wire is to be used to form a square and a circle. How much of the wire
should be used for the square and how much should be used for the circle to enclose
the maximum total area? — & 4 22 R BAHL 53 E* KED - B > A5fo-
BRI, - & EAA KA BB e e

6. Application in Physics: Let v; be the velocity of light in air and v, the velocity of
light in water. According to Fermat’s Principle, a ray of light will travel from a point
A in the air to a point B in the water by a path AC'B that minimizes the time taken.

Show that .
sinfh u1

sin 02 - V2 ’
where 6, (the angle of incidence) and 6y (the angle of refraction) are as shown. This

equation is known as Snell’s Law.

A
6,

6,
NG ]
Figure 3.1: Snell’s law

Proof. Assume that A = (0,a) and B = (b, —c). The goal is to find C' = (z,0) so that
VETE e obi e
floy = YO VD

is minimized. Differentiating f, we find that a critical point x of f satisfies
1 x 1 b—=z

v1 V22 + a2 - g«/(m—b)2+02 ‘
Snell’s law then is concluded from the fact that sinf; =
b—x

7. Application in Economics: Suppose that

and sinfy =

x
V2 +a?
L]

r(z) = the revenue from selling = items,
¢(x) = the cost of producing the x items,

p(z) = r(x) — ¢(x) = the profit from producing and selling z items.



Although x is usually an integer in many applications, we can learn about the behavior
of these functions by defining them for all nonzero real numbers and by assuming they
are differentiable functions. Economists use the terms marginal revenue (:#*% < %),
marginal cost (i§ % = %), and marginal profit (:# % 41/#) to name the derivatives
r'(x), ¢'(x), and p’(z) of the revenue, cost, and profit functions. Let us consider the
relationship of the profit p to these derivatives. If r(x) and ¢(z) are differentiable for
in some interval of production possibilities, and if p(x) = r(x) — ¢(z) has a maximum
value there, it occurs at a critical point of p(x) or at an end-point of the interval. If it
occurs at a critical point, then p’(x) = r'(x) —c¢’(x) = 0 and we see that r'(z) = ¢'(x).

In economic terms, this last equation means that

At a production level yielding maximum profit, marginal revenue equals

marginal cost.

A
Cost ¢(x)
“ Revenue r(x)
A | Break-even point
) | Maximum profit, ¢'(x) = r'(x)
B |
|
|
\ - ~ | . . ~
| Local maximum for loss (minimum profit), ¢'(x) = r'(x)
| ' > X
0 [tems produced

Figure 3.2: The graph of a typical cost function starts concave down and later turns concave
up. It crosses the revenue curve at the break-even point B. To the left of B, the company
operates at a loss. To the right, the company operates at a profit, with the maximum profit
occurring where ¢’(z) = r’(x). Farther to the right, cost exceeds revenue (perhaps because
of a combination of rising labor and material costs and market saturation) and production
levels become unprofitable again.



3.7 Newton’s Method

The Newton method is a numerical method for finding zeros of differentiable functions.
Let f : (a,b) — R be a differentiable function, and ¢ € (a,b) is a zero of f. To find an

approximated value of ¢, the Newton method is the following iterative scheme:

1. Make an initial estimate x; € (a,b) that is close to c.

2. Determine a new approximation using the iterative relation:

n

YA

Q _.---""'---.-’ . X3 /xg Xy X

Figure 3.3: Sequence of approximated zeros by Newton’s method

3. When |z, — x,41| is within the desired accuracy, let x, 1 serve as the final approxi-
mation.

Example 3.38. To find the square root of a positive number A is equivalent to finding

zeros of the function f(x) = 2 — A in (0,00). The Newton method provides the iterative

scheme

fla) oA x, A

Tntl = Tn T fl(w,) " 27, 2 2z,
to find approximated value of v/A.

Example 3.39. To find the precise value of © we can look for a zero of the function

f(x) = cos g The Newton method provides the iterative scheme

T
COS; T
Tn+1 ::En_l—.r :[L’n—FQCOt?
——sin =
2 2



to find the value of zeros of f. Starting the iteration with z; = 3, then x5 ~ 3.141829688605305,
r3 ~ 3.141592653588683 and x4 ~ 3.141592653589793. We note that x4 has already been

very close to 7.

14
'}W’ < 1 for all = € (a,b), then the Newton method

f

produces a convergent sequence which approaches a zero in (a, b).

It can be shown that when ‘

3.8 Exercise

Problem 3.1. 1. Let f,g : (a,b) — R be functions and f’(z) = ¢'(z). Show that there
exists a constant C' such that f(z) = g(x) + C.

2. Suppose that f : R — R is a differentiable function satisfying that f’(z) = 32*+4 cos x
and f(0) =0. Find f(x).

Problem 3.2. Let f : [a,b] — R be a continuous function such that f has only one critical

point ¢ € (a,b).
1. Show that if f(c) is a local extremum of f, then f(c) is an absolute extremum of f.

2. Show that if f(c) is the absolute minimum of f, then f(x) > f(c) for all x € [a, b] and
x # c. Similarly, show that if f(c) is the absolute maximum of f, then f(x) < f(c)

for all x € [a,b] and = # c.

Problem 3.3. Let I, J be intervals, g : [ — R and f : J — R be increasing functions.

Show that if J contains the range of g, then f o g is increasing on I.

2v/3

Problem 3.4. 1. If the function f(z) = 2% + az? + bz has the local minimum value T

1
at x = —, what are the values of a and b7

V3

2. Which of the tangent lines to the curve in part (1) has the smallest slope?

Problem 3.5. A number a is called a fixed point of a function f if f(a) = a. Prove that if

f'(x) # 1 for all real numbers z, then f has at most one fixed point.

Problem 3.6. Suppose f is an odd function (that is, f(—z) = —f(z) for all z € R) and is

differentiable everywhere. Prove that for every positive number b, there exists a number ¢

in (=b,b) such that f'(c) = féb)



Problem 3.7. Show that 24/x > 3 — % for all x > 1.

b—a
2va

Problem 3.9. Show that for all (rational numbers) p, g € (1,00) satisfying ]19 + ; =1, we

Problem 3.8. Show that vb — y/a < for all 0 < a < b.

have
ac—l—bdé(ap—l—bp)%(cq—l—dq)% Va,bc,d>0.
d

Hint: Let z = & and y=—.
b c

Problem 3.10. Show that for all k € N u {0},

3 [E4k+1 CC4k+3 {L‘S CC4k+1

xr
_ — g‘ < N, N v 207
SR TRy s TR o s TH S T o DT
ZL‘2 IL‘4k m4k+2 ZL‘2 ILAk
| - <cosz<l—" - V>0
o T T T (ko) SO > T T A v
Problem 3.11. (% & * 2 R 4% ) Show that for all k € N uU {0},
1
1—x+x2—x3+-~+x2’“—x2’““<1+ <l—z+22—23+ . 2% Vo =>0.
T

Problem 3.12. Let f : R — R be a differentiable function satisfying that f’(z) = f(z) for
all z € R, and f(0) = 1.

L(#&xFH 0 fa ik f a2 ) Show that f is increasing on R.
2 k
2. ShowthatifkeNu{O},thenf(x)>1+x+%—l—---+%foraﬂx20.

3. Show that if k € N U {0}, then

2 2k $2k+1 2 IQk

T T X
=~ F S fla)<ltao+ o+t

ot 2! (2k)!

<0.
2] OIS v

1+2+

Hint: 1. Show that f? is increasing on R and argue that f is also increasing on R.
g

Problem 3.13. 1. The function

f(x):{ 0 ifz=0,

l—2z if0<z<1

is differentiable on (0,1) and satisfies f(0) = f(1). However, its derivative is never

zero on (0, 1). Does this contradict Rolle’s Theorem? Explain.



2. Can you find a function f such that f(—2) = —2, f(2) =6, and f'(x) < 1 for all z?
Why or why not?

Problem 3.14. Find the minimum value of
‘ sinx + cosx + tanx + cotx + secx + cscx

for real numbers z.

Hint: Let t = sinz + cosz.

Problem 3.15. Let f,g : (a,b) — R be twice differentiable functions such that f”(z) # 0
and g”(z) # 0 for all = € (a,b). Prove that if f and g are positive, increasing, and concave

upward on the interval (a,b), then fg is also concave upward on (a, b).

Problem 3.16. For what values of a and b is (2,2.5) an inflection point of the curve

2% + ax + by = 0?7 What additional inflection points does the curve have?



Chapter 4

Integration

n
e The X notation: The sum of n-terms ay, as, - - - ,a, is written as > a;. In other words,
i=1
n

Zai:a1+a2+~-—|—an.

i=1
Here 7 is called the index of summation, a; is the i-th terms of the sum. We note that 7 in

the sum ). a@; is a dummy index which can be replaced by other indices such as j, k, and

=1
n

n n
etc. Therefore, >  a; = >, a; = Y, ay, and so on.
i=1 j=1 k=1

e Basic properties of sums: Z(cai +b)=c

i=1 %

Theorem 4.1: Summation Formula

n n
1. Y c=cn if cisa constant; 2. > i=

n

i=1

1

n(n+1)2n+1)
1 6 i=1

4.1 The Area under the Graph of a Non-negative Con-
tinuous Function

Let f : [a,b] — R be a non-negative continuous function, and R be the region enclosed by
the graph of the function f, the z-axis and straight lines x = a and x = b. We consider

computing A(R), the area of R. Generally speaking, since the graph of y = f(x) is in

74



general not a straight line, the computation of A(R) is not straight-forward. How do we
compute the area A(R)?
b—a

n
By the Extreme Value Theorem, for each 1 < ¢ < n f attains its maximum and minimum

Partition [a, b] into n sub-intervals with equal length, and let Az = , T = a+iAx.

on [z;_1,x;]; thus for 1 < i < n, there exist M;, m; € [x;_1, z;| such that
f(M;) = the maximum of f on [z;_1, x;]
and
f(m;) = the minimum of f on [x;_q, z;].
The sum S(n) = Zn] f(M;)Az is called the upper sum of f for the partition {a = z¢ < z; <
Ty < o0 < Iy = Zb_}l, and s(n) = ilf(mi)Ax is called the lower sum of f for the partition

{a =2y <z <29 <+ <z, =b}. By the definition of the upper sum and lower sum, we
find that for each n € N,

n

D fm)Ar < A(R) < ) f(M;) Az

If the limits of the both sides exist and are identical as Az approaches 0 (which is the same
as n approaches infinity), by the Squeeze Theorem we can conclude that A(R) is the same

as the limit.

Example 4.2. Let f(z) = 22, and R be the region enclosed by the graph of y = f(z), the
X-axis, and the straight lines x = a and x = b, where we assume that 0 < a < b. Then the

lower sum is obtained by the “left end-point rule” approximation of A(R)

n

Z (a—i— (i—l)(b—a))Qb—a

i=1
and the upper sum is obtained by the “right end-point rule” approximation

i(a_i_i(b—a))?b—a.

By Theorem 4.1,
Z <a+ é(b;a))Qb—a _ Zn: [a2 N 2a(b — a)i N a®(b— a)QiQ} b—a

n n? n

a(b—a)*n(n+1) N a*(b—a)®n(n+1)(2n +1)
n? n3 6

=@ a)+ap-ap (14 )+ T (1 Dy (50 1),




Letting n — oo, we find that

. - l(b—a) 2b—a_ 2 2 o
7}1_1&2(@—1— - ) - =a*(b—a)+alb—a)*+ 3 =—3

Similarly,

n n

= 71— —a —a 2(b — < i(b—a —a 2(b—
;(aJr( 1)5) )>2bn :a(bn a)+i:1<a+ (bn )>2b b*(b — a)

a(b—a)*n(n+1) N a*(b—a)*n(n+1)2n+1) N (a*> — b*)(b— a)

— 42 .
=a(b—a)+ n?2 n3 6 n ’
thus . s
R (z’—l)(b—a)>2b—a_b —a
nh_I)lgO;(a—l— n n 3
3_ 3
Therefore, A(R) = b 3 .

Remark 4.3. Let R; be the region enclosed by f(x) = z?, the z-axis and z = a, the

R, be the region enclosed by f(x) = 22, the z-axis and x = b, then intuitively A(R) =

3 3
A(Ry) — A(R;) and this is true since A(R;) = % and A(Rq) = %

If f is not continuous, then f might not attain its extrema on the interval [z; 1, ;].

In this case, it might be impossible to form the upper sum or the lower sum for a given

partition. On the other hand, the left end-point rule > f(z;—1)Az and the right end-point
i=1
rule Y] f(x;)Ax of approximating the area are always possible. We can even consider the
i=1
“mid-point rule” approximation given by

D () A
i=1

and consider the limit of the expression above as n approaches infinity.

4.2 Riemann Sums and Definite Integrals

In general, in order to find an approximation of A(R), the interval [a,b] does not have to
be divided into sub-intervals with equal length. Assume that [a,b] are divided into n sub-

intervals and the end-points of those sub-intervals are ordered as a = xg < 11 < T9 < --- <



x, = b, here the collection of end-points P = {xg, x1, - ,z,} is called a partition of [a,b].

Then the “left end-point rule” approximation for the partition P is given by

and the limit process as n — o0 in the discussion above is replaced by the limit process as
the norm of partition P, denoted by |P| and defined by |P| = max {z; — ;-1 |1 < i < n},
approaches 0. Before discussing what the limits above mean, let us look at the following
examples.

Example 4.4. Consider the region bounded by the graph of f(z) = 4/ and the x-axis for

2
0<z<l. Letxi:%andP:{x0:O<x1<-~<xn:1}. We note that
n

2 2 . 2 . 1
HPH:maX{iZ (12 D ’1<i<n}:max{2221’1<ign}: n2
n n n
thus |P| — 0 is equivalent to that n — oo.
Using the right end-point rule (which is the same as the upper sum),
- L i2i—1 1 ¢
S(P) = )NTi —Tim1) = ) — = — ) (2" —i
(P)= X e —rn) = Y0 50 = 5 e =)
1 [n(n +1)(2n+1) nn+ 1)]
~nd 3 2
—1<1+1><2+1> 1<1+1)-
3 n n 2n n/’
thus 1 1 1 1 1 2
57~ (54 )2 - 0] -2
HPIH%O (P) noh 3 +n +n 2n +n 3
Using the left end-point rule (which is the same as the lower sum),
$ Ni—12i—1 1 a0 ..
; Ti— 1 Il',l) = ZZ; 0 2 = E;(Q’l — 31+ 1)
1

_ [ n(n + 1)3(2n +1) 3:n(n2+ 1) n n}

3
1 1 3 1 1
(+2)+2) -5 (14 )+
n n m n?

n
1
3



thus
1 1 1 3 1 1 2
i, 7= () o+ 1) - 50+ 1) 2] -3
IIPIHIEOS() o 13 +n +n 2n +n +n2 3
Therefore, the area of the region of interest is ;

Example 4.5. In this example we use a different approach to compute A(R) in Example 4.2.

Assume that 0 < a < b. Let r = (2)%, ri=ar',and P={a=1z9 <1y < - <z, =b}.

Claim: If ¢ > 1, then cn=1asn approaches infinity.

Proof of the claim: If ¢ > 1, then en > 1. Let Yn = ¢n — 1. Then ¢ = (1+y,)" =14 ny,

which implies that 0 < gy, < el for all n € N. By the Squeeze Theorem, e — 1 as

n — oo. ! [
Note that the claim above implies that » — 1 as n — o. Moreover, z; — x;_1 =

a(r' —r =Y = ar*~'(r — 1); thus
O<a(r—1) =2 —20 <||P| =20 —2n1=ar" ' (r—1) <b(r —1).

Therefore, |P| — 0 is equivalent to that n — co.

Using the “left end-point rule” approximation of the area,

o 2 N1 2, 2(i-1), i-1(,. _ 1) — 3 1 _ 3(i—1)
AR) 7}1_1)210;951_1(@ Ti_1) T}l_r}olOZar ar'” (r—1)=a’ lim (r 1);7*

n—0o0
=1
b? 1
3n —_ 3 3
3 ot —1 3 1. a3 b> —a
=¢q’ lim(r—1 =a’ li =
n—»oo( )7‘3—]. n—>oo’l“2+’l”+1 3

Similarly, when applying the “right end-point rule” approximation, we obtain that

n no I I T X B
lim fo(m, — ;1) = a® lim (r — 1) Z r3 = a® lim (r — 1) =
n—00 4 1 n—o0 — n—0o0 T’3 — 1 3

1= 1=

This also gives the area of the region R.

To compute an approximated value of A(R), there is no reason for evaluating the function
at the left end-points or the right end-points like what we have discussed above. For example,

we can also consider the “mid-point rule”

m(P) = 2 f(%)(% —Ti_1)



to approximate the value of A(R), and compute the limit of the sum above as ||P|| approaches
0 in order to obtain A(R). In fact, we should be able to consider any point ¢; € [z;_1, x;]

and consider the limit of the sum

n
H}jl”fgo 2 fle)(zi — zi-1)
if the region R does have area.

Now let us forget about the concept of the area. For a general function f : [a,b] — R,
we can also consider the limit above as |P| approaches 0, if the limit exists. The discussion

above motivates the following definitions.

Detfinition 4.6: Partition of Intervals and Riemann Sums

A finite set P = {x¢,x1, -+ ,x,} is said to be a partition of the closed interval [a, b] if

a=1x9 <z <--- <z, =>b Such a partition P is usually denoted by {a = z¢ < ; <
. < @, = b}. The norm of P, denoted by |P], is the number max {z; — z;—1 |1 <

i < n}; that is,
[Pl = max {z; — 501 |1 < i < n}.

A partition P = {a =2g <1 < -+ < x, = b} is called regular if z; — z;_1 = |P| for
all 1 <i<n.
Let f : [a,b] — R be a function. A Riemann sum of f for the partition P = {a =

rg < T < -+ <x, ="0b} of [a,b] is a sum which takes the form
D fle)(w —zia),
i=1

where the set = = {cg, 1, ,cn_1} satisfies that x; | < ¢; < x; for each 1 <7 < n.

Definition 4.7: Riemann Integrals - % & # »

Let f : [a,b] — R be a function. f is said to be Riemann integrable on [a, b] if there

exists a real number A such that for every € > 0, there exists 4 > 0 such that if P
is partition of [a, b] satisfying |P| < J, then any Riemann sums for the partition P
belongs to the interval (A — e, A+ ¢). Such a number A (is unique and) is called the

Riemann integral of f on [a, b] and is denoted by f(z)dx.
[a,b]

Remark 4.8. For conventional reason, the Riemann integral of f over the interval with left

b
end-point a and right-end point b is written as J f(z)dz, and is called the definite integral



of f from a to b. The function f sometimes is called the integrand of the integral.
We also note that here in the representation of the integral, z is a dummy variable; that

is, we can use any symbol to denote the independent variable; thus

Lbf(x) dr = Lbf(t) dt = Lb f(u) du

and etc.
The following example shows that no all functions are Riemann integrable.

Example 4.9. Consider the Dirichlet function

0 if z is rational ,
flz) =

1 if x is irrational ,

on the interval [1,2]. By partitioning [1,2] into n sub-intervals with equal length, the
Riemann sum given by the right end-point rule is always zero since the right end-point of
each sub-interval is rational. On the other hand, by partitioning [1,2] into n sub-intervals
using geometric sequence 1, 7,72, -+ ,r"~1 2 where r = 2w, by the fact that ¢ ¢ Q for each

1 <i < n—1 the Riemann sum of f for this partition given by the right end-point rule is

n n—1
Zf(rz)(rz . Ti—l) _ 2(,,,@ . Ti—l) — b0 + P2yl 4ot 1l pn—2
=1 =1
2
=l =21
r

which approaches 1 as r approaches 1. Therefore, f is not integrable on [1,2] since there
are two possible limits of Riemann sums which means that the Riemann sums cannot con-

centrate around any firxed real number.

Theorem 4.10

If f:]a,b] - R is continuous, then f is Riemann integrable on [a, b].

b

Example 4.11. In this example we compute f x%dxr when ¢ # —1 is a rational number
a

and 0 < a < b. Since f(z) = 27 is continuous on [a, b], by Theorem 4.10 to find the integral
it suffices to find the limit of the Riemann sum given by the left end-point rule as |P|

approaches 0.



3=

We follow the idea in Example 4.5. Let r = <é) and z; = ar’, as well as the partition
a

P={a=xy <z <+ <xy=>}) Then the Riemann sum of f for the partition P given

by left end-point rule is

” , : 4 LI n(g+1) _ q
o i—1\q i i—1\ _ q+1l(,. (i—1)(¢g+1) _ ,q+1 . r
L(P)—;(ar Yi(ar' —ar'™) =a’ (r 1);7“ =a’ (r 1>—r‘1+1—1
r—1
— g+1 _ q+1
T et _q (b a®ty.
. d "
Since —| 79"t = (¢ + 1), we have
d?” r=1
ritt -1 d
lim — = — g+l 1:
rllr% r—1 dT’r:lT q+ ’

thus by the fact that r — 1 as n — o (or |P| — 0), we find that

patl _ gatl
lim L(P)= lim L(P)= ——
[P0 ) [P0 ) q+1
b patl _ gatl
Therefore, J x?dx = Y if ¢ # 1 is a rational number and 0 < a < b.
a q

Example 4.12. Since the sine function is continuous on any closed interval [a, b, to find
b

sinx dr we can partition [a,b] into sub-intervals with equal length, use the right end-
pgint rule to find an approximated value of the integral, and finally find the integral by

passing the number of sub-intervals to the limit.

Let Az =

b— . . . . . .
¢ and x; = a + 1Ax. The right end-point rule gives the approximation

Z sinz; Az = Z sin(a + iAz)Ar = Az 2 sin(a + iAx)

=1 =1 =1

of the integral.

Using the sum and difference formula, we find that

cos [a+ (i — %)Aw] —cos [a+ (i+ %)Am} = 2sin(a + 1Ax) sin % ;



thus if sin % # 0,

2, sin(a 4+ iAz) = @ [(COS (a + éAa:) — COS (a + gA@) + (cos (a + gAx)

)

— CoS (a+gAx)> +---+cosla+ (n— %)Am}

— CoS [a—l— (n+ %)Azﬂ

which, by the fact that a + (n + %Am) =b+ %AI, implies that

n Ar
Z sin x; Az = —2 [COS (a + %Ax) — COS (b + %Aaz)] .

in Az
i=1 2

S1n

By the fact that lim S

z—0 X

= 1 and the continuity of the cosine function, we conclude that

—
a n—00 4

b n
f sinz dx = lim Zsinsza: =cosa — cosb.
=1

Theorem 4.13

Let f : [a,b] — R be a non-negative and continuous function. The area of the region

enclosed by the graph of f, the z-axis, and the vertical lines x = a and z = b is

Lb f(z)dz.

Example 4.14. In this example we use the integral notation to denote the areas of some

common geometric figures (without really doing computations):

2 1 V3
l.f Vi —2?2dr =27 ; Z.J \/4—x2dx:2§+\/§; S.J V4 — 22dz =7 + /3.
-2 -1 -1

4.2.1 Properties of Definite Integrals

Definition 4.15

1. If f is defined at x = a, then f f(z)dx =0.

a b
2. If f is integrable on [a, b], then L flz)dx = —J f(x)de = —J[ ’ f(x)dx.

a




Remark 4.16. By the definition above, if f is Riemann integrable on [a, b], J f(x)dx is
b
the limit of the sum

n n

Z flzi)(zi —xi-) and Z f(@i1) (@ — 25-1)

i=1 =1
asmax{]xi—xi,ﬂ‘léién}—>O, where 19 = b > 21 > 29 > -+ > T, = a.

Theorem 4.17

If f is Riemann integrable on the three closed intervals determined by a, b and ¢, then

Lbf(x)dx:ff(x)dx+ff(x)dm.

Theorem 4.18

Let f,g : [a,b] — R be Riemann integrable on [a,b] and k be a constant. Then the
function kf + g are Riemann integrable on [a, b], and

b

Jb(kf + g)(2) d = k:Lbf(x) da ij o(z) dz

a a

Theorem 4.19

b
If f is non-negative and Riemann integrable on [a, b, then f f(z)dx = 0.

Corollary 4.20

If f, g are Riemann integrable on [a,b] and f(z) < g(x) for all a < x < b, then

J:f(x) dr < J:gm i

Theorem 4.21

If f is Riemann integrable on [a,b], then |f| is Riemann integrable on [a, b] and

Lbf(x) dz| < Lb\f(x)\dx.




Theorem 4.22: ¥ %3 7
Let f : [a,b] — R be a function. If f is Riemann integrable on [a, b], then f is bounded
on [a, b]; that is, there exists M > 0 such that

|f(x)| <M whenever z € [a,b].

Proof. Let f be Riemann integrable on [a,b]. Then there exists A € R and § > 0 such
that if P is a partition of [a,b] satisfying |P| < J, then any Riemann sum of f for P

belongs to (A — 1, A+ 1). Choose n € N so that b-a

< 0. Then the regular partition
={a=x9<x1 <+ <x, =b}, where x; = a + b_Taz', satisfies |P| < 4.

Suppose the contrary that f is not bounded. Then there exists z* € [a, b] such that
oo A+ | X
‘f@ )‘ S ‘1“; ‘f(xz)‘

Suppose that z* € [z3_1,24]. By the fact that 3 f(z:)(zi — 1) + f(2*) (2 — 24-1) Is a
ik
Riemann sum of f for P, we have
A—-1< 2 f(il)z)(l’Z — $i—1) + f(l'*)(l‘k — l’k_l) <A+1.

i=
i#k

for all 1 < i < n, the inequality above shows that

Since x; — x;_1 =

AL S pe) < gy < MAED if (&)

i#k z#k

and the triangle inequality further implies that

[ |A|+ +2\fxz} )<%+Z{f@2)|

Therefore, we conclude that

] < A e < P 4 S ),

itk

a contradiction. ]



Example 4.23. Let f:[0,1] — R be defined by

f(x):{ %fxe(O,l],
0 ifx=0.

Then f has only one discontinuity in [0, 1] but f is not Riemann integrable on [0, 1] since f

ISER

is not bounded.

4.3 The Fundamental Theorem of Calculus

In this section, we develop a theory which shows a systematic way of finding integrals if the
integrand is a continuous function.

Definition 4.24

A function F is an anti-derivative of f on an interval I if F'(x) = f(x) for all z in 1.

Theorem 4.25

If F is an anti-derivative of f on an interval I, then G is an anti-derivative of f on
the interval I if and only if G is of the form G(x) = F(z) + C for all z in I, where C
is a constant. (E HcAp e S Bcp £ - ¥ #i)

Proof. Tt suffices to show the “=" (only if) direction. Suppose that F' = G’ = f on I.
Then the function h = F' — G satisfies h'(x) = 0 for all z € I. By the mean value theorem,

for any a,b € I with a # b, there exists ¢ in between a and b such that
h(b) — h(a) = h'(c)(b—a).

Since h'(z) =0 for all z € I, h(a) = h(b) for all a,b € I; thus h is a constant function. [

Theorem 4.26: Mean Value Theorem for Integrals - # » }2ig 32

Let f : [a,b] — R be a continuous function. Then there exists ¢ € [a, b] such that

j f(2)dz = f(S)(b—a).

Proof. By the Extreme Value Theorem, f has a maximum and a minimum on [a,b]. Let

M = f(x1) and m = f(x3), where x1, x5 € [a,b], denote the maximum and minimum of f



n [a, b, respectively. Then m < f(z) < M for all z € [a,b]; thus Corollary 4.20 implies
that

(b—a)—medxéfbf(x)dxéLbde—M(b—a).

Therefore, the number J f(z)dx € [m, M]. By the Intermidiate Value Theorem, there

exists ¢ in between x; and x5 such that f(c) J f(z ]

Theorem 4.27: Fundamental Theorem of Calculus - #&#f » 7 * 32

Let f : [a,b] — R be a continuous function, and F' be an anti-derivative of f on [a, b].
Then

b
f f(z)dez = F(b) — F(a).

Moreover, if G(x f f(t)dt for x € |a,b], then G is an anti-derivative of f.
We note that for = € [a, b|, f is continuous on [a, x]; thus f is Riemann integrable on
[a, ] which shows that G(x J f(t) dt is well-defined.

Proof of the Fundamental Theorem of Calculus. Note that for h # 0 such that x+h € [a, b],

we have
G(m+h}2 f fe dt—Jf dt J £0

By the Mean Value Theorem for Integrals, there exists ¢ = ¢(h) in between = and x + h such

that ijﬂh f(t)dt = f(c). Since f is continuous on [a, b], liin fle) = li_r)n f(e) = f(z); thus

lim G =G 1 J f(t)dt = lim f(c) = f(z)

h—0 h h—0 h

which shows that G is an anti-derivative of f on [a, b].
By Theorem 4.25, G(z) = F(x) + C for all € [a,b]. By the fact that G(a) = 0,
C = —F(a); thus

| r)de =60 = £ ) - Fla)

which concludes the theorem. OJ



Example 4.28. Since an anti-derivative of the function y = 2%, where ¢ # —1 is a rational

number, is y = , we find that
g+1
b an a1 patl — gqatl
f zldr = — =
a q—l—lm:b q+1x:a q—l—l

Example 4.29. Since an anti-derivative of the sine function is negative of cosine, we find
that ,
J sinz dx = (— cos)(b) — (—cos)(b) = cosb — cosa.

a

Jz
Example 4.30. Find ddf sin'® ¢ dt for x > 0.
T Jo

Let F(z) = J sin'® ¢ dt. Then by the chain rule,
0

d , d 1,
%F(\/@:F (ﬁ)@ﬁ:mF (V).

By the Fundamental Theorem of Calculus, F’(z) = sin'® z; thus

d (V" o d sin'® \/x
£ in'®¢dt =~ p(Va) = = VT
dx ), S dx (V) 2\/x

Theorem 4.31

Let f : [a,b] — R be continuous and f is differentiable on (a,b). If f’ is Riemann

integrable on [a, b], then

f f(@)dz = f(b) — f(a).

b
Proof. Let € > 0 be given, and define A = f f'(x) dz. By the definition of the integrability

there exists § > 0 such that if P = {a = a?o <x; < -+ < x, = b} is a partition of [a, D]
satisfying |P|| < d, then any Riemann sums of f for P belongs to the interval (A—e, A+e¢).

Let P ={a =29 <z <- - <z, = b} be a partition of [a, b] satisfying that |P| < 9.
Then by the mean value theorem, for each 1 < 7 < n there exists r;_1 < ¢ < x; such that

f(z;) — f(ziz1) = f'(¢;)(x; — x;—1). Since



is a Riemann sum of f for P, we must have

i=1 i=1

8
<
|
~
—
8
<
Il

f() = fla),

we conclude that

b
f(b) — f(a) —J f’(qr)d:v‘ <e.
Since € > 0 is chosen arbitrarily, we find that fb fl(x)dz = f(b) — f(a). O

Remark 4.32. If f’ is continuous on [a,b|, then the theorem above is simply a direct
consequence of the Fundamental Theorem of Calculus. The theorem above can be viewed

as a generalization of the Fundamental Theorem of Calculus.

Theorem 4.27 and 4.31 can be combined as follows:

Theorem 4.33

Let f : [a,b] - R be a Riemann integrable function and F' be an anti-derivative of f
on [a,b]. Then

f f(z)dx = F(b) — F(a).

Moreover, if in addition f is continuous on [a,b], then G(z) = J f(t)dt is differen-

tiable on [a, b] and
G'(z) = f(x) for all z € [a, b] .

Definition 4.34

An anti-derivative of f, if exists, is denoted by f f(z) dx, and sometimes is also called

an indefinite integral of f.

e Basic Rules of Integration:



Differentiation Formula Anti-derivative Formula
d
o) f 0dz = C
dx
d ro__ r—1 q — gqu—l ] _
A=Y de:c—q+1+C’ itqg#—1
disinm:cosx fcosxdx:sinx+0
T
%cosx:—sinx Jsinxd:c:—cosijC
ditanx:se(?x fsechda::tanx—i—C
T
%Secx:secxtanx fsecxtanxda::secx—i-C’
d
o [kf(z) + g(z)] = kf'(z) + g'(x) f [kf'(x) + g/ ()] do = kf(x) + g(x) + C

4.4 Integration by Substitution - % #c%

Suppose that g : [a,b] — R is differentiable, and f : range(g) — R is differentiable. Then
the chain rule implies that f o g is an anti-derivative of (f’ o g)g’; thus provided that

1. (fog)’is Riemann integrable on [a, ],
2. f’is Riemann integrable on the range of g,

then Theorem 4.31 implies that
f (g(@))g' (@) do = f (fog) (@) dr=(fog)() — (f o 9)(a)
g(b)
= £(9() — £ (g(a)) = f L (44.1)

Replacing f’ by f in the identity above shows the following

Theorem 4.35

If the function u = g(z) has a continuous derivative on the closed interval [a, b], and

f is continuous on the range of g, then

b 9(b)
f fl9(@))g"(x)dx = | f(u)du.

a g(a)




The anti-derivative version of Theorem 4.35 is stated as follows.

Theorem 4.36

Let g be a function with range I and f be a continuous function on I. If g is

differentiable on its domain and F' is an anti-derivative of f on I, then

f £ (9(2)g" () da = F(g(x)) +C

Letting u = g(z) gives du = ¢'(x) dz and

ff(u)du:F(u)—i—C.

Example 4.37. Find f(mQ +1)%(2x) dx.

Let u = 22 + 1. Then du = 2zdx; thus
2 2 2 L3 L s 3
(x4 1)°(2z)de = | v du = g +C = g(:v +1)°+C.
Example 4.38. Find fcos(f)m) dx.
Let v = 5z. Then du = bdx; thus
1 1. L.
Jcos(5a:) de = R Jcosudu = o sinu +C = R sin(bz) + C'.
Example 4.39. Find f sec? z(tanx + 3) dz.
Let u = tanz. Then du = sec?® zdx; thus
2 L, Lo
sec”z(tanz + 3)dr = | (u+3)du = U +3u+C = étan r+3tanz + C'.
On the other hand, let v = tanz + 3. Then dv = sec? z dx; thus
2 Ly 1 2
sec”z(tanz +3)dr = | vdv = U+ C= §(tanx +3)*+C
1, 9
= §tan x+3tanaz‘+§+C.

We note that even though the right-hand side of the two indefinite integrals look different,

. . 9 .
they are in fact the same since C' could be any constant, and 5 + C is also any constant.



2zdz
V2241

Method 1: Let 2 = 22 + 1. Then dz = 2zdz; thus

Example 4.40. Find J

win
win

2zdz _f dx

3 2
T = — 1): )
] +C 2(z—|— )3 4+ C

3
= x_% de = —x
2

7

Method 2: Let y = v/22 + 1. Then y* = 22 + 1; thus 3y?dy = 2zdz. Therefore,

2zdz 3y2dy f 3, 3., 2
= = |3ydy=-y"+C=-("+1)s +C.
. 18 tan? x sec® x
Example 4.41. Find JMHB@Q x
Let u = 2 + tan® z. Then du = 3tan® x sec® dx; thus
18 tan® x sec? x 6du 6
= | =—==6luv?du=-6u'4+C=———
J(2+tan3x)2 v u? fu " v 2+tan3x+

Sometimes an definite integral can be evaluated even though the anti-derivative of the
integrand cannot be found. In such kind of cases, we have to look for special structures so
that we can simplify the integrals. There is no general rule for this, and we have to do this

case by case.

2xsinx

Example 4.42. Find L 37 cos(22) x

Let the integral be I. By the substitution ©u = 7 — x, we find that

I:JD2(7T—u)sin(7r—u)<_1)du_J“Q(W—u)sinudu

= 3+ cos(2(m—u)) o 3 +cos2u

:J” 27 sinu du—fﬂ 2u sinu du:27rfﬂ sin u du—1.
0 3+ cos2u 0 3+ cos2u o 3+ cos2u

thus

[—
|

J’T sin u J’r d(cosu) Wfl dv
=T _du:_ﬂ' = ——
0 3+ cos2u 0 3+2cos?u—1 2 ), v?+1

T (Y dv T [T secy 7 (1 2
=z ST Y g T gy =T
2 ) v2+1 2 tan®y + 1 2 4

i
4




4.5 Exercise

Problem 4.1. Let f : [a,b] — R be a function, and f is Riemann integrable on [a, b]. Show
that f must be bounded on [a,b]; that is, there exists a real number M > 0 such that

|f(x)] < M for all a < 2 < b.

b
Problem 4.2. Let a < b be real numbers. Compute f cos x dzx by the following steps.

a

(a) Partition [a,b] into n sub-intervals with equal length. Write down the Riemann sum

using the right end-point rule.

(b) Prove that
sin [a + (n + %)d} — sin (a + g)

Z cos(a + id) =

d
=1 2sin —
i sm2

Hint: Use the sum and difference formula sin(d + ¢) — sin(d — ¢) = 2sin 4 cos .

(4.5.1)

(c¢) Use (4.5.1) to simplify the Riemann sum in (a), and find the limit of the Riemann

sum as n approaches infinity. Show that

b
J coszdr =sinb—sina.
a

b

Problem 4.3. Let a < b be real numbers. Compute J 2N dx, where N is a non-negative

integer, by the following steps.

(a) Let P ={a=x9 <x; <--- <z, = b} be a regular partition of [a,b]. Show that the

Riemann sum using the right end-point rule is given by

N n
1
= N _N—k(p _ \k+1 &

[”_;)[CM (b—a) <nk+1;Z )},
oo
where C}' = A

(b) Show that
= 1 1 n n
k= k+1 k+1 N k-1 k1 \O -
;z =51ty —]Hl[ck_l;z ot C ZZ;%l—(n—l—l)] (4.5.2)

Hint: Expand (j + 1)* for j = 0,1,2,--- ,n by the binomial expansion formula, and

sum over j to obtain the equality above.



(c) Use (4.5.2) to show that lim

ko
i Z

(d) Use the limit in (c) to find the limit of the Riemann sum in (a) by passing to the limit

for each k£ € N.

as n approaches infinity. Simplify the result to show that

b N+1 _  N+1
f:r;Ndac:b—a.
" N+1

Hint: (c¢) By induction!
Problem 4.4. In class we have used the limit of Riemann sums to compute the integral

f xcosx dx. Find this integral by completing what we did in class.
0

Problem 4.5. Determine the following limits by identifying the limits as limits of certain

Riemann sums so that the limits are the same as certain integrals.

VI+V24 3+t yn

1. lim

3
n—0o0 n2
1 1
2. hm—( —|—---—|——>.
7\ 7
3 hm[ ! + L + ! + +¥]
"nswo lyvn2+2n m2+4n /nZ+6n Vn2 +2n2l°

Problem 4.6. Let f : [a,b] — R be Riemann integrable on [a,b], and m < f(z) < M for
all z € [a,b]. Show that

m(b— a) J f(z M —a).
Problem 4.7. Let f:[0,1] — R be a function satisfying that

Under the fact that f is Riemann integrable on [0, 1], show that

‘Ef(:ﬁ)d:v—%zn;f(;)

Problem 4.8. Suppose that f, g : [a,b] — R are Riemann integrable on [a,b]. Under the

fact that fg is Riemann integrable on [a, b], show that

| ' Falgta)da < ( | b\f(x)fdx)%(Jj\g(x)m)%



Problem 4.9. Recall that in Problem 2.5 we have “shown” that there exists a number e > 1
such that

d 1
—log, x = — Vo >0.
dz x

b
In this example you need to compute f log x dz by the following steps.
1

(a) Partition [1,b] into n sub-intervals by z; = r, where 1 < i < n and 7 = ba. Show

that the Riemann sum given by the right end-point rule is

(r—1) logerz ir't. (4.5.3)

i=1
(b) Use (4.5.3) and the formula in Problem 4 of Exercise 4 to simplify the Riemann sum
given above and show that the Riemann sum is

o=t
n(r—1)

nbr —nb—>b+1
n(r—1)

log,b = [b - ] log,b.

(c) Pass the Riemann sum above to the limit as n — oo to show that

b
J log.xdvx =blog,b—b+1.

1
(d) Verify that f(z) = zlog, x — = is an anti-derivative of y = log, .

1

——dx.
241 v

V3
Problem 4.10. Use Problem 2.14 to find the integral j
1

Problem 4.11. Find an anti-derivative of the function y = zsinz (using Riemann sums).

Hint: See Problem 2.4 for reference.



Chapter 5

Logarithmic, Exponential, and other
Transcendental Functions

5.1 Inverse Functions

Definition 5.1

A function g is the inverse function of the function f if
flg(x)) =x for all x in the domain of g (5.1.1)

and
g(f(z)) =« for all z in the domain of f. (5.1.2)

The inverse function of f is usually denoted by 1.

Some important observations about inverse functions:
1. If g is the inverse function of f, then f is the inverse function of g.
2. Note that (5.1.1) implies that

(a) the domain of g is contained in the range of f,
(b) the domain of f contains the range of g,

(c) g is one-to-one since if g(z1) = g(x2), then x1 = f(g(z1)) = f(g(x2)) = x2
and (5.1.2) implies that
(a) the domain of f is contained in the range of g,

95



(b) the domain of g contains the range of f,
(c) f is one-to-one since if f(z1) = f(x2), then z1 = g(f(x1)) = g(f(z2)) = 2.

According to the statements above, the domain of f~! is the range of f, and the range
of f~!is the domain of f.

3. A function need not have an inverse function, but when it does, the inverse function

is unique: Suppose that g and h are inverse function of f, then

(a) the domain of g is identical to the domain of h (since they are both the range of

);
(b) for each x in the range of f,
flg(x)) = = = f(h(z))
thus by the fact that f is one-to-one, g(x) = h(x) for all z in the range of f.
Therefore, g and h are identical functions.

Example 5.2. The functions

flz) =22 -1 and g(x) =

are inverse functions of each other since

flo =2[§ ] — 1=t 1=

and

g(f(a) = {| T = Vs =

A function f has an inverse function if and only if f is one-to-one.

Proof. 1t suffices to show the “<” direction. Suppose that f is one-to-one. Then for each

x in the range of f, there exists only a unique y in the domain of f such that f(y) = x.

Denote the map x — y by g; that is,

y=g(x) if f(y)=x and z € Range(f).



Then f(g(z)) = « for all z in the range of f. Since the domain of g is the range of f, we
find that
f(g(z)) =« for all  in the domain of g.

On the other hand, by the definition of g we must also have
g(f(x) ==z for all z in the domain of f;

thus f has an inverse function. [

Theorem 5.4
Let f be a function with inverse f~!. The graph of f contains the point (a,b) if and

only if the graph of f~! contains the point (b,a).

Proof. Let (a,b) be on the graph of f. Then b = f(a) which implies that f~!(b) =
f~Y(f(a)) = a. Therefore, (b,a) is on the graph of f~1. O

Remark 5.5. Theorem 5.4 implies that the graph of f and the graph of f~! is symmetric
above the straight line y = x.

Theorem 5.6

Let f be a function defined on an interval I and have an inverse function. Then

1. if f is continuous on I, then f~! is continuous on its domain;
2. if f is strictly increasing on I, then f~! is strictly increasing on the range of f;
3. if f is strictly decreasing on I, then f~! is strictly decreasing on the range of f;

4. if f is differentiable on an interval containing ¢ and f’(c) # 0, then f~! is
differentiable at f(c).

Proof. We only show 2 (and the proof of 3 is similar).

To show that f~! is strictly increasing on the range of f, we need to show that
f (1) < f(xy) if 21 < 25 are in the range of f.

Nevertheless, if f is increasing on [ and x; < x5 are in the range of f, there exists y; =
f7 Y1) and yo = f~'(x9) in I such that f(y;) = z; and f(y2) = xo. Since 11 < Ta, Y1 = Yo;
thus the trichotomy law implies that y; < ys. O



Remark 5.7. If [ is not an interval, then even if f : I — R is one-to-one and continuous,
g) U (g,ﬂ') and f(z) = tanz. Then

clearly f : I — R is one-to-one, onto and continuous; however, the inverse function is not

f~! might be discontinuous. For example, let [ = [O,

continuous at 0: you can check this by looking at the graph of f~!.

(0.7)

Figure 5.1: The graph of f~!

From the graph of f~!, we find that lim+ f~Hx) = 0 while lim f~!(z) = 7; thus f is not
z—0 z—0~
continuous at 0.

Theorem 5.8: Inverse Function Differentiation

Let f be a function that is differentiable on an interval I. If f has an inverse function

g, then g is differentiable at any z for which f’(g(x)) # 0. Moreover,

g'(x) = ——  forall @ with f'(g(z)) # 0.

Proof. Suppose that f is differentiable at g(c) € I and f’(g(c)) # 0. We show that g is
differentiable at c. If k& # 0 is small enough, g(c+ k) — g(c) = h. Then c+ k = f(g(c) + h).

Moreover, h — 0 as k — 0 since ¢ is continuous (by Theorem 5.6). Therefore,

gle+ k) —g(c) _ h B h
k flg(e) +h) = f(g(c))  flg(c) +h) — f(g(c))
1 1
which approaches as k approaches zero. Therefore, ¢'(c) = . O
pproaches Frorgy 5 K app 99 = e
5.2 The Function y =Inx
b patl _ gatl
Recall Example 4.11 that f xidx = B if ¢ # —1 is a rational number and

b
0 < a < b. What happened to the case f 27 1dz? In the following, we define a new

a



function which can be used to compute this integral.

Definition 5.9
The function In : (0,0) — R is defined by

lnx:f %dt Vo >0.

1

T
We emphasize again that we cannot write Inz = J — dx since the upper limit in the
1 X

integral is some arbitrary but fixed number (denoted by x) and the variable of the integrand

should be really arbitrary.

Remark 5.10. For historical reason, when the variable is clear we should ignore the paren-
theses and write In z instead of In(x). On the other hand, if the variable is product of several

variables such as xy, for the sake of clarity we should still write In(zy) instead of In zy.

5.2.1 Properties of y =Inx
e Differentiability

. . 1. .
Since the function y = — is continuous on (0,0), the Fundamental Theorem of Calculus
T

implies the following

ilnx: 1 for all z > 0.
dzx T

In particular, the function y = Inz is continuous on (0, c0).

Corollary 5.12

The function In : (0,00) — R is strictly increasing on (0, 90), and the graph of y = Inx

is concave downward on (0, o).

Example 5.13. In this example we prove that

2

x—Egln(l—l—m)éx Ve >0. (5.2.1)

2
Let f(z) =In(1+x) —z + % and ¢g(z) = In(1 + 2) — z. Then for z > 0,

RO o R S T
f(x)—1+x 1+m—1+$>0, g'(z) = 1= <0.




The two identities above shows that f is strictly increasing on [0,00) and g is strictly

decreasing on [0, o). Therefore,
f(z)> f(0)=0 and g(z) <g(0)=0 Ve >0.
These inequalities lead to (5.2.1).

e The range

Next we show that lim Inz = o0 and lim Inax = —oo. To see this, we note that
r—0 T—>—0

2m 2 4 8 on
1n@@==[ 1dt:J‘1dt+J‘1dr+J 1ﬁ+~-~+f %ﬁ
1 ’ 1 . 2 4 ' 4 on—1

=12 i 2 i=1 i=1
and
9—n 1 27n+1 2—n+2 1
1n(2n):J 1dt:_f 1dt:_[f 1dt+f 1dt_|_...+f ldt}
Lt gon b gon 1 gons1 t Lt
n 2171' _ 271' n 1 n
:_Zf *ﬁ zf _Z 91— :_ZQZ‘?
=1 =1 =1
thus we have lim Inx = c0 and lim Inx = —oo. By the continuity of In and the Interme-

r—00 r——00

diate Value Theorem, for each b € R there exists one a € (0,R) such that b = Ina. By the

strict monotonicity In : (0,00) — R is one-to-one and onto.

Remark 5.14. In particular, there exists one unique number e such that Ine = 1. We note

that ) . )
1 1 1 0.5 0.5 5
m2=| Zdat=| = a2+ 2=2<1
n Ltdt f tdt+£.5tdt 5085

wac [ ([ e [ [ [ s

0.25 025+025+025+44J%47
~125 15  1.75 2
Ml

—1+1+1+1+1+1———>1
5 6 7 8 5 6 840 '

Therefore, 2 < e < 3. In fact, e ~ 2.718281828459.

and




Example 5.15. In this example we show that there is no slant/horizontal asymptote of

the graph of y = Inx. Recall that if the graph of y = Inx has a slant/horizontal asymptote
y = mx + k, then m = lim B% ond k= lim (Inxz — max). We first show that lim Iz _y,

r—00 I xr—00 r—00 T

Let € > 0. Choose M = max{%, 1}. Then if x > M, for all 1 < ¢ < x we have

1 11 171 1 -1 11
0<ﬂ:—f —dt:—” —dt+f —dt]<c +—J Zdt.
x z )t zl) t t x x t

C c

By the mean value theorem for integrals (Theorem 4.26), there exists ¢ < d < x such that

f %dt:‘,E;C;thusifx>]\/_/and1<c<a:7

Inz 1Jx1 c—1 z—¢c c¢—1 1 ec
= dt < <

0<—=-— <
x x )t x +d$

where the last inequality is concluded by choosing 1 < ¢ < z and ¢ < 2. Therefore, for every
€ > 0 there exists M > 0 such that

Inx
——0‘<6 whenever = > M.
x
This is exactly the definition of lim 2T . However, since the range of In is R, lim Inz =
r—00 T T—00

oo which implies that
lim(lnz —0-x) D.N.E.

z—0

Therefore, there is no slant/horizontal asymptote of the graph of y = Inz.

e Logarithmic Laws

The most important property of the function y = Inxz is the relation among Ina, Inb and

In(ab). By the property of integration,

abl al abl abl

1 1 a a

By the substitution ¢ = au, dt = adu; thus

abl b 1 bl
f Zdt: —adu:f—du:lnb.

a 1 au 1 U

Therefore, we obtain the identity:

In(ab) =Ina +Inb Va,b>0. (5.2.2)



Having established (5.2.2), we can show that the function In is a logarithmic function

for the following reason. First, we observe that for all @ > 0 and n € N,
In(a") = In(a" 'a) = In(a" ') + Ina = In(a"?a) + Ina = In(a"?) + 2lna=--- =nlna.

Moreover, by the definition of In, 0 = In(1) = In(a®) = 0ln a; thus

In(a") =nlna  Va>0,neNu{0}.
Next, by the law of exponents, for a > 0 and n € N we have

0=1In(a’) =In(a" - a™") = In(a") + In(a™™) =nlna +In(a™").
Therefore, for all n € N, we also have In(a™") = —nlIna; hence
In(a") =nlna Va>0,neZ.

The identity above also implies that if k,n € Z and n # 0,

k k

nin(a~) =1In((a»)") = In(a") = kIna,

and this shows that

k
ln(a%):—lna Va>0,nkeZ,n+#0.
n

As a consequence,
In(a") =rlna Va>0,reQ.

Finally, we find that In(e") = rlne = r, so Inx is indeed the logarithm of = to the base e.
In other words, we obtain that

T

1
logex:lnx:f ;dt Vo >0. (5.2.3)

1

Theorem 5.16: Logarithmic properties of y = Inx

Let a, b be positive numbers and r be a rational number. Then
1. In1=0; 2. In(ab) =Ina + Inb;

3. In(a") =rlng 4. In (%) =Ina—Inb.




Remark 5.17. Since the function y = Inx has the logarithmic property, it is called the

natural logarithmic function.

2 | 22
Example 5.18. Let f(z) = 3(7?/% Since In f(z) = 2In(z* 4+ 3) —Inz — éln(:c2 +1) for
x > 0, by the chain rule we find that
fl(x) d dx 1 2z
= -— 1 = s
flz) dx nf(w) 22+3 x 3(2+41)’
thus (2432 1 d A ) )
, x°+3 T T
S 2 | — s
(@) zv/z? +1 ldr nf(z) 24+3 x  3(x2+1)

Theorem 5.19

If f is a differentiable function on an interval I, then In|f| is differentiable at those

point x € [ satisfying f(z) # 0. Moreover,

d
%ln|f($)}: for all z € [ with f(z) #0.

Proof. Note that the function y = |z| is differentiable at non-zero points, and

d d 2 1 oy 1 xr
dx|x| dx(x ) 2(x )7z 2 7 Vo #0

N

If f(c) # 0, by the fact that the natural logarithmic function In is differentiable at |f(c)|,
the absolute function | - | is differentiable at f(c) and f is differentiable at ¢, the chain rule

implies that y = In | f(x)| is differentiable at ¢ and

d L fle) f'(e)
- 1 = = . [l
drlo=c n|f(@) £ (<) |f(c)|f (© f(e)
Example 5.20. d%: In|cosz| = _C(S)isn; = —tanz for all z with cosx # 0.
(2% + 3)?

Example 5.21. Compute the derivative of f(z) = for z > 0.

Let h(z) = In f(x). Then

xvx? +1

d 1
o) =M@= [21n(2 +3) ~ Inz - 5 I +1)
d d 1d
4x 1 2x

C22+3 oz 3(x2+1);



thus (2437 4 . 5
x° 4+ X X
f'(z) =

S rila? 43 x 3+ 1)

5.3 Integrations Related to y =Inx

Theorem 5.19 implies the following

1 /
1. szz:1n|$|+0; 2. JJ;((;E)) dz =In|f(z)| + C.

Example 5.23. Compute f;il dx. From observation, the numerator is a half of the
X
derivative of the denominator, so

1( 2 1
J L = J - dr =S In(a® +1) +C.

21Ty ™

1

zlnx

Example 5.24. Compute J dr. Let w =1Inx. Then du = %d:v; thus

1 1
J dx:fadu:lnm\—i—C:ln]lnx\+C’.

zlnzx

Theorem 5.25

1. Jsina:dx:—cosx+0; 2. fcosxdx:sinx+0;
3. ftanxdx:—1n|cosx|+(]:1n|secx|—|—(];

4. J secxdr = In|secx + tanzx| + C.

. 2t 1—¢? 2dt
};roof. We only prove 4. Let ¢t = tan g Then sinx = T cosT = o e and dx = m;
thus

1+t 2 2 —2

1 1

t+1

t_1)+0.



The conclusion then follows from the identity

2
t+1 sin 3 + cos 5 (81n2—|—c082) 1—|—2$1n20032

t—1 sin% —cosk Sinzg — cos? £ —Ccosx
1+sinx
=————— = —(secx +tanx). O
COS T

Finally we compute j In x dx for a > 0. Suppose first that a > 1. Following the idea
1

of Example 4.5, we let r = an and x; = r' as well as a partition P = {1 = 2y < 11 <
-+ <z, = a} of [1,a]. Then the Riemann sum of f for the partition P given by the right
end-point rule, which happens to be the upper sum of f for the partition P, is

S(P) = Z In(z;)(z; — xio1) = Z () (rf — 1) = (r — 1) 1an il

i=1 i=1

. d .
Note that iri=! = d—r"; thus
T

n e n d i d n ; dTn+1—T [(n+1)r”—1}(r—1)—r”+1+r
;zr 122%7“ ZT _

TdrE T dr or1 (r—1)?
™ —(n4+1)r"+1  nar—(n+1)a+1
I o e e V2
By the fact that n = m—a,
Inr

B ralna—alna —alnr +1nr

S(P) = r—1

Since |P|| — 0 is equivalent to that r — 1,

lim S(P) = lim ralna —alna—alnr +Inr _ i
IP|—0 r—1 r—1 dr

(Talna—alna—alnrJrlnr)
r=1

=alna—a+1.

If 0 < a <1, by Remark 4.16 it suffices to show that an — 1lasn approaches infinity.
Nevertheless, an = 1 /(1/ ) and the denominator approaches 1 as n approaches infinity;

thus lim ax = 1 evenif 0 < a < 1.
n—0o0

Theorem 5.26

1. f Inxdr =alna —a+1 for all a > 0; 2. Jlna:dx:xlnx—quC’.
1




N
Example 5.27. Find the limit lim (%) .

n—o \N

k
Consider the sum Z - ln e This sum looks like a Riemann sum of the “integral”
=1

f In z dz; however, since Inx blows up at = 0, Inz is not Riemann integrable on [0, 1].

In other words, the sum is not a Riemann sum for a particular integral.

On the other hand, by the monotonicity of the function y = Inz, we find that
1k &Sk 1.k 11 1k
Z—ln—zz In— < fln:vdx Z—ln—:——ln——l—Z—ln—;
Znon Znoon =noon non =n o n

thus by Theorem 5.26,

3=

1.k 1.1 1
N
:Tl n n n

Therefore, by the fact that lim nn _ 0, we conclude from the Squeeze Theorem that

n—ow M
"1k
limZ—ln—:—l.
now=nn

Finally, note that

n

ann—:—Zln—:—lnn—L ln(Z:L) ;

k=1

S=

thus the continuity and strict monotonicity of y = In x implies that
n\n 1
i ()21
n—oo \n" e

5.4 Exponential Functions

In the previous section we have shown that the natural logarithmic function In : (0,0) — R
is one-to-one and onto. Therefore, for each a € R there exists a unique b € (0, 00) satisfying
a = 1Inb. The map a — b is called the natural exponential function. To be more precise, we

have the following

Definition 5.28

The natural exponential function exp : R — (0, 00) is a function defined by

exp(z) =y if and only if r=Iny.




By the definition of the natural exponential function, we have
exp(lnz) =2 Ve (0,0) and In(exp(z)) =2 VzeR. (5.4.1)

Therefore, exp and In are inverse functions to each other; thus exp : R — (0,00) is one-to-
one, onto, and strictly increasing. Note that by the definition, exp(0) = 1.

Let a > 0 be a real number. If r € Q, a" is a well-defined positive number and the
logarithmic laws implies that

Ina"=rlna.

By the definition of the natural exponential function, a” = exp(rlna) for all r € Q. Since
exp : R — (0,00) is continuous, for a real number z, we shall defined a” as exp(xzIna) and

this induces the following

Definition 5.29

Let a > 0 be a real number. For each z € R, the exponential function to the base a,

denote by y = a”, is defined by a” = exp(xIna). In other words,

a® =exp(zlna) VzeR.

Remark 5.30. For each x € R, the number 17 is 1 since 1* = exp(zIn1) = exp(0) = 1.
Remark 5.31. The function y = e” is identical to the function y = exp(x) since
e’ = exp(zlne) = exp(x) VzeR.

Therefore, we often write exp(x) as e* as well (even though e*, when z is a irrational

number, has to be defined through the natural exponential function), and write a® = e®!n®

Moreover, by the definition of the natural exponential function,

In(a”) = In(exp(xzlna)) = zlna Va>0and zeR. (5.4.2)

5.4.1 Properties of Exponential Functions

e The range and the strict monotonicity of the exponential functions

Note that Theorem 5.6 implies that exp : R — (0, 0) is strictly increasing. Suppose that
a > 1. Then Ina > 0 which further implies that

a™ = exp(z;Ina) < exp(zgIna) = a™ Vo, <.



Similarly, if 0 < a < 1, the exponential function to the base a is a strictly decreasing
function.

Moreover, since exp : R — (0, 0) is onto, we must have that for 0 < a # 1, the range of
the exponential function to the base a is also R. Therefore, for 0 < a # 1, the exponential

function a : R — (0, o0) is one-to-one and onto.

e The law of exponentials

(a) If @ > 0, then a*™¥ = a®a? for all z,y € R: First we show the case when a = e. Let

exp(z) = ¢ and exp(y) = d or equivalently, x = Inc and y = Ind. Then
™ = exp(x + y) = exp(Inc + Ind) = exp(In(cd)) = cd = e”e? .

For general a > 0, by the definition of exponential functions, for =,y € R,

zlna+ylna xlnaeylna

a™ = exp((z +y)Ina) = e =e =exp(zlna)exp(ylna) = a®a” .

(b) If a > 0, then a* ¥ = a—y for all z,y € R: Using (a), we obtain that
a

a* YoV = a" VY = q” Ve,yeR;
r— a”
thus a®7¥ = — for all z,y € R.
a

(¢) If a,b > 0, then (ab)® = a®b® for all z € R: By the definition of the exponential

functions,

(ab)a: _ 6$ln(ab) — ea:(lna+lnb) _ exlna-l—aclnb — 6aclnaezclnb — a%b® .

(d) If a,b > 0, then <%)x = Z—I for all x € R: Using (b), we obtain that

zlna T
aN® _ xln% __ _zln(ab™!) _ _xz(lna—Inb) __ € o a
— = e b = ¢ = € —_ T = T .
b exlnb b=

(e) If a >0, then (a”)? = a™ for all x,y € R: Using (5.4.2),

x
(az)y — eylna — 6wyh’la — a® .



e The differentiation of the exponential functions

ie‘l” =e® for all z € R.
dx

Proof. Define f : (0,00) - R and g : R — (0,90) by f(z) = Inz and g(z) = exp(z) = €*.
Then f and g are inverse functions to each other, and the Inverse Function Differentiation

implies that

g'(z) = m VzeR with f'(g(z)) #0.
Since f'(x) = i’ f'(g(x)) = g(lx) = exp(—x) # 0 for all x € R; thus
g'(x) = g(x) VzeR. 0

Corollary 5.33

1. f e?dr =e* —1 for all a > 0; 2. fe“’dxze‘”—i-c.
0

The following corollary is a direct consequence of Theorem 5.32 and the chain rule.
Corollary 5.34

Let f be a differentiable function defined on an interval /. Then

d
%ef(x):exf’(x) Veel.

Corollary 5.35

1. For a > 0, ia"”:a””lnafor allz e R (so Ja‘”d:c:a—i-C).
dx Ina

2. Let r be a real number. Then %xr = rgz" ! for all x > 0.

3. Let f, g be differentiable functions defined on an interval I. Then

f'(=)
()

%If(x)l"(“”) =|f(2)|" | g' () In | f ()| + 9(x) Vel with f(x) # 0.

Proof. The corollary holds because a® = e*™?, 2" = e""? and |f(z)[9®) = es@MIF@I O



—-3/x
Example 5.36. d %= e*%di<—§) _ 3 for all x # 0.
x

dz® x x?
Example 5.37. Let f: (0,00) — R be defined by f(x) = z". Then
d d
f(x) = %e“ﬂnx = e“lnx%(:vlnx) =2°(lnx +1).

Example 5.38. Find the indefinite integral meelﬂ dz.
Let u = —2%. Then du = —2xdz; thus

) ) ) )
f5xe_12 dx = 3 J6_$2(—2x) dx = —5 fe" du = —56“ +C = —56_3”2 +C.
0
Example 5.39. Compute the definite integral J e” cos(e”) dx.
-1
Let u = e*. Then du = e* dx; thus

0 1 u=1
f e” cos(e”) dx = J cosudu = sinu = sin1 —sin(e™!).
-1 e—1

5.4.2 The number e

By the mean value theorem for integrals, for each z > 0 there exists ¢ € [1,1 + z| such that

1
—dt = -
t c

In(1+2) 1 f“w 1
1

T T

which implies that

= exp (5).

1 1 1 1
(14 2)r =exp (In(1+ g;)%) = exp <M>
x
By the fact that the natural exponential function is continuous, we find that
oy (14294 = i o () = i s (1) =

r—0t z—0t C c—1+ c

Note that the limit above also shows that

r—00

. 1\z
e=lim (1+ E) . (5.4.3)

In(1+x)

Example 5.40. Let f(z) = (1+2): =e = . Then

f/(x):(l_f'x)%'l—’_x 2 - 72

—In(1 + ) (1+x)i<1_ 1+$—ln(1+$>>'



Let g(z) =1— : L In(1 + z). Then

+x

1 1 -z
"(x) = — = <0 if z>0.
9'() (1422 142 (142x)? n

Therefore, g(x) < g(0) = 0 if x > 0; thus f'(x) < 0 for x > 0. This implies that f is strictly
decreasing on (0,0). This fact then implies that the function h(z) = (1 + %)m is strictly
increasing on (0, o).

1

'\ %
Example 5.41. From Example 5.27 we find that for large n we have <n—n> ~ ! which
n e

™. This is in fact not true since the n-root of any constant,

seems to imply that n! ~ n"e”
or even n, converges to 1. In this example, we try to determine how n! behaves as n — o0.
Recall that the graph of ¥y = Inx is concave downward. Therefore, we have the two

figures below

YA YA

10) // 2 3 4 n—1mn ; O
n 2n+1
(a) Under-estimate of J In xdx (b) Over-estimate of ‘[ In zdx
1 1
and find that
n “Ink+In(k—1) 1@ 1S 1
Inxdx = = — Ink+ - Ink=In(n!) — =Ilnn
Jl ng 2 2 ng 2 ];1 ( ) 2

and
2n+1 n n
f lna:‘dxéZ21n(2k:):2nln2—|—221nk:2nln2—|—21n(n!).
1 k=1 k=1
Theorem 5.26 then shows that

1 1 1 1
ln(n!)—§lnn<nlnn—n+1 and (n+§)ln(n—|—§) —|—§1n2—n<1n(n!).

As a consequence, we conclude that

1 \n+05 n!
- < — KL
V214 )" S g <e VneN. (5.4.4)



1 \z405 . . .
Note that the function f(z) = (1+ %) "9 ig decreasing on (0, ) since (5.2.1) shows that

, d 1 1 1 1
f'(x) :f(x)%[(:v%—?ln(l%—%)] Zf(a:)[ln(1~l—%) - %} <0 forall z>0;
thus (5.4.3) and (5.4.4) imply that
|
V2e<s —— <e VYneN. (5.4.5)

nn+0.56—n

5.5 Logarithmic Functions to Bases Other than e

Let 0 < a # 1 be a real number. The logarithmic function to the base a, denoted by

log,, is the inverse function of the exponential function to the base a. In other words,

y =log, x if and only if a’ =x.

Theorem 5.43

Let 0 < a # 1. Then log, x = E—z for all z > 0.

Proof. Let y =log, x. Then a¥ = z; thus (5.4.2) implies that
ylna=In(a’) =z
Inx

which shows y = e [

na
5.5.1 Properties of logarithmic functions

e Logarithmic laws

The following theorem is a direct consequence of Theorem 5.16 and 5.43.

Theorem 5.44: Logarithmic properties of y = log,

Let a, b, ¢ be positive numbers, a # 1, and r is rational. Then
1. log,1=0; 2. log,(bc) = log, b + log, c;

3. log,(a*) = z for all z € R; 4. a'&® =z for all x > 0;

5. log, (b) = log, b —log, c.

C




e The change of base formula

We have the following identity

1
log, c = 08 € Va,b,c>0,a,b#1.
log, a

In fact, if d = log, ¢, then ¢ = a?; thus log, ¢ = dlog, a which implies the identity above.

e The differentiation of y = log, =

By Theorem 5.43, we find that
1

Ve >0.
zlna

%logax =

Similar to Theorem 5.19, if f is differentiable on an interval I, we also have

/()

d :
ﬁloga‘f(x)‘ = F)Ina for all x € I with f(z) #0.

5.6 Indeterminate Forms and L’Hospital’s Rule

Theorem 5.45: Cauchy Mean Value Theorem

Let f,g : [a,b] — R be continuous on [a,b] and differentiable on (a,b). If g’(x) # 0
for all « € (a,b), then there exists ¢ € (a,b) such that

f'e) _ f(b) — f(a)
g'(c)  g(b) —gla)

Proof. Let h : [a,b] — R be defined by

h(z) = (f(z) = f(a)) (9(b) — g(a)) = (£(b) = f(a)) (9(2) — g(a)) -
Then h(a) = h(b) = 0, and h is differentiable on (a,b). Then Rolle’s Theorem implies that

there exists c € (a,b) such that h'(c) = 0; thus for some c € (a,b),

f(e)(g(b) — gla)) — (f(b) = f(a))g'(c) = 0.
Since g'(z) # 0 for all € (a,b), the Mean Value Theorem implies that g(b) # g(a).
Therefore, the equality above implies that
F1Q) _ 1) - fa)
9'(c)  g(b) —g(a)
for some c € (a, b). O




Theorem 5.46: L’Hospital’s Rule

Let f,g be differentiable on (a,b), and

f'(z)
voat g/(z)
1. lim f(z) = lim g(z)=0; 2.
then lim /(@) exists, and
z—at g(x)
S
im —= =
A ()

/(@) and

g(z)

f'(x)
g'(z)

be defined on (a,b).

exists, and one of the following conditions holds:

= lim g(z) = oo,

r—a™t

lim+ f(x)

r—a

lim J(z)

a—at g'(x)

It

Proof. We first prove L’'Hospital’s rule for the case that lim f(z) = lim. g(xz) = 0. Define

F,G: (a,b) - R by

F(x):{ f(O:L’) if x € (a,b),

ifr=a,

r—a™t T—a

G(x):{ g(ox) if x € (a,b),

d
an fx=a.

Then for all x € (a,b), F,G are continuous on the closed [a,z], and differentiable on the
open interval with end-points (a,z). Therefore, the Cauchy Mean Value Theorem implies

that there exists a point ¢ between a and x such that

f'(c)
g9'(c)

Since ¢ approaches a as x approaches a, we have

_Eo
G'(c)

po £ o) fe)

smat g(0)  cmat () emat g'(2)
thus

P B (O F(x)

roat g(w)  woat g'(c)  aat g/(2)

Next we prove L’Hospital’s rule for the case that lim+ flz) =
/
L = lim (@)

P (@)

lim g(z) = oo. Let

z—at

and € > 0 be given. Then there exists §; > 0 such that

L8 <

whenever
g9'(v) 2

a<z<a+d(<h).



Let d = a+ §;. For a < x < d, the Cauchy mean value theorem implies that for some ¢ in

(x,d) such that

Note that the quotient above belongs to (L — L+ %) (if a < x < d). Moreover
fl@) = fd)  fl) _ (f(=) = f(d)g(x) — (9(=) — g(d)) f(x)
g9(x) —g(d)  g() (9() — g(d)) g()
_ (f@) = £(d)g(d) — (9(z) — g(d)) f(x) _ f'(c)g(d) [f(d)
(9(x) — g(d)) g(d) 9'(c) g(z)  g(x)’
thus
flz) = fld)  flz) ey|gld)| |/
o(z) = 9(d) _g(x)‘< <|L|+§> (— ‘ ‘ whenever a <x <d.
Since hm g(x) = oo, the right-hand side of the inequality above approaches zero as x

I—Nl

approaches a from the right. Therefore, there exists 0 < § < d1, such that

’f($)_f(d)—f($)‘<§ whenever a <z <a+d(<d<b).
—g(d) g(z)l 2
As a consequence, if a <z < a+ 4,
flx) ‘ flz f x ‘ ’f z) — f(d)
J— L —_— E—
g(z) ‘ g(x) i (x) — g(d) =32 * 2~ ¢
which concludes the theorem. [

Remark 5.47. 1. L’Hospital Rule can also be applied to the case when hrlr)l replaces lim

r—at
in the theorem. Moreover, the one-sided limit can also be replaced by full limit lim

r—C

if ¢ € (a,b) (by considering L’Hospital’s Rule on (a,c) and (c,b), respectively). See

Example 5.48 for more details on the full limit case.

2. L’Héspital Rule can also be applied to limits as x — o0 or x — —o0 (and here b or a
has to be changed to oo or —o0 as well). To see this, we note that if F/(z) = f(l) and
X
1 . . . . .
G(z) = g(;), then either xlir(r)l+ F(z) = xlg& G(z)=0or xlirgr F(z) = xlirg{r G(x) =
thus L’Hd6spital Rule implies that
1(1 r(1y=1 /

Y lim 2

e gle) w0t g'(5) 0t o' ()5 w0t Gy 0t Gly) e g(a)




/
3. L’Hospital’s rule only states that under suitable assumptions, if the limit of (@)

g9'(x)
exists, so does the limit of fE:U; and the limits are identical, but not the other way
glx
around. In other words, under the same assumptions in the statement of L’Hospital’s
rule, the existence of the limit of féxi does NOT implies the existence of the limit of
gz
f'(x)

o) For example, consider the case f(z) = ze™* ~sin(z~*) and g(z) = e~* . Then
.
the Squeeze Theorem implies that hH(l) f(z) = liH(l] g(x) =0, and

lim J(x) = limasin(z*) =0.
r—0 g(qj) z—0

~—

NS

-2
)

However, since f/(z) = [(1+42z72) sin(z~*)—4z™* cos(x*‘l)}e*"“"_2 and g'(x) = 227 3™

we have ) 1
< = —(2* z)sin(z™) — = x4
) = g+ 2e)sina™) — T cos(a™)

whose limit, as x approaches 0, does not exist.

e Indeterminate form v

e2r — 1
T

Let f(z) = €** — 1 and g(x) = z. Then f, g are differentiable on (0,1) and g(x) #
0,9'(x) # 0 for all x € (0,1). Moreover,

Example 5.48. Compute ling)

/ 2z
lim L) i 2

=2
r—0t g/(ZL‘) z—0t 1

and lim f(z) = lim g(x) = 0. Therefore, L’Hospital’s Rule implies that

z—0t z—0t

TGO G

0t g(z)  am0t g'(x)

Similarly, by the fact that

1. f,g are differentiable on (—1,0) and g(z) # 0,¢'(x) # 0 for all x € (—1,0),

fl(x) - 2¢e%° _ 9

Y

3. lim f(z)= lim g(z) =0,

z—0t z—0t



/
L’Hospital’s Rule implies that lim @) = lim (@) = 2. Theorem 1.33 then shows that

a—0- g(z) 250~ g'(x)
f(x)

lim &——~ = 2 exists.
=0 g(z)

From the discussion in Example 5.48, using L’Hospital’s Rule in Theorem 5.46 we deduce

the following L.’Hospital’s Rule for the full limit case.

Theorem 5.46%

Let a < ¢ < b, and f, g be differentiable functions on (a,b)\{c}. Assume that g'(z) # 0

for all x € (a,b)\{c}. If the limit of f((i; as x approaches c produces the indeterminate
g

form g (or %), that is, lim f(z) = lim g(z) = 0 (or lim f(z) = lim g(z) = <o), then
f(z) f'(x)

provided the limit on the right exists.

e Indeterminate form %

1 .4 1
Example 5.49. In this example we compute lim —nx. Note that lim dxdnx = lim — =0,
r—00 T r—00 %1’ r—00 T

so L’Hospital’s Rule implies that

Inz 4 Ing
lim — = hmdﬂCT:o.
r—0 I r—00 %x

In fact, the logarithmic function y = In x grows slower than any power function; that is,

Inz
lim — =0 Vp>0.
z—o0 P
. - .1 1. 1 . I
To see this, note that lim <2 = lim —%— = - lim — = 0, so L’Hospital’s Rule implies
’ d 1
T—00 @:L‘p z—00 prP— p z—wo TP
that J
Inz Llnx
lim — = lim 4
z—00 P z—ow Lapp
dx

e Indeterminate form 0 - o

iy

Example 5.50. Compute lim e *4/z. Rewrite e™*\/x as —: and note that
x—00 €

d 1

. . 1
lim 4z Y — =
T—00 %ew rz—0 et T—00 2\/§€Z




Therefore, L’Hospital’s Rule implies that

NG 4 /x

lim — = lim dfi =0.
rz—ow et z—o0 L e
dx

In fact, the natural exponential function y = e grows faster than any power function;
that is,

xp
lim — =0 Vp>0.
r—o0 et
The proof is left as an exercise.
e Indeterminate form 1%
Example 5.51. In this example we compute lil%(l + z)=. Rewrite (1+2)* as i (i
In(1
the limit lim In(l +z) exists, then the continuity of the exponential function implies that
_ 1 . In(1+2)
g1+ )2 = ety ).

Nevertheless, since lim In(1 + x) = 0, lir% r =0 and

x—0
d
L In(l+=x 1
lim % = lim =1
z—0 El‘ z—0 ] +x

thus liH(l)(l +1)r =exp(l) = e.

e Indeterminate form (°

Example 5.52. In this example we compute lim (sinx)®. When sinz > 0, we have

z—07t
. x _ _xlnsinx __ Insinz
(sinz)” =e =e 1/
Since .
lim 32 Insinx Y i y
1m+T: 1nr1+ == 1anr ——xcosz =0,
x—0 Tr x—0 2 r—0T SIN T

by L’Hospital’s Rule and the continuity of the natural exponential function we find that

. . x . Insinz 0
lim (sinz)® = lim e /= =¢’ =1.
x—07F z—0t




e Indeterminate form oo —

z—1+ \lnxz x-—1

) 1 1 —1-1
Rewrite — — _ T ne

Inz x—1

Example 5.53. Compute lim ( ! ! )

and note that the right-hand side produces indeter-
(x—1)Inzx
minate form g2 approaches from the right. Also note that

d%(;z:—l—lnx)_ -+ x—1
L(z—1)Inz Inz+ =4

zhnx +x—1

which, as x approaches 1 from the right, again produces indeterminate form —. In order to
find the limit of the right-hand side we compute

lim %(x —1)

=1+t Lglnz+2-1)

thus L’Hospital’s Rule implies that

1 1

im ——— = —;
=1+ Ilnzx+1+1 2

_ r—1 _ d(zx—1) 1
llm ———— = lim —
s+t zlne +x—1

-1t Lgne+ao—-1) 2
This in turm shows that

o x—1—-Inzx
lim =

_ L(z—1-Inz)
e—1t (x—1)lnx

x—1
-1t Lz —1)Inz

1
m — = —
-1+ zlnz +z—1 2

5.7 The Inverse Trigonometric Functions: Differentia-
tion

Definition 5.54

The arcsin, arccos, and arctan functions are the inverse functions of the function
m™ T m™ T
f: [—5,5} — R, g : [0,7] > R, and h : (

—5,5) — R, respectively, where
f(z) =sinx, g(x) = cosz and h(x) = tanz. In other words,

1. y = arcsin z if and only if siny = =, where —

T<y<T —1<o<l.
2 2
2. y = arccos x if and only if cosy = x, where 0 < y <7, -1 <z < 1.

3. y = arctan z if and only if tany = =, where —




Remark 5.55. Since arcsin, arccos and arctan look like the inverse function of sin, cos and

1 1

tan, respectively, often times we also write arcsin as sin™", arccos as cos™ ", and arctan as

tan—!.

-2 3T T
=°" and arctanl = _.
5 ) , and arctan 1

1 T
Example 5.56. arcsin 3= arccos ( 1

Example 5.57. Suppose that y = arcsinz. Then y € [—g, g} which implies that cosy > 0.
Therefore, by the fact that sin?y 4+ cos?y = 1, we have

cosy =4/1 —sin?y = /1 — 22 if y=arcsinz.

In other words, cos(arcsinz) = /1 — 22.

Similarly, if y = arccos z, then y € (0, ) which implies that siny > 0. Therefore,

siny:\/l—cos2y:\/1—x2 if y = arccosx
or equivalently, sin(arccos z) = /1 — z2.

Example 5.58. Suppose that y = arctanz for some z € R. Then y € (—g, %) which
implies that cosy > 0. Therefore,

1 1 1
secy  +/1+tanly V1+a?

cosy =

As for sin y, we note that y > 0 if and only if z > 0; thus siny = < instead of ——~ ).
y y y y= s )
Therefore,
in(arctanz) = ——— and  cos(arctan ) = ——
sin(arctanr) = ——— and cos(arctanz) = —— .
1+ 22 V14 a2

Theorem 5.59: Differentiation of Inverse Trigonometric Functions

d i 1
1. %arcsmx = ﬁ forall -1 <z < 1.
2 iarccosx——# forall -1 <z <1
S dx T V1—22 )

3. di arctanx = N for all z € R.

x 1+ 2




Proof. By Inverse Function Differentiation,

1 1
— inr = = Vee(—1,1
dz T cos(arcsinz) /1 — 22 ze(-L1),
! ! Vrze(—1,1)
— arccos r = =— xe(—
dx — sin(arccos ) V1 — a2 C
and
1 1 1

— arctanx = = 5 = VreR. O
dx sec’(arctanz) 1+ tan*(arctanz) 1+ 22

Remark 5.60. By Theorem 5.59,

d ) 1 1
— ( arcsin x + arccos x)

dx :\/1—x2_\/1—x2:

Therefore, the function y = arcsinx + arccosz is constant on the interval (—1,1). The

0 V-1l<zx<l.

constant can be obtained by testing with z = 0 and we find that

arcsin o + arccos r = Veel[-1,1], (5.7.1)

T
2
where the value of the left-hand side at x = +1 are computed separately.

Example 5.61. Find the derivative of y = arcsinz + zv/1 — x2.
By Theorem 5.59 and the chain rule, for —1 < z < 1 we have

dy 1 e— 1 2\—1 _ 9./ 2
5——w+ 1—2z —.73'5(1—:13)2(227)—2 1—x2.
Example 5.62. Find the derivative of y = arctan /x.

By the chain rule,

dy 1 d 11 1

dr 1+\/§2@\/§: 1+:172\/5:2\/§(1+:v)'

5.8 Inverse Trigonometric Functions: Integration

Theorem 5.63

Let a be a positive real number. Then

dzx

:arcsinquC’. 2. f”
a ac+x

1
= Zarctan z +C.
a a

1jdac
) Va2




Proof. 1. Let x = asinu. Then dx = a cosudu; thus

J dx B acosu
Va2 —a? v/ a2(1 — sin u)

2. Let = atanu. Then dx = asec? udu; thus

d 2 1 1
J ° :J Qasecu du:—Jdu:g—i—C’:—arctanszC.
a?( a a

a? + a2 1 + tan?® u) a a

du = du:u—i-C':arcsing—i-C'.
a

dx
Example 5.64. Find the indefinite integral J, where a > 0 is a constant.
P g T2

Let x = asecu. Then dx = asecutanudu; thus

f dx B asecutanu
Va2 —a? £/ a?(sec?u
=1In )a _a’—i—C ln{x+\/x2—a2’+0

secudu = In|secu + tanu| + C

Example 5.65. Find the indefinite integral J \/%, where a > 0 is a constant.
T a

Let x = atanu. Then dx = asec? udu; thus

CLSGC u

f\/a2+x2 va2(tan® u + 1)
) 2
zln’:E—jLa+—’+C:1n}x+\/x2+a2|+0.
a a

du = | secudu = In|secu + tanu| + C

Example 5.66. Find the indefinite integral f _dr where a > 0 is a constant.

xvVr2 — a2’

Let x = asecu. Then dxr = asecwutanu; thus

dx asecutanu 1 u
= =—|du=-+C.
xV/x? — a? asecur/a’(sectu—1) a a
7_ 2 oo a—
If x = asecu, then tanu = u; thus u = arctan Y~ which implies that
a a
f L arctan Y2 =% | ¢
———— = —arctan —— )
Wz —a? a a

Example 5.67. Find the indefinite integral f \/eixi—l'

Let uw = e®. Then du = e*dx; thus dx = du which implies that
u

dx du
—— - | ———— —arctanvVu2 — 1+ C = arctanve2 — 1 + C.
J\/e%—l Jux/zﬂ—l

]



x+2

mdw.

Example 5.68. Find the indefinite integral f

Let x = 2sinu. Then dx = 2 cosudu; thus

T+ 2 2sinu + 2

—dr = | —]——
V4 — 22 V4 — 4sin’u

:2arcsing—24/1— (g)2+C:2arcsing—\/4—:{72—1—0.

Example 5.69. Find the indefinite integral J 5 de
X

-2cosudu = J(Qsinu+2)du: 2u—2cosu+C

—dx+ T
First we complete the square and obtain that 22 — 4z +7 = (z —2)? + 3. Let x — 2 =
Vv3tanw. Then dr = +/3 sec? udu; thus

1 1 1 T
du=— |du= —u+C = —arctan —— + C.
! x/ﬁfu 3 BB

J dz V3sectu

x2—4x+7: 3tan?u + 3

Example 5.70. Find the indefinite integral qu / 1 _T_x dx.
T
11—z

Note that the integrand can be rewritten as N Therefore,
-

f 1—xd f 1—2x J f 1 J f x d

\N——dr = | ——=dr = | —=dr — | ——=dx

1+x A1 — 22 V1 — 22 V1 — 22
=arcsinz +vV1—22+C.

Example 5.71. In this example, we compute J arcsin x dx. Note the by the substitution

r = sinwu,

Jarcsin:vdx = Jucosudu;

thus it suffices to compute the anti-derivative of the function y = x cosz. We first compute

the definite integral J x cosx dx.
0

By Example 4.12, for 0 < z < 7 we have

Sy 1 T 1
;sm(m) =~ Jemz [cosg —cos ((n+ §)x)] :



Therefore, if 0 < z < T,

;iCOS(i$) = ggsin(ix) = %23111% [cosg — cos ((n + %)g;)]
- 2;?3; [cos g —cos ((n + )|
1 1 . = 1. . 1
Fomg |3y (k) (ko).

2

By partitioning [0, a] into n sub-intervals with equal length, the Riemann sum of y = x cos x

for this partition given by the right end-point rule is

ia aa o« . ia
In:Z—cos——:—2 1C0S — .
~ nn n?-“ n
=1 =1

Letting r = 21, we find that
n

I, = 4r? Z i cos(2ir)
i=1

—r?cosr
= ———|cosr—cos(a+7)| +
sin® r

' [—r sinr + (a + ) sin(a + )
sinr

sin x

which, by the fact that

— lasx — 0and r — 0 as n — o0, implies that
x

f xcosxdr = lim I, = —(1 —cosa) + asina = asina + cosa — 1.

0 n—o0

The identity above further implies that
f:ccosxdx =xsinx +cosz + C';
thus with the substitution z = sinu,
Jarcsinxdm = fucosudu = usinu+ cosu—+ C = zarcsinz +v1 — 22+ C.
Using (5.7.1), we also find that

Jarccosxda: :J(g —arcsinx) dr = gx —xarcsine — V1 —22+C
:x(g —arcsinx) —V1—224+C =zarccost —V1—22+C.



5.9 Hyperbolic Functions

Definition 5.72: Hyperbolic Functions

The hyperbolic functions sinh, cosh, tanh, coth, sech and csch are defined by
r __ ,—x T —x inh
sinhg = &% coshx:i7 tanhz = St
2 2 cosh x
1 1
COMLT = fanhz ’ ST = oshz ST = Sz

Motivation: The Euler identity provides the following relation

e = cosx + isinz VrzeR.
This implies that
. eix _ e—ix eiz + e—i;t
smx:T and COS$:T VeelR.
1

For a complex number z = x + iy, where x,y € R, define sin z and cos z by

—iz ez’(m-{-iy) . e—i(:v—i—iy) e—yeiw o eye—iat

e —e
sinz = - = - = - )
21 21 21
etz + ez ei(az-l—iy) + e—i(x—i—iy) e Vel 4 eYe—iT
COS 2 = = =
2 2 2

Then on the imaginary axis, we have

sin(iy):T:z’sinhy VyeR,
i

¥ 1 oY
cos(iy) = et = coshy VyeR.

2

(5.9.1)

(5.9.2a)

(5.9.2b)

(5.9.3a)

(5.9.3b)

The hyperbolic functions, roughly speaking, can be viewed as trigonometric functions on

the imaginary axis (by ignoring ¢ in the output).

We also note that by definition, for z = x + iy with x,y € R,

oy ) e—2y€2ix — 24+ ere—Qix €—2ye2im + 2+ e2ye—2iac
Sin” z + cos” z = 1 1

=1.



Moreover, if zq, zo are complex numbers,

COS Z1 COS 2o — Sin 27 sin 29

e’izl + e—izl

eizz + e—izz

iz
el#1

—iz
— e 1

%2
el#2

—iz
— e 2

2

2

27

27

ei(z1+z2) _l_e’i(zl—22) _|_e’i(Z2—Zl) _|_ e—i(zl-‘rZQ)

ei(zl-i-zz) _ 6i(21—22) . ei(ZQ—Zl) + e—i(zl-i-zz)

ei(zl +22) + ei(zl +22)

2

4

= cos(z1 + 22) .

4

The above computations show that trigonometric identities are still valid even for complex

arguments.

e The graph of hyperbolic functions

7
T - |y=sinhx

X

SE—
=1 2

Domain: (—o0, o)
Range: (—c0, o)

Domain: (—20,0) U (0, o)
Range: (—o0,0) U (0, c0)

y =cosh x

Domain: (—oe, o0)
Range: [1,00)

Domain: (—o0, o)
Range: (0, 1]

Domain: (—o0, o0)
Range: (—1,1)

1

y=cothx=——
5 tanh x

Domain: (—20, 0) U (0, 50)
Range: (—oc, —1) U (1, o0)



Theorem 5.73: Hyperbolic identities

. cosh?z —sinh?z = 1; 2. tanh® z + sech?z = 1;

coth?z — csch?z = 1;

. sinh(z £+ y) = sinh z cosh y + sinh y cosh z;

cosh(z £ y) = cosh z cosh y + sinh z sinh y;

—1 + cosh(2z) cosh? z — 1+ cosh(2z)

12
sinh® = 5 ; —

. sinh(2x) = 2sinh x cosh x; cosh(2z) = cosh? z + sinh? z.

Remark 5.74. By the definition (5.9.2), one can easily check that sin? z + cos? z = 1 for

all complex z and this further implies that

1 = sin?(iy) + cos?(iy) = (isinhy)? 4 cosh® y = cosh® y — sinh?®y

VyeR.

All the other hyperbolic identities can be memorized/derived in the same way.

Theorem 5.75: Differentiation and integration of hyperbolic functions

DO

w

W

(=)

1.

ot

~

*

di sinh x = cosh x; J coshx dx = sinhx + C;
x
d . .
. %coshazzsmhx; f sinh x dx = cosh x + C;
. % tanhz = sech x; J sech?z dx = tanhz + C;
. dicothx:—cschzm; f csch?z dx = — cothz 4 C;
X
di sechx = —sech x tanh z; f sech z tanh x dv = — sech x + C;
X
) di cschx = — csch x coth x; J csch x coth x dx = cschx + C
x

f tanh z dx = Incosh x + C;

J sechxzdx = 2arctane® + C.




Proof. We only prove 7 and 8. By Theorem 5.22, it is easy to see that

inh 4 coshz
ftanhxda::fsm xda:: de " dyx =1Incoshz + C,
cosh x cosh x

so we focus on 8.

d
Let u = e*. Then du = e* dx or equivalently, aw dx; thus
u

2 d 2
fsechxdx—f -—u—f du = 2arctanu + C = 2arctane® +C. O
u+ul w u?+1

Remark 5.76. Assuming that one knows that dif(w) = if'(ix) (that is, the rule of
T
differentiation di f(ax) = af’(az) can also be applied for complex a), we have
i

d sinhz 1 d sin(iz) 1 , 9,

- t h e p— = —— = — t =

de YT drcoshz | idx cos(ix) i an(iz) = sec’(iz)
1 1

~ cos?(ix) " coshZa

= cosh’z .

All the other derivatives of hyperbolic functions can be memorized /derived in the same way.

e Inverse hyperbolic functions

Similar to inverse trigonometric functions, we can also talk about the inverse function of

hyperbolic functions. Note that

sinh : (—00,00) —5 (=00, ),

onto

tanh : (—o0,00) —5 (=1,1),

onto
while
cosh : (—o0, ) — [1,00) is onto but not one-to-one,

sech : (—o0,00) — (0, 1] is onto but not one-to-one .

We first find the inverse function of sinh and tanh.

xT

1. Let y =sinhx = %. Then e?* — 2ye* — 1 = 0; thus by the fact that e* > 0,
o 2y + /4y +4
= 5 =

which further implies that z = In(y + /4% + 1). Therefore,
sinh ™'z = In(z + Va2 + 1) VzeR.

y+y +1




T _ - 1
2. Let y = tanhz = i + J Therefore,

* 1
————. Then **(1 —y) = 1 +y; thus = = 5hq

et +e 1—y
tanh_lx:11n1+x Vee(—1,1).
2 -
To find the inverse of cosh, we note that cosh : [0, 0) % [1,00). Let z > 0 and
y = coshx = #. Then e?* — 2ye® + 1 = 0 which implies that

e =y+/y?—1.
As a consequence,
cosh™ 'z = In(z + Va2 — 1) Vzell, o).

1
Since sechx = ———, we find that
cosh x

1 1 1 14+4/1—22
sech 'z =cosh™ = =1In (——1— —2—1> :lnu.
x x x x
We summarize these inverse hyperbolic functions in the following
Theorem 5.77

1. sinh™ 'z = In(z + V22 + 1) VzeR.
2. cosh ™'z = In(z + V22 — 1) Ve[l o).

1 _1 1+x _
3. tanh x—21n1_x Vaxe (—1,1).
V1 — 22
4. sechflx:ln¥ Ve (0,1].

e Differentiation and integration of inverse hyperbolic functions

Theorem 5.78

d . —1 1 J dx . -1

1. —sinh™ oz = ; =sinh "z + C}
dx 2+ 1 Vv +1
d -1 1 J d.I -1

2. —cosh™ o = : ——— =cosh "z + C;
dx 2 —1 V2 —1

d -1 1 . dCC . -1
3.%tanh T =15 fl_xz_tanh x4+ C.




Proof. By the chain rule,

1 d 1
—sinh o= —————(z+ V22 +1) = ——,
dx x+\/x2+1dx( ) 2+ 1
d 1 d 1
—cosh'o=————— (24 V22 —1) = ——,
dzx a:—i—\/x?—ld:v( ) 2 —1
as well as
1 1 1 1
— tanh ™' :—[ }: . O
| K apei g e Rl >

Example 5.79. Find the indefinite integral J where a > 0.

dz
zva? — z?’
First we use trigonometric substitution * = acosu to compute the integral. Since

dx = —asinu du, we have

—asinu 1 1
du = ——Jsecudu = ——In|secu + tanu| + C
a

dx
Jx\/aQ—xQ_Jacosu-asinu a
1 a2 2

ln—chL i +C.

a |

Now we use hyperbolic functions substitution to compute the integral. Let x = asechu
(we note that when using this substitution, we have already restrict ourself to the case
x > 0). Then dxr = —asech u tanh u du; thus

u

—asechutanh u 1 f sech u tanh

dx J
_— = du = ——
f rva? — 2 asech u\/a2 — a?sech’u aJ sechun/1— sech?u

1J sech u tanh u p 1Jd 1 L C
= —— u = —— U= ——"1u
aJ sechuva?tanh?u a a

144/1-%
———=+cC

1 1
= —sechflfth’: —1In

a a a f
1 2 2
:__1nw+o,
a T

5.10 Exercise

Problem 5.1. Compute using the following substitution of variables:

[

1. x =+/2sint. 2. r = —4/2sint. 3. & = +/2cost. 4. x = —+/2cost.



Problem 5.2. Find the definite integral JQ M
o l-+cos‘z

Problem 5.3. Find the following indefinite integrals.

Jcosfd 2. J;COSQ;CZ@’. 3. jcos - 4. JSHI\{ifdx
X COS X

Problem 5.4. Find the following indefinite integrals.

sec? .
1. f tan® z sec? x dx , f : dx | J tan? z sec? x dz. Use your experience on these three
an’ x

integrals to find J tan™ x sec? x dx for m # —1.

tanx

2. J sec rtanz dx , f sec’ rtanx dx , J dx. Use your experience on these three

sec x

integrals to find J sec™ x tan x dx for m # 0.

Problem 5.5. Compute the indefinite integral f sin® z dx by the following steps:

1. Write sin®z = sin®z - sin® , and use the triple and double angle formula, as well as

the product to sum formula, to show that

sin®z = —— cos6x + — cosdr — — cos2x + — .

32 16 32 16

2. Find the indefinite integral f sin® z dx using the identity above.

Problem 5.6. Compute the indefinite integral J cos® x dx by the following steps:

3

1. Write cos® x = cos® z - cos? z, and use the triple and double angle formula, as well as

the product to sum formula, to show that

cos® 1 = i(:08.53:—1— Ecos3av+ éCosav
16 16 8

2. Find the indefinite integral f cos® o dx using the identity above.

Problem 5.7. Let y be a twice differentiable function satisfying

2y =4 22 tan 2 (0) =-1 /(0) =4
—~2 — 4sec T X = — =4.
ZLL‘Z ) y 7y

Find y.



Problem 5.8. 1. Let f:[0,a] — R be a continuous function. Find J /() dx.
o f(z)+ fla—x)
. ! sinz : 3 Vv
2. Find . Sinx—‘,—sin(l—gj) dzx. 3. Find . mdﬂj
Problem 5.9. Let f: [—1,1] — R be a continuous function.
1. Show that

JZ f(sinz)dx = JQ f(cosz)dzx.
0 0

2. Use the identity above to find the integrals JQ

T
2,
cos? z dx and J sin? z dz.
0 0

Problem 5.10. Let a and b be positive (rational) numbers. Show that

Ll (1 —2)’dx = fl (1 —2)"dx .

0

Problem 5.11. Let ag, ay, - - -, a, be real numbers satisfying
Qo aq a9 Ay,
o M %2 =0
1 + 2 + 3 L n+1

Show that the polynomial p(z) = ag + a1 + asx® 4 - - + a,x™ has at least one real zero.

Problem 5.12. Let [ be an interval, and f : I — R be one-to-one, onto and continuous.

Show that if ¢ : N — R is a function satisfying that lim f(g(n)) = b, then lim g(n) =
n—oo n—0a0

f7H0).

Problem 5.13. Show that the following functions (defined by integrals) are one-to-one and

find (£1)/(0).

1. f(z) = Lx\/lth?dt. 2. fla) = L\/ﬁiﬂ

Problem 5.14. Let f be an one-to-one, twice differentiable function with an inverse func-

tion g.
1. Show that g is twice differentiable function and find g”.

2. Show that if in addition f is strictly increasing and the graph of f is concave upward,

then the graph of g is concave downward.



N
Problem 5.15. Find the limit lim (%) " through the following steps.

n—o0 \ 7
w1l k[ 1ok
(1) Show that Zﬁ Eéﬁ lnxdxgzﬁlnﬁ.
=1 D k=2

(2) Find lim )] — ! lnE

n—w 1 N n

N
(3) Find lim (in) .
n—o \N

Hint: (1) Use the property of integrals.
(3) Using (1).

Problem 5.16. Show that for all natural number n,

2n k 1k 2n—1 k—1,.k

—1
Z ln(l—i-x)éz()Tx Ve >0.
k=1 k=1

Problem 5.17. Find the derivative of the following functions by first taking the logarithm
(base €) and then differentiating.

_a@—1) @+ )@ -2
1.y—ﬁ,aj>1. 2.y—m,x>2

Problem 5.18. Use implicit differentiation to ﬁnd = where (x,y) satisfies the relation
4oy +Ina’y = 7.

Problem 5.19. Locate any relative extrema and points of inflection of the function y =
2% In g

Problem 5.20. Use the substitution of variable t = tang to find the integral J cscx dx.

Problem 5.21. Find the following indefinite integrals.

2 2
1. J(M) dr. 2. flnﬁdx. 3. JW. 4 f(l“nx)dx.
x x x(Inz?)3 x

5 Jsm(lnx) . . J sin 2z
T 1+ cos?z

Inz —Iny

Problem 5.22. Show that ! < < 1 forall 0 <z < y.
Yy r—=y €z



Problem 5.23. Show that the following functions are decreasing on (0, c0).
1

1. y=(1+—

y=(1+5)

Problem 5.24. In this example you are asked to compute the integral of y = xe” by the

z+0.5 z+0.5

1

Riemann sum. Complete the following.
r(l—r") Tl
(1—r)2 1—7r"

1. Show that if r # 1, then Y krk =
k=1

a

2. Compute J xe® dr by the limit the Riemann sum of y = ze® for regular partition
0

using the right end-point rule.

3. Find an anti-derivative of y = xe®.
Problem 5.25 (Integrating Factor).
1. Let f,g : [a,b] — R be a continuous function, F' be an anti-derivative of f, and
y : [a,b] — R satisfies that
y' + f(x)y = g(x). (*)
Find an expression of .
2. Find the function y satisfying y’ + 2%y = 22 and y(0) = 1.
Hint: Multiply both sides of (x) by exp(F(z)) and observe that the left-hand side is the
derivative of a certain function.

Problem 5.26. 1. Show that for 0 < a < b,

Inb Ina Inb
em;rlnb-(lnb—lna)<f e’”dx<%'(lnb—lna)'
1

na

Ina Ina+1Inb Inb
2



2. Using the result above to show that for 0 < a < b,

b—a a+b
Vab )
“ <1nb—1na< 2

Problem 5.27. Prove the following inequalities.
1. € >14+1In(1+x) for all z > 0.

2. ¢">1+ (14 2)In(l+z) for all x > 0.

2 1.3

3. e“”)1+a:~|—x——|——+-~~—|—x—forallx)OandneN.
21 3! n!

Problem 5.28. Let a,b be two positive numbers, p, ¢ any nonzero numbers, and p < q.
Prove that
1 1
[6a” + (1 — 0)bP]» < [a?+ (1 —0)b7]7  VOe(0,1).
1

Hint: Show that the function f(p) = [6a? + (1 — )bF]? is an increasing function of p.

Problem 5.29. 1. Find an equation for the line through the origin tangent to the graph

of y=Inz.
2. Show that Inx < % for all x # e.
3. Show that ¢ < e” for all x # e.
4. Show that if e < A < B, then A® > B4,
Problem 5.30 (Implicit Differentiation).
1. Find y' if ev =g — Y.
2. Find an equation of the tangent line to the curve ze? 4+ ye® = 1 at the point (0, 1).
3. Find an equation of the tangent line to the curve 1 + Inxy = e ¥ at the point (1,1)

Problem 5.31. Evaluate the following limits. Use L’Hospital’s Rule where appropriate. If
L’Hospital’s Rule does not apply, explain why.

2 v -1 In(1
| lim 2ctan(e) 2. lim —- — - 3 fig 0 +z)
r—0+t h’lfL‘ r—0+ lnx+$_1 2—0 COS.’L‘—i—@x—]_
‘-1 T—e -2 n(z —
4. limL, where b # 0. 5 lim & —¢ —4¥ 6. lim °25% n(z —a)

e—0 xb — 1 e—0 x—sinz z—at In(e® —e®)



7. lim (l - > 8. lim (z — Inx). 9. lim In(z” — 1) —In(z® — 1).

z—0+ \x  arctanx T—00 z—1+
10. lim amne, 11. lim z¢ . 12. lim (2 — x)tan(2/2), 13. lim (sinz)(lnx).
T—>00 xr—00 rx—1 r—0t

Problem 5.32. Evaluate the following limits:

. 1\ . e 1\z
1. Ilgrolox[(l—i-;) —e]. 2. gclgrolo{ﬁx—{—x?[(l—l—g) —e”.
. 1\z 1yz . sinzy 2 . sinzy 4
3. mh_rgox[(l—i-g) —eln(l—l—;)] 4.}:12%( - ):): 5.1}21510( . )
. 2 1+x . 1 ax—l %
6. lim (:E—x In ) 7. lim [f } , where a > 0 and a # 1.
Z—00 T z—o lz a-—1

Problem 5.33. For what values of a and b is the following equations true?

Ll (B2 0 D) =0
i x

x—0

2. lim

x—0

tan 2z a sin bx
T T T

Problem 5.34. Show that lim 2% " = 1 for every positive integer n.
r—00

e VT it g £ 0,

Problem 5.35. Let f(x) = .
0 ifxr=0.
1. Find f’(0). Is f continuously differentiable?

2. Show that f has derivatives of all orders on R; that is, f is infinitely many times
differentiable on R.

Hint: First show by induction that there is a polynomial p,(x) and a non-negative integer
k, such that f(™(x) = pn(xil)gf(x) for  # 0.
x n
Problem 5.36. Find a arcsin(sin z) < arccos(sin z) and 4 arctan(tan ).
dx " dx dx

Problem 5.37. Show that 2arcsin x = arccos(1 — 22?) for all z > 0.

r—1

Problem 5.38. Prove the identity arcsin = 2arctan \/z — g for all z > 0.

r+1

X

Problem 5.39. Prove that 722 < arctanz < z for all x > 0.
z



1

Problem 5.40. Evaluate J arcsin x dx by interpreting it as an area and integrating with
0
respect to y instead of x.

Problem 5.41. Evaluate the following definite integrals.

1 . 1 In 4 —x
V2 arcsinz V2 arccos T e
1. —dx. 2 f ——— dx. 3. —dux.
Vv1—22 1— 22 m2 V1—e 2
1 J 20 — . r dx
V4 x—xQ S )3 (= 1)WVa2 -2z

Problem 5.42. Find the following indefinite integrals.
1. f\/ﬂdw. 2. J ::__12 dx
x

J2x arctan(z? + 1)
4.
zt + 222 4+ 2

3 J <
) V=222 +8x+4

X
6. j«lwdl‘,x>0.

Problem 5.43. Find the function y satisfying (1 + 2%)y’ + 2y = 1 and y(0) = 1.

dx.

Problem 5.44. Show (by contradiction) that 7 is an irrational number through the follow-

ing steps.

1. Assume (the contrary) that = = % for some a,b € N. Define f(z) = :W;bw). Show

that f(z) = f(r —x), and 0 < f(z)sinz < forall 0 <z <.

k
2. Show that f*)(0) and f*)(r) are all integers for all k € N, where f*)(0) = % f(z)
=0
dk

and fO(m) = I ga)

3. Define

n

g() = Y (=D (@) = fa) = fOe) + fO2) + -+ (1) ().

k=0

i

9(0) +g(m).

Show that di (9'(z) sinz—g(z) cosz) = f(z)sinz and conclude that f f(z)sinzdr =
0

anﬂn+1

4. Conclude that 0 < J f(z)sinzdr <
0

tion.

and use (5.4.5) to lead to a contradic-



Chapter 7

Applications of Integration

7.1 Area of a Region between Two Curves

The motivation of integration of functions is finding areas. Let us recall that if f : [a, ] — R
is non-negative, then the area A of the region bounded by the graph of f, the z-axis and

vertical lines * = a and = = b is the integral of f on [a,b] or in notation,

A:Lbf(x)dx.

The idea above can be extended to the following statement: Let f, g : [a,b] — R be contin-
uous and g(x) < f(z) for all x € [a,b], then the area of the region bounded by the graphs

of f and g and the vertical lines x = a and x = b is

e How about if the graphs of two continuous functions intersect?

Suppose that f,g : [a,b] — R are continuous functions but neither g(z) < f(z) for all
x € [a,b] nor f(x) < g(z) for all z € [a,b]. In other words, the graphs of f and g intersect
(and transverse). In this case, the area of the region bounded by the graphs of f and g, as

well as the vertical lines x = a and x = b, is given by

A= [ 7@ - gla)| o

To find this integral, in general we need to find all the zeros of the function h(z) = f(z)—g(x)

and write the integral as sum of integrals on sub-intervals. To be more precise, suppose that

138



the distinct zeros of h is given by {cx}}_;, where a < ¢y <cp <+ < ¢, <D, then
b
A= [ 1f@) - g(o)] ds
C1 n Cl b
— [ V@ - g@lae+ 3 [ 5@ - gtaldo+ | |f@) - oo ds
a k=1YCk-1 En

[ ) - st as] + 3,

a

[ e - g

Cn

|7 1@ - @] o] +

Ck—1

When f, g are continuous function on R and A = f — ¢g has finitely many distinct zeros
{ck}i_, we can also talk about the area of the (bounded) region bounded by the graph of
f and g. This area is given by

A= é J% [f(z) — g(z)] dx‘

Ck—1

7.2 Volume: The Disk Method ( Fl# %)

In the following two sections, the main focus is to develop ways of finding the volume of the
so-called solids of revolution ( *zi& %8 ) , a solid formed by revolving a certain region about

a line called the axis of revolution (and usually a line parallel to the z-axis or y-axis).

Example 7.1. The ball centered at the origin with radius r (usually denoted by B(0,r) or

B,.(0)), is a solid of revolution. It can be formed by revolving the region
R = {(x,y)‘OéyéM}
about the z-axis.
Example 7.2. A solid torus can be formed by revolving a disk
D={(z,y)|(z —a)*+y* =r?} (where 0 < a <)

about the y-axis.

p—

Figure 7.1: A solid torus



Consider the volume of a solid D formed by revolving a region R about the line y = yy,

where the region R is given by
R={(z,y)|zea,b],p0o<y<flz)}

for some continuous function f : [a,b] — R with m[ln] f(z) = yo. Note that the function
y=m[f(z)— (] ? is also continuous on [a, b] thus integrable on [a, b].

Representative
rectangle

/

Axis of Representative
revolution - disk

Plane region |

R
T=a ' r=h T
AX
I
Solid of ! o
revolution LJ Approximation
AX by n disks
Figure 7.2: Disk method
Let P ={a =29 <1 < -+ < x, = b} be a partition of [a,b], and Az; = x; — x;_;.

Then the volume of D is approximated by

m[f(&) — yO]zAxi :

D=

1

-
Il

where §; € [x;_1,x;] for each 1 < i < n. Note that the sum above is a Riemann sum of the
function y = 7 [ f(z) — yo] ? for partition P.

When ||P| approaches 0, we expect that the sum above approaches the volume of D.
Since f is continuous on [a,b], the function y = 7[f(z) — yo}2 is Riemann integrable on
[a, b]; thus for any given € > 0, there exists § > 0 such that if |P| < ¢, then any Riemman

sum of the function y = 7 [ f(z) — yo] ? for P lies in the interval

(Jbﬁ[f(x)_yo}zdx—e, Jbﬂ[f(x)—yofd%-%&).

a a

In particular, if max {xz — X1 ‘ 1< < n} <4,

‘iﬂ Amz Jbﬁ[f(x)—yo]2d$‘<s.

a



Since € > 0 is arbitrary, we conclude that the volume of D can be computed by

wfb [(x) — o] dz .

a

Example 7.3. The volume of the ball B(0,r) is given by

T 22 dr =n r? — x? da::7r7“2x—1x3
(v 3

T=r 4
= —’/T’l”3 .
T=—T 3

Example 7.4. The volume of the solid formed by revolving the region bounded by the
graphs of f(x) =2 — 2% and g(x) = 1 about the line y = 1 is given by

wjll [(2—x2)—1}2dx:7rf

-1

1
(1—x2)2dm:7rf (1 —22% 4+ 2%) dx
-1

2 . 1 =1 167
:W[x——x +—ac] = —.
3 5 z=-1 15

Similarly, if D is a solid formed by revolving a region R about the line z = z(, where R

is given by
R={(z,y)|yelc.d,z <z <g(y)}

g
for some continuous function g : [¢,d] — R with rr%ir;] g(y) = xg, then the volume of D is
YE|c,

d
2
Wf [g(y) - :vo] dy .

A solid of revolution may be formed by revolving a region away from the axis of revolu-
tion. In this case, the solid will have holes and the volume of

Suppose that the region R is given by
R={(z.y)[a<z<b,y<glz) <y<fla)},

where f, g : [a,b] — R are continuous functions with m[ax] g(x) < n}ir})] f(z). Let Ry and Ry
z€la,b z€|a,

be given by
Ri={(z,y)|a<z<b,yo<y<f(r)} and Ry={(z,y)]|a<z<b,yo<y<g(a)}.

Then the volume of the solid formed by revolving R about the line y = yq is the volume of
the solid formed by revolving R; about the line y = yo minus the volume of the solid formed

by revolving Ry about the line y = y and is given by

b
wf [(F(2) — 90)? — (9(z) — 90)?] d.

a



Similarly, if R is given by

R={(z,y)|c<y<d,x

N

gy) <z < f(y)},

where f,g : [c,d] — R are continuous functions with m[ax] g(y) < II%iICIl] f(y).. Then the
ye€le,d yelc,

volume of the solid formed by revolving R about the line x = x is given by

o [ 100~ a0 = (900) 20 .

c

Example 7.5. Find the volume of the solid formed by revolving the region bounded by the
graphs of y = v/r and y = x? about the z-axis.
The points of intersection of the graphs of the two functions are x = 0 and x = 1, and

0 < 2% <z on [0, 1]. Therefore, the volume of the solid described above is given by

1 ! N
[ W= [ e ar=n(je - L=

0
Example 7.6. The volume of the solid torus given in Example 7.2 is given by

7| s VR 07 - 0V - 0] dy
' mr? 2 2
= 4ar x/r2—y2dy:4a7r-7:27r ar=.

Example 7.7. Find the volume of the solid formed by a ball with 5 inch radius having a

cylindrical hole as shown in the following figure.

Solid of revolution

The volume of the solid described above is given by

Wf [(\/25—932—0)2—(3—0)2}(190:@.



In general, the disk method can be used to compute a solid whose area of cross sections
along a particular axis is known. Let D be a solid lies between two planes x = a and x = b
(a < b), and the area of the cross section of D taken perpendicular to the z-axis is A(z),
then

b
the volume of D = J A(z) dx.

a

Similarly, if D lies between y = ¢ and y = d (¢ < d), and the area of the cross section of D

taken perpendicular to the y-axis is A(y), then

d
the volume of D = J A(y) dy .

C

y=d

(a) Cross sections perpendicular to x-axis (b) Cross sections perpendicular to y-axis

Example 7.8. The volume of a cone with height h and base area A is given by

" A(h —y)? Al J=h 1
L oy (h—y)| =34k

Example 7.9. Find the volume of the solid of intersection of the two right circular cylinders

of radius r whose axes meet at right angles.

Two intersecting cylinders Solid of intersection



The area of cross sections taken perpendicular to the z-axis is given by

Therefore, the volume of the solid of intersection is given by

" 1
J 4(r* — 2*)dz = 367“3 :

7.3 Volume: The Shell Method ()% )

Consider the volume of a solid D formed by revolving a region R about line z = L, where
R is given by

R = {(a:,y)‘:r;e [a,b],0 <y < f(x)},
for some a > L and continuous function f : [a,b] — [0,20). When f is one-to-one, let
g : [c,d] — R be the inverse function of f (note that ¢ = min} f(x) and d = glqg}bc] f(x)).

z€la,b

Then the volume of D computed using the disk method is given by

C

wf [<g<y>—L>2—<a—L>2]2dy+wf (b L) — (a—L)"] dy.

c 0
On the other hand, if f is not one-to-one, then sometimes it will be not so easy to find the
volume of D using the disk method. How do we compute the volume of D in this case?

Vertical axis
of revolution

Vertical axis |
of revolution '\"?::,\,];‘), v =flx)

-, Rectangle
K height = ficp)

S

-1 Xk ;\.\‘,\.\\

(a) (b)

Figure 7.3: The shell method



Let P={a =29 <21 < - < x, = b} be a partition of [a,b], Az = x — z,_; and

Cp, = xk%m; that is, ¢, is the middle point of the interval [z;_;,zg]. Then Figure 7.3

implies that the volume of D can be approximated by the sum of these cylindrical shells
(one cylindrical shell is shown above in orange color). The volume of the cylindrical shell

shown in Figure 7.3 is given by

(@ — L)* f(e) — m(@p-1 — L)* fler) = 7 f (e) [ — L)* = (-1 — L)?]
= 7f(ck)(@p — L+ xp—1 — L) |2 — L — (z—1 — L)| = 27 (cxy — L) f(ck) Ay, .

Therefore, the volume of D can be approximated by the sum
Z 27(cx — L) f(cx)Axy, .
k=1

We note that the sum above is a Riemann sum of the function y = 27(z — L)f(z) for
partition P using the mid-point rule. Therefore, similar to the argument in Section 7.2, we
find that the volume of D is given by

b
27Tf (x— L)f(x)dx.

This way of computing the volume of D is called the shell method.
Similarly, let D be formed by revolving a region R about the line x = L, where the
region R is given by
R={(z.y)|zea,l],g(x) <y<flx)}

for some a > L and continuous functions f, g : [a,b] — R with rr%i% f(z) = m[eug] g(x). Then
z€la, z€la,

the volume of D is given by

b
27Tf (z — L)[f(z) — g(z)] dz.

Example 7.10. In this example we compute the volume of the ball B(0,7) by the shell
method. Note that B(0,r) can be formed by revolving the region

R={(z,y)|zel0,r],—Vr?—22 <y < Vr? -2}

about the y-axis. Therefore, by the shell method, the volume of B(0,r) is given by

WJ;:(JZ' —0)[Vr? —a? — (—Vr? — 2?)] du
z=r A4r 4

=0 3

Wl

:47rforx(r2 —$2)%dx — 47r[— 2( 2 —xQ) ]



Example 7.11. In this example we compute the volume of the solid torus given in Example

7.2 by the shell method. Note that this solid torus can also be formed by revolving the region
R={(z,y)|zela—ra+r],—/r?—(z—a)? <y <+/r*— (v —a)?}

about the y-axis. Therefore, by the shell method, the volume of the solid torus given in

Example 7.2 is given by

a+r atr
27Tf (z—0)[/1r? = (z —a)? = (=12 = (z — a)?)] da::47rf /1% — (x —a)?dr.
By the substitution x = a + rsinu, we find that

a-+r g
f x\/r2—(:r—a)2dmzf (@ +rsinu)Vr2 —r2sin®u - r cos u du
a—r

Wl

s
2 2
:rzf (a—i—rsinu)cosQudu:er

™

1 2
[aw + rsinucos® u| du

2

in(2 u=g
= g2 %y O T T ar?;

__x
u=-—3

thus the volume of the solid torus is 4 - gar2 = 27%ar? which agrees with what Example
7.6 shows.

Example 7.12. A solid D is formed by rotating the region bounded by the graph of y =
2

1- 2 and y = 0 about the z-axis. Then the volume of D computed by the disk method is
v=4 647

16
4 2.2 3 5
WJ (1—:6—) d:vzﬁ[x—x—+ ‘ ] = —
4 16 24 5-256]le=—4 15

given by
while the volume of D computed by the shell method is given by

1 1 0
27rf y[ 16(1 —y) — (— 16(1—y))] dy:167rf y«/l—ydyzl&rf (1—u)u%(—du)
0 0 1
1 1 3 3 51 u=1
= 167TL (u5 — ui) du = 167 [§u2 — §u2] 2.2

B 64r

:167r(———)—f.

u=0 3 5

Now consider the volume of a solid D formed by revolving a region R about the line

y = L, where
R={(z.9)|yeled, gy <z<fly)}



for some ¢ > L and continuous functions f,g : [¢,d] — R with Ir%iré]f(y) > m[ail(] 9(y).
y€lc, y€le,

Similar to the argument above, the volume of D is given by
d
2 [ (- D)~ 9] dy.

Example 7.13. Find the volume of the solid formed by revolving the region R about the
z-axis, where R is the region bounded by the graph of z = ¢’ y = 0, y = 1 and the y-axis.

.2
p)=y{| h=e”

Axis of
revolution

Using the shell method, the volume of this solid is given by

! 2 6_92
ZWJ (y —0)e™? dy:27r<— )
0 2

y=1
—m(l—e1).
S mm—e

Example 7.14. Let R be the region bounded by the graph of 3* = x(4 — x)2.

Find the volume of the solid D formed by revolving R about

(a) the z-axis, (b) the y-axis, and (c) the line x = 4.



(a) Using the disk method, the volume of D is given by

z=4 641

4 4 1
Wf z(4—2)*dr = WJ (2° — 82° + 162) do = 7T<—£L‘4 — §:1:3 + 8x2) 3
=0

It will not be easy to compute the volume of D using the shell method since it requires

solving for z (in terms of y) from y* = x(4 — z)*.

(b) Using the shell method, the volume of D is given by

~—

27TJ rlva(d— )2 = (—y/z(4d — x)?)] doe = 4r w(4—x)x%dx

0 0
4 _
8 2 z=4 2048
—47Tf (4x% —xg)dlelﬂ(—x% ——x%) = 7T,
0 ) 7 =0 35

(¢) Using the shell method, the volume of D is given by

zwf (4—2)[Vald —2)? — (/24 — 2)?)] dz = 47rf (x — 4)%z2 da

0

4

2

= 47Tf (mg — 8x% + 16:55) de = 4#(?x% —
0

7.4 Arc Length and Surfaces of Revolution

7.4.1 Arc length

In this sub-section we consider the arc length of a curve which is the graph of a function
on a closed interval. Let f : [a,b] — R be a continuous function, and P = {a = ¢y < 1 <
.-+ < x, = b} be a partition of [a,b]. Then the arc length of the graph of f on [a, b] can be
approximated by

Z \/(l’k —ap1)? + (fa) - f($k—1))27
k=1

where for each k, the number \/(xk —xp_1)? + (f(:vk) — f(xk,l))2 is the length of the line
segment joining points (xk,f(xk)) and (xk_l,f(xk_l)).



Figure 7.4: The length of the polygonal path PyP, P, - - - P, approximates the arc length of
the graph of f on [a, 0]

With Az, denoting ) — x,_1, then

S\l — 2+ (Fan) — fmen) = 3 \/1 b (He Sy,

T — Tk—1

If f is differentiable on (a, b), then the Mean Value Theorem implies that for each 1 < k <n

there exists ¢, € (Tx_1, k) such that

f(xw) — fzr1)

T — Tp—1

= f'(ex);

thus

S (=m0 + () — flan)’ = Y1+ Fle)’ A

which is a Riemann sum of the function y = /1 + f’(z)? for partition P. Therefore, if f
is continuously differentiable on [a, b]; that is, f’ is continuous on [a, b], then /1 + f/(z)?
is Riemann integrable on [a, b]. Therefore, using the arguments in Section 7.2, we find that

the arc length of the graph of a continuously differentiable function f on [a, b] is

[ ViErapa

Example 7.15. Compute the perimeter of a circle with radius r.



Let f(x) = +/r? — 2. Then the perimeter of a circle with radius r is the same as twice
the arc length of the graph of f on [—r,r|. Therefore, the perimeter of a circle with radius

2 —7«V1+f dI—QJ A1+ 55— de=2r _rm

—QTJ ——r cosudu
g\/r2—r281n u

™ s

2 2
:27“J rcosudu:%J du = 27r.

-z 7 Ccosu

T is

us
2

3
Example 7.16. The arc length of the graph of y = % -+ % on the interval [%, 2} is
X

f\/um(ergi d:)j—f \/1+ 2—2} dz
1\/ da:—f V 2952
- <§+%>dx=<%—g>;

Example 7.17. The arc length of the graph of y = In(cosz) from z = 0 to z = % is

f\/ —lncosac dx—f Al Sm;pdxf V' 1+ tan® z dx
T

T
4
0

l\.’)

16

1
2

:f secxdr = ln|sec.:1:+tanx|
0 Tr=

—In(v241)—Inl=In(v2+1).

Let f be continuously differentiable on [a,b]. Then the arc length of the graph of f on

[a, x|, where z € [a, b], is given by

:Lxmdx.

The fundamental theorem of Calculus then shows that

$'(2) = () = T+ /(o)



or equivalently,
ds dy\ 2
e (2
dz 4
Symbolically, ds = «/dxz? + dy?; thus the arc length of the graph of a function is f ds. This

variable s is usually called the arc length parameter.

7.4.2 Surface of Revolution

In this section we consider the surface area of a surface formed by revolving a curve about
a line (again, this line is called the axis of revolution and usually is a line parallel to the
x-axis or y-axis). Let f: [a,b] — R be a continuous function, and S be the surface formed
by revolving the graph of f on [a,b] about the xz-axis. The general procedures shown in
the previous sections is first finding a way to compute an approximated value of the surface
area and then see what is the limit of this approximation as |P| approaches 0.

We first try the following idea: let P = {a = g < 1 < --- < x,, = b} be a partition of

[a,b] and Axy = xp — xx_1. Consider the sum
Z 27 f (cx ) Axy, Ck € [Tp_1, Tk]
k=1

which is the sum of the area of cylinders formed by revolving the graph of the constant
function y = f(cx) on [zg_1, 2] about the z-axis. Since the sum above is a Riemann sum
of the function y = 27 f(z) for partition P, we expect that if f : [a,b] — R is continuous,

then as |P| — 0 the sum approaches

b
27 J f(z)dx.
If this is true, then the surface of the sphere with radius r is given by
r 3 21 2
ZWJ Vr2 —z?dr = 27TJ r? cos? u du = 27rr2f +C+(u) du = 7r?
-r —3 —3

which is definitely not the correct area of the sphere with radius r. What is wrong with this
idea?

The mistake is due to the fact that the area of surface of revolution has to be approxi-
mated by the sum of the lateral surface area of frustum of right circular cones rather than

sum of lateral surface area of cylinders. The lateral area of the frustum in Figure 7.5 below



Auxis of

revolution

Figure 7.5
1+ 72

is given by 27rL, where r = ; thus the surface area of S can be approximated by

22 f(zp) +f Tp— 1)\/(xk—xk_1)2+ (f(xk)—f(ﬁk_1))2

_22 a:k +kalx/1—|—f Ck Al'k

It can be shown that the sum above approaches f 21 f(x)A/1+ f'(z)? dx as | P| approaches
0. Therefore, the area of the surface formed by revolving the graph of f on [a,b] about the

xr-axis is given by
b
27rj |f(@)|V1+ f/(x)?da.

In general, the area of the surface formed by revolving the graph of f on [a, b] about y = L
is given by

27Tf F(@) — LW+ f@)2de.

Example 7.18. The surface area of a sphere with radius r is given by

r 2 r
27Tf ( 7“2—:1:2—0)\/@@;:27? Vr2de = 4nr? |
—r re—=r —r

where we treat the sphere as a surface formed by revolving the graph of y = +/r? — 22 about

the z-axis.

Example 7.19. In this example we consider the area of the surface formed by revolving
22 2

the (upper part) ellipse — + b—Z =1 (or the graph of y = é\/CLQ — 22 on [—a, a]) about the
a



z-axis. Using the formula above, we find that the surface area is given by

27h
QWJ \/@2—:10\/1+—ﬁ WJ \/ — 2+ —x2dx
—a a” —x —a

2 _p2
7rb \/a4 dea:—QﬂbJ A/l o b x2dx.

va? — b2
1. Suppose that a > b; that is, z-axis is the major axis. Let ¢ = aiz. Then the
a
substitution x = 1sinu implies that
c
QWJ \/aQ—x\/ 22—dm—2wa V1 —c2x?dx
—a a=a —a
arcsin(ac) 1
:27rbf V1 —sin?u - = cosudu
— arcsin(ac) ¢
2 b arcsin(ac) 271h arcsin(ac) 1 2

T cos?udu — 2 Lt cos(2u)

¢ — arcsin(ac) c — arcsin(ac) 2
_ 2mb (u N Sin(2u)> u=arcsin(ac)
N C 2 4 u=— arcsin(ac)

2ma’b [acs' Va2 — b2 +b\/a2—b2]
= ——— arcsin

Va2 — b2 a a?

2ma’b va?z — b?
_ o arcsin ye - o + 27b?.

a? —b? a

b2 _ 2
2. Suppose that a < b; that is, z-axis is the minor axis. Let ¢ = ——5——. Then similar
a

1
to the previous case, the substitution x = - sinh u implies that

a p bh2 ) sinh ™! (ac) 1
2 Va2 =121+ ————dx = 27b A1+ sinh?u - = coshu du
@ a?a? — x? c

—sinh™!(ac)
B 2_7_‘_1) sinh~! (ac) COSh o — 2_71_1) sinh~! (ac) 14+ COSh(QU) ’
c —sinh ™1 (ac) € J_sinh(ac) 2
_ 2mb <u N sinh(2u)> u=sinh ™" (ac)
N C 2 4 u=—sinh~1(ac)

2 2b 2 _ b2 2 _ b? b? _ 2
= % [sinh*1 Va + Va cosh (sinhf1 —aﬂ
—a a a a

2 Zb 2 _p2
= 27 ginh ' YT 4 o

b2_a2 a



7.5 Moments, Centers of Mass, and Centroids

e Center of mass in a one-dimensional system

Let mq,mg, -+ ,m, be n point masses located at z1,xs,- -, x, on a (massless) rigid z-axis

supported by a fulcrum at the origin.

X 0 % X3
. * * X
m A iy iy
Fulcrum
at origin

Each mass my, exerts a downward force myg (which is negative), and each of these forces
has a tendency to turn the z-axis about the origin. This turning effect, called a torque,
is measured by multiplying the force m;g by the signed distance x; from the point of
application to the origin. By convention, a positive torque induces a counterclockwise turn.

The sum of these torques measures the tendency of the system to rotate about the

fultrum/origin. This sum is called the system torque; thus
System torque = mygxy + magxs + - -+ + mpgr, = g(mizy + maxe + -+ + mpxy,) .

The system will balance if and only if its torque is zero. The number My = myx; + maoxs +
-+ +m,x, is called the moment of the system about the origin, and is the sum of moments
mixy, Mala, -, Mmux, of individual masses. If M, is 0, then the system is said to be in
equilibrium.

For a system that is not in equilibrium, the center of mass (of the system) is defined as

the point ¥ at which the fulcrum could be relocated to attain equilibrium.

2 X X3

. .
m SN om m

Special location
for balance

X

Such an ¥ must satisfy
0=mi(z1 —Z) +ma(za — )+ -+ my(x, — T)

which implies that

moment of system about the origin

T =

n
> myx;
i=1
i m total mass of system
1
i=1



Definition 7.20

Let the point masses my, my,--- ,m, be located at x, xq, -+, z, (on a coordinate

line).
1. The moment about the origin is

My = miz1 + maxa + -+ + My, .

. M, .
2. The center of mass z is —0, where m = my; + mgy + - -+ +m,, is the total mass
m

of the system.

e Center of mass in a two-dimensional system

Definition 7.21

Let the point masses my, ma, - -+ ,m, be located at (x1,11), (z2,v2), -+, (Tn,yn) (o0

a plane).
1. The moment about the y-axis is

M, = mix + moxg + - -+ + My Ty, .
2. The moment about the z-axis is

M, = miy1 +maya + - - + mypYn .

3. The center of mass (z,y) is

M,
=— and §j=—,
m m

&I

where m = my + mgy + - - - + m,, is the total mass of the system.

e Center of mass of a planar lamina

Consider an irregularly shaped thin flat plate of material (called lamina) of uniform density
o0 (a measure of mass per unit of area), bounded by the graphs of y = f(z), y = g(x), and

x = a, x = b, as shown in the following figure.



(1 £(x,)

a x; b
Then the density of this region is

m=o [ [f(a) - g(o)] d = oA,

where A is the area of this region.

Partition [a,b] into n sub-intervals with equal width Az, and let z; be the mid-point
of the i-th sub-interval. The area of the portion on the ¢-th sub-interval can be approxi-
mated by [f(z;) — g(x;)] Az; thus the mass of the portion on the i-th sub-interval can be
approximated by o[ f(z;) — g(z;)] Az. Now, considering this mass to be located at the center

PRLCORTTED

5 ), the moment of this mass about the z-axis is

ol ) — gl A L2 AT

Summing all the moments and passing to the limit as n — oo suggest the following

Definition 7.22

Let f, g : [a,b] — R be continuous such that f(x) > g(z) for all = € [a, b], and consider

the lamina of uniform density ¢ bounded by the graphs of f, ¢ and the lines z = a,
x=Db.
1. The moment about the x-axis and the y-axis are
b

Mz:gf [f(2)* — g(2)*] dz  and Myzgf z[f(z) — g(z)] dz.

a a

M, M,
2. The center of mass (z,y) is given by = = - and § = Pt where m =

b
QJ [f(z) — g(x)] dz is the mass of the lamina.

a




The center of mass of a lamina of uniform density depends only on the shape of the
lamina but not on its density. For this reason, the center of mass of a region in the plain is

also called the centroid of the region.

Example 7.22. Compute the centroid of a triangle with vertex (0,0), (a,b1) and (a, bs),

where a > 0 and b; < b,.
Let f(z) = @x and g(z) = b—lx Then the triangle given above is the region bounded
a a
by the graphs of f, g and x = a. Assume uniform density o0 = 1. Then the moment of the

region about the x-axis is

M, = lf (5 - b—%)gc2 dz = A2 —b)
0

2 a?  a? 6

and the moment of the region about the y-axis is

M, = f _zf_l dm:@»

as well as the total mass

by — b
m = J ———xdx—%.

Therefore, the centroid of the given triangle is

= (00,

Theorem 7.23: Pappus

Let R be a region in a plane and L be a line in the same plane such that L does not

intersect the interior of R. If r is the distance between the centroid of R and the line,

then the volume V' of the solid of revolution formed by revolving R about the line is
V =2nrA,

where A is the area of R.

Proof. We draw the axis of revolution as the z-axis with the region R in the first quadrant

(see figure below).



diF-————- —_—
I/ \1
I L(y) |
p=vF | |
\ R /
ch————- E::—F_ I \/ .
Centroid
™
0 T
o/

Let L(y) be the length of the cross section of R perpendicular to the y-axis at y, and we

assume that L is continuous on [¢,d]. Then the area of R is given by

A= JdL(y) dy ,

C

and the shell method implies that the volume of the solid formed by revolving R about the

r-axis is

d
V= 27Tf yL(y)dy.

[

On the other hand, if » denotes the distance between the centroid of R and the x-axis, then

r is the y-coordinate of the centroid of R and is given by

d
the moment of the region about the z-axis L yL(y) dy
T = =
the total mass of the region d
& f L(y) dy
which validates the relation V = 27rA. O

Example 7.24. Using the Pappus theorem, the volume of the solid torus given in Example

7.2 1s

2ma(mr?) = 2nar?

since the centroid of a disk is the center of the disk.



Chapter 8

Integration Techniques and Improper
Integrals

8.1 Basic Integration Rules

We recall the following formula:

1. Let f, g be functions and k be a constant. Then
ka(x) dr = k‘ff(x) dx | f(f +g)(x) dx = ff(m) dr + fg(x) dr .

2. Let r be a real number. Then

1 r—+1 : -
Jxrdx: 7r+1x +C ifr#-—1,
lnz+C ifr=-1.

1
3. If a > 0, then Jam dr = —a”® + C. In particular, Jex dr =¢e* + C.

Ina
: 1 I
4. If a # 0, Jsm(am) dx = ——cos(ax) + C, fcos(ax) dx = —sin(ax) + C,
a a

1 1
Jtan(a:c) dr = —In|sec(ax)| + C, Jcot(ax) dr = —1In|sin(az)| + C,
a a

1 1
Jsec(ax) dx = —In|sec(ax)+tan(ax)|+C, fcsox dx = ——In | csc(ax)+cot(az)|+C.
a a

D. Jse(zQxdx =tanz + C, Jsecxtanxdx =secx + C.

159



6. If a > 0, then

dx B oz c dx 1 . T c
ﬁ—arcsma—l— s m—aarcana—i—
d 1 Va2 — a?
—x:—arctanu—kC.
vz —a?  a a

2
Example 8.1. Find the indefinite integrals f 33244_9 dx, J g;;lf_g dx and J x;lig dx.

From the formula above, it is easy to see that

4 4
Jx2+9dx:§arctan§+0.

dz 2%(:&’ +9)

2249 7 2249

: d _ [z
, using the formula I In|f(z)| = Fiz)’ we find that

4
Jx2i9dx:2ln|x2+9|+C:21n(x2+9)+6'.

Noting that

42? 4(x? +9) — 36 36
Finally, noting that x;j— 5= (@ ;2_ +)9 =4 by the formula above we find that

4 2
foigd:czélx—lQarctan%—l—C.

2
Example 8.2. Find the indefinite integrals J \/43_7 dz, j \/43167 dz and j \/jiﬁ dz.

From the formula above,

3 T
——dz =3 in—+C.
Jm x arcs1n2+

For the second integral, we let 4 — 22 = u. Then —2xdx = du; thus

f—%dx: —gfu_édu: _gl i %u; +C = -3(4— 2%
For the third integral, first we observe that
J 322 iy — 3(z* —4)
V4 — a2 V4 — a2

Let x = 2sinu. Then dx = 2 cosu du; thus

J\/4—x2dx = 11/4(1 —sin®u) - 2cosudu = J40082udu = J 2+ 2cos(2u)] du

= 2u +sin(2u) + C = 2u + 2sinucosu + C

2 N
:2arcsing+m/1—%+C:2arcsing+¥+0.

N|—=

+C.

12 T
dx+f—dx: —3J\/4—x2dx+12arcsin—.
V4 — x? 2



Therefore,

3 3
\/le_ixzdx:6arcsing — éx\/4—x2+0.

Remark 8.3. One should add
—Va2—22+C and vat+ 22+ C

| e | e

into the table of integrations.

du

u —

dx du 1 1
Jite=la =] G- D as=me =m0

=zr—In(l+¢€")+C.

Let u =1+ €*. Then du = e¢*dx which implies that dx = T Therefore,

Another way of finding the integral is by observing that

1 14e” e :1_%(1+e$)_
I4+er 14+er 1+e” 14+er
/
thus using the formula 4 In|f(z)] = ! (x), we find that
dx f(z)

dx
=1z —1In(1 r .
Jl—i—em r—In(l1+¢e*)+C

8.2 Integration by Parts - 4 %4 4

Suppose that u, v are two differentiable functions of . Then the product rule implies that

dv
Therefore, 1f v and u—— are Riemann integrable (on the interval of interests),

J—vdx%—fu%da: = (wv)(z) +C.

dv
Symbolically, we write d—v dr ad vdu and u— dr as udv, the formula above implies
X
that

fudv = uv Jvdu.



Theorem 8.5: Integration by Parts

If v and v are functions of x and have continuous derivatives, then
Judv = uv — Jvdu.

Example 8.6. Find the indefinite integral J Inx dz. Recall that we have shown that

Jlnxdx:xlna:—x+0

using the Riemann sum. Let v = Inz and v = z (so that dv = dx). Then integration by

parts shows that

1
flnxd:nlenx*fxd(lnz) :xlnx*f$-de:$lnx~fd$:xlnx*x+0.

Example 8.7. Find the indefinite integral Jx cosz dx. Recall that we have shown that

fxcosxdm =gxsinxz +cosx + C

using the Riemann sum. Let u = z and v = sinx (so that dv = cosx dz). Then integration

by parts shows that
f&:cosxdm =zxsinx — fsinxdaz‘ =zsinz +cosz +C'.

Principles of applying integration by parts: Choose u and v such that v du has simpler

form than wdv, and this is usually achieved by
1. finding u such that the derivative of u is a function simpler than u, or
2. finding v such that the derivative of v is more complicate than v.
Example 8.8. Find the indefinite integral Jxem dx.

Let u =z and v = e” (so that dv = e”dx). Then integration by parts shows that

Ja:exdzvzxez *Jexdx =(x—1)e"+C.



Example 8.9. Find the indefinite integral Jaf In x dx, where r is a real number.

Suppose first that r # —1. Let u = Inx and v =

1:10’”“. Then integration by parts

r+
shows that
1 1 1 1 1
Jxrlnxdx:—mr+llnx—f 2 —de = ——2" M nx — Jxrdx
r+1 r+1 x r+1 r+1
1 1
=— ¢ lng — O
r+1 (r+1)2

Now if r = —1. Let u = v = Inz. Then integration by parts implies that
-1 2 1 2 -1
Jx Inzxdr = (Inx)” — Jlnx -—dr = (Inz)” — Jx Inxdx
x

which implies that
1
Jx_l Inxdr = é(lnx)2 +C.

Therefore,
g — ;:ﬂ“ +C ifr# -1,
Jxrlnwdx: r+1 1 (r+1)2
5(1113:)24—0 if r=-1.

Example 8.10. Find the indefinite integral sz cosxdr.

Let u = 22 and v = sinz (so that dv = cos z dz). Then integration by parts shows that
JxQ cosxdr = x?sinw — Jsinz 2 dr = a?sinx — Zstinxdx.
Integrating by parts again, we find that
stinxda: = —xcosx + Jcosxdx = —xcosx +sinx + C;
thus we obtain the

fﬁcosxdm = 2?sinz + 2z cosz — 2sinx + C'.

Example 8.11. Find the indefinite integrals je” sin(bx) dr and Je” cos(bx) dx, where

a,b are non-zero constants.



Let u = sin(bx) (or u = cos(ar)) and v = a e (so that dv = e** dz). Then

1
fe‘”” sin(bx) de = —e* sin(bx) — b Je” cos(bx) dx ,
a a

1
Je‘” cos(bz) dx = —e** cos(bx) + b Jeax cos(br) dx .

a a
The two identities above further imply that
1 b

Je‘w sin(bzx) de = —e* sin(bx) — — fe“” cos(bx) dx
a a

1 brl b
= —e™sin(bx) — — [—e‘”” cos(bx) + — Je‘” sin(bx) dm}
a

a aLa

1 azr : b azx 2 ar .
= —e"sin(bx) — ¢ cos(bx) — e Je sin(bz) dx ;

a
thus .
f@‘“’ sin(bz) dx = pER [ae™ sin(bx) — be™ cos(bz)] + C'.
Similarly,
ax 1 axr ar .
Je cos(bx) dx = prpT [ae™ cos(bx) + be™ sin(bx)] + C'.

(8.2.1)

(8.2.2)

Remark 8.12. By the Euler identity (5.9.1), Je‘“” sin(bz) dx and Je‘” cos(bz) dx are the

real and imaginary part of the integral f e®eb® dz. By the fact that e®@e®® = el

1
pretending that Jecz dr = —e“ + C' for complex number ¢, we find that
c

. 1 , 1
ax ibr _ (a+ib)x _ azx . s
fe e dx P +C Tt [ cos(bz) + isin(bz)] + C
a—1b . .
= T [ cos(bx) + isin(bz)] + C
- ﬁ [acos(bx) + bsin(bz) + i(asin(bx) — beos(bz))] + C';
a

thus we conclude (8.2.1) and (8.2.2).

a+ib)x

and

Example 8.13. Find the indefinite f e du, Jx" sin(az) dr and f x"™ cos(ax) dz, where

a > 0 is a constant.
1

Let u = 2" and v = a~ e (so that dv = e dx), v = —a~ ! cos(ax) (so that dv = sin(ax))

and v = a~'sin(ar) (so that dv = cos(ax)) in these three cases. Then

1 1 1 n
a"edr = —x"e®™ — | Ze®™ nz" ldr = —ame™ — = | 2" e du .
a a a a



Moreover,

1
Jx” sin(ax) dz = ——12" cos(ax) + z fﬂc”_l cos(ax) dz ,
a a
1 . n 1 .
x" cos(ax) dr = —x" sin(ax) — — | 2" sin(az) dz .
a a

The two identities above further imply that the following recurrence relations

n o 1 n o1 n(n — 1) n—2
JZE sin(ax) dr = —T cos(ax) + 27 sin(ax) — — J$ cos(ax) dx ,
1 -1
Jx” cos(az) dx = —x" sin(ax) + %x"’l cos(ax) — n(n—g) Jx"2 sin(az) dx .
a a a

Example 8.14. Using integration by parts, we have
f cos" xdx = Jcosn_1 rd(sinx) = sinz cos" 'z — J sinz d(cos" ! x)
=sinzcos" 'z + (n — 1) Jsin2 xcos" % xdx
=sinzcos” '+ (n—1) J(l —cos*x) cos" ? v dx
=sinzcos" 'z + (n—1) Jcos”_2 rdr—(n—1) fcos” rdz;

thus rearranging terms, we conclude that

: n—1 -1
fcos"mdw _mnrees 7.7 Jcos”%cdx. (8.2.3)
n n
Similarly,
on—1 -1
Jsinnxdx = BTER LT Jsin"‘Qxdx. (8.2.4)
n n

Theorem 8.15: Wallis’s Formulas

If n is a non-negative integer, then

5 5 2mn! 2
f sin?t g dr = J cos?™ gy dr = ﬂ
0 0 (2n+1)!

and

jus jus 2 '
JQ sin2”xdx:f2 cos?" x dr = (2n) .
0 0 (2mn!)?

NN




Proof. Note that (8.2.3) implies that

3 i nlpe=5 p—1 (2 —1 (2
f cos" rdr = ST COS TP + r f cos" 2 xdr = n J cos" 2 xdx .
0 n =0 n Jo n Jo
Therefore,
2 2 2 2 on—2 (2
J cos? M xdr = " J cos? ' xdr = n_.zn f cos? B adr =---
0 2n+1 Jy 2n+1 2n—-1 ),
o 2m—2 2n—4 QF 2 4 n
— . . . — CcOS T dx — . — ...
2n+1 2n—1 2n-—3 3 Jo 3 5 2n +1
2247 (2n)*  (2"nl)?
 (2n+1)! (2n+1)!
and
2 on—1 2 on—1 2n—3 (2
f cos?" x dx = " J cos?" 2y dr = n 2n J cos? A ydr = -

~2n—1 2n—3 2n-5 1J’5 0 e L3 -1 m
T -2 2m—4 2, I T L Ty

B (2n)! T 2n)! =«
C2242...(2n)2 2 (2"m!)2 27
The substitution z = g — u shows that
2 2
f sin" x dx = f cos" x dx for all non-negative integers n ,
0 0

so we conclude the theorem.

Theorem 8.16: Stirling’s Formula

|
lim v V2.

n—00 nn+0.56—n

jus

Proof. Let I, = jQ sin” x dx. Then Wallis’s formula shows that
0

(2n)! 7 (2"n!)?
Iy = — 2 = d Ipy= .
= o2y M 2= (on 1 1)

. . . . T
Moreover, since sin?**2? z < sin®* ™'z < sin®" z on [O, 5}, we also have I5,.9 < Io,41 < Lo,

for all n > 0. Therefore,

12n+2 I2n+1
< <1 Vn=0.
[2n [211 "



Note that

(2(n+1))!
Lnyo Dy 220680 ((n+1)H)2 2n+1
22n(n!)2
thus lim fonv2 _ 1. As a consequence, the Squeeze Theorem implies that lim Tnt1 _ 1.

! x .
Let s, = o . Then the fact that the function y = (1 + l) 02
x

nnt05e—n is decreasing on

(0,00) (left as an exercise) and (5.4.3) show that s, > s,41 = 0 for all n € N. Therefore,

the completeness of the real number (see Theorem 9.20) implies that lim s, = s exists.

n—aoo
Moreover,
22n<n!)2
[2n+1 . (2n+1)! B 24n<n!>4 g
L, @) = @n)2n+1)! =
22n(n!)2 2
_ 241 (5, p 0574 2
- Sgn(2n)2n+0~56_2”52n+1(2n~|— 1)2n+1.5€—2n—1 T
4
1
_ Sn i(l + _)—211—1.5;
S9nSon41 2T 2n
thus (5.4.3) implies that
I 4 1 2
1= lim =221 = lims—"-—zs—.
n—=0  lon n—90 S9pSopy1 2T 2m
The theorem is then concluded by the fact that s > 0. ]
8.3 Trigonometric Integrals
In this section, we are concerned with the integrals
J sin™ x cos" x dx and f sec xtan" x dx |

where m,n are non-negative integers.

8.3.1 The integral of sin™ x cos" x

e The case when one of m and n is odd
Suppose m =2k + 1 or n = 20 + 1. Write

fsin%“ xcos" xdxr = JCOS” 2(1 — cos® z)¥sinz dr = — Jcos" z(1 — cos” 2)* d(cos )



and
Jsinm xcos* M dr = fsinm z(1 — sin® z)* cos v dox = fsinm (1 — sin? z)* d(sin z)
so that the integral can be obtained by integrating polynomials.

Example 8.17. Find the indefinite integral f sin® z cos* z dx.

Let u = cosx. Then du = —sinx dx; thus

Jsin?’ reostrdr = J(l — cos*z) cos? rsinz dr = — J(l —uH)ut du

1 1 1 1
—gu5—|—?u7+C’: —gcossx%—?cos?x%—c.

We also write

fsin3 xcos* v dr = J(l — cos®x) cos* wsinx dr = — J(l — cos® x) cos® x d(cos )

I 5 I
=——cos’x+ =cos'z+C.
SR A

e The case when m and n are both even

First we talk about how to integrate cos™ z. We have shown the recurrence relation (8.2.3)
in previous section, and there are other ways of finding the integral of cos™ x without using
integration by parts. The case when n = 2¢ 4+ 1 can be dealt with the previous case, so we

focus on the case n = 2¢. Make use of the half angle formula

1 2
cos’z = L ooster) CZS( z) ,

we can write
1 22)\ ¢ e . w=2z) o .
fcos%xda: = J (H%W) dx = ;)Q—; fcosl(Qx) dz = ;)Zg—il Jcosludu

which is a linear combination of integrals of the form f cos’ u du, while the power i is at most

half of n. Keeping on applying the half angle formula for even powers of cosine, eventually

integral f cos’ udu will be reduced to sum of integrals of cosine with odd powers (which

can be evaluated by the previous case).



Example 8.18. Find the indefinite integral J cos® z dx.

By the half angle formula,

1 2x)\3 1
Jcos6 rdr = J <+c+(x)) dr = 3 J [1+ 3cos(2z) + 3 cos®(2z) + cos®(2z)] du

1
- gf [1 + 3cos(2z) + g(l + cos(4z)) + (1 — sin’(2z)) COS(QZE)] dx
—lf(§+4 (20) + > cos(4 ))d —ij in?(22) d( sin(2z))
=3 \3 cos(2z) + 5 cos(dx) ) dz — - | 8 x) d( sin(2x

_ Ipbx i 3 . I .3
=3 [7 + 2sin(27) + 3 5111(4:6)} & sin(2z) + C'.

Now suppose that m = 2k and n = 2¢. Make use of the half angle formulas

1-— 2 1 2
—C;S( z) and cos® T = L coster) C;S( z)

sin?z =

to write )
Jsin% xcos® xdr = pYaY] (1- cos(2:c))k(1 + (:08(2:1:))1Z dx .
Expanding parenthesis, the integral above becomes the linear combination of integrals of

the form f cos'(2z) dz.

Example 8.19. Find the indefinite integral J sin? z cos* z dx.
By the half angle formula,

1-— 2 1 2 2
fsin2 xcost xdr = f cos(2z) ( + cos( x)) dx
2 2

= % J [1 — cos(22)] [1 + 2 cos(2z) + cos®(2z)] da
_ é J [1 + cos(2x) — cos?(2z) — cos®(2z)] dx

_ % J <1_#S(4x) 1 sin(2z) cos(20)] dx

_ é[g _ Singlx)] + 4—18 sin®(2z) + C'.

8.3.2 The integral of sec” xtan” x

d d
Rule of thumb: make use of T tanz = sec? z and . secxr = secx tan x.
XT i



e The case when m is even

Suppose that m = 0 and n > 2. Then we obtain the recurrence relation

ftan” xdr = Jtan"‘2 rtan®z dr = ftan”_2(sec2 x—1)dx

1
= Jtan”_2 d(tanx) — ftann_2 rdr = | tan" ! x — Jtam"_2 xdx.

n [—
Suppose that m = 2k is even and positive. Using the substitution u = tanz, we have
fseczk rtan" xrdr = JsecQ(k_l) rtan” zsec’ z dr = J(l + tan® z)* ! tan” x d(tan z)

which can be obtained by integrating polynomials.

e The case when n is odd

Suppose that n = 2¢ + 1 is odd and m > 1. Then
Jsecm rtan® ! x dr = J sec™ !z tan?* sec x tan x dr = J sec™ ' z(sec? z — 1)" d(sec z)
which can be obtained by integrating polynomials.

e The case when m is odd and n is even

Suppose that m = 2k + 1 and n = 2¢. Then

fsec%+1 ztan® x dx = fsec%“ z(sec’ x — 1) du;

thus it suffices to know how to compute J sec” xdx.

Using integration by parts,
J sec” xdr = Jsecm_2 rd(tanx) = tanzsec™ 2z — ftan x d(sec™ 2 z)
= tanzsec™ 2z — (m — 2) ftam2 wsec™ ? xdx
= tanzsec” ?x — (m — 2) J(sec2 r— 1)sec" ?xdx

thus rearranging terms we obtain the recurrence relation

m— 2 m — 2
sec™ xdx = tanzsec™ 2z + — | sec™ % 2 dx.
m—1 m—1



Example 8.20. Find the indefinite integral J sec?(3x) tan?(3z) dx.

By the discussion above,
1
fsec4(3x) tan®(3z) dr = 3 JsecQ(i’)m) tan®(3x)d(tan(3x))
1
- gf [ tan®(3z) + 1] tan®(3z)d(tan(3z))

P L iant
3[6 tan (3x)—|—4tan (3$)} +C.

Example 8.21. Find the indefinite integral J\/ a? + z2dx.
By the substitution of variable z = atan @ (so that dz = asec?#df), we find that

1 1
f\/cﬁ + 22dx = JaQSecgﬁdQ = a2<§tanese(:0+ Efsecé’cw)

(tan@sec9+ln]secﬁ+tan6|) +C

(a: \/a2+x2 ‘:c+\/a2+x2‘>+c
a a

MI%MIQ

&

/2 2
_ e +x ln(m+Va2+x)—i—C (8.3.1)

8.3.3 Other techniques of integration involving trigonometric func-
tions

e Integration by substitution (for integrand with special structures):

Example 8.22. Find the indefinite integral f \/OS% dx.
Let u = sinz. Then du = cos x dx; thus
cos’x (1 —u?) J 13
——du= | (u"2—uz)du
4/sin :c \/ﬂ ( )
1 1 5
= 1u%— gug—l—C:Z\/sinx——singx—i-C.
- 3 1+ 3 2
Example 8.23. Find the indefinite integral f ey da:.

Rewrite the integrand into a fraction of sine and cosine, we find that

1
Jseczx dx:fc.os;c dxzf — d(sinz) = —sin"'z 4+ C = —csczx + C.
tan“ x sin“ x s~ x



anx

Example 8.24. Find the indefinite integral f N

Let uw = secx. Then du = sec x tan x dz; thus

tan3x sec?z — 1) secxtanx u?—1 :
J f d.CE:J = du:f(ué—u_;)du
«/secx secz T u2

2
:§u2 +2u_5+0—§sec2x—l—2czos2x+0

dzx.

e When the angular variable are different, making use of the sum and difference formula:

Example 8.25. Find the indefinite integral J sin®(5x) cos(4x) da.

Using the sum and difference formula

sinf cos ¢ = % [sin(@ + ¢) +sin(f — ¢)] , sinfsing = % [cos(@ — ¢) —sin(0 + qﬁ)} ,
we find that
fsmg’ 5x) cos(4 = % fsm [sin(9z) + sinz] dz
sin(5z) [ cos(4z) — cos(14z) + cos(4z) — cos(6z)] dx

f [2sin(92) + 2sinz — sin(19z) + sin(9z) — sin(11z) + sinz] dz

ool»—*OOI»— »l>|

1 1
s(9z) — 3cosx + T cos(19z) + T COS(llCC)} +C.

c,o|>—l

8.4 Partial Fractions - % i» & 3\

In this section, we are concerned with the integrals f Jl\)fgwi dx, where N, D are polynomial
X
functions.
Write N(x) = D(x)Q(z) + R(x), where @, R are polynomials such that the degree of R

is less than the degree of D (such an R is called a remainder). Then N(@) _ R(x) + R(m).
D(z) D(z)

Since it is easy to find the indefinite integral of R, it suffices to consider the case when the

degree of the numerator is less than the degree of the denominator.

W.L.O.G., we assume that N and D no common factor, deg(N) < deg(D), and the

leading coefficient of D is 1. Since D is a polynomial with real coefficients,

(ﬁx—i—q] )(ﬁx + bz + ¢;)* >,



where r;,d; € N, g; # g for all j # k, b; # by or ¢; # ¢ for all j # k, and b§—4cj < 0 for all

RN

2

1 < j < m. In other words, —¢; are zeros of D with multiplicity r;, and
are zeros of D with multiplicity d;, here i = 4/—1. Therefore,

VSIS AL [S B G

m n
for some constants A;;, Bj, and Cj,. Note that there are )| r;+2 >, d; = deg(D) constants
j=1 j=1

to be determined, and this can be done by the comparison of coefficients after the reduction

of common denominator.

Remark 8.26. In this remark we “show” that a rational function N/D with deg(N) <
deg(D) can always be written as the sum of partial fractions (8.4.1). Suppose that « is a
zero of D with multiplicity k so that D(z) = (z — «)* f(z), where f(x) is a polynomial and
f(a) # 0. Since

N@) N N@f) - f@N@)  glo)
D(z) (z—a)tf(a) (z — o)k f(2) f(a) (z —a)kf(x)’
where g(z) = N(z) — f(a:)‘?&?. Since g vanishes at z = «a, g(z) = (z — a)™h(x) for some
polynomial h satisfying h(a) # 0 (and we remark that here m is not necessarily less than
k). Therefore, with 8 denoting the constant Jm, we obtain that
N@) B _@—a)h) _ )

D(x) (z—a)f  (z—a)f(x) (z—a)if(z)’
where k; = 0 and hy(«) # 0if k; > 0. We note that f and h; are both polynomials satisfying
deghy < ki + deg(f) and f(«) # 0. Applying the process continuously, we obtain that

N(z) < G Ny (z)
D)~ 2@ —aF " Dya)

i=1
for some polynomials Ny, D;(= f) with deg(N;) < deg(D;) = deg(D)—k and some sequence
of constants Cy, Cy, - - -, Ck, where Dy () # 0. This explains the presence of the first sum on
the right-hand side of (8.4.1) (and also shows how to find the coefficient Aj,., in the highest

1 .
order term ————— for each j).
J

(z + g;)



2
2
P17+ 200+ 6 5 the form of (8.4.1).
3+ 212 +

Note that 2% + 22% + z = z(2? 4+ 22 + 1) = z(z + 1)?; thus to write the rational function

Example 8.27. Write

above in the form of (8.4.1), we must have

b2+ 200 +6 A B C

3 +202 x+as+1+(az+1)2

for some constant A, B, C'.

Multiplying both sides of the equality above by x(z + 1)?, we find that
5024202+ 6 = Az +1)° + Bx(z + 1)+ Cx = (A+ B)2* + 2A+ B+ )z + A;

thus A, B, C satisfy

A+B=5
2A+B+C =20
A=6.

Therefore, A =6, B=—1 and C' = 9; thus
52420z +6 6 1 9

¥ +22+ _a:_x+1+(:1:+1)2'

. .
Example 8.28. Write o the form of (8.4.1).

Note that 7 + 1 = (22 + 2z + 1)(2% — V22 + 1), s0
1 Ax+ B Cx+ D
i1 22442+ 1 +x2—\@x+1.
Multiplying both sides of the equality above by * + 1, we have

1= (Az+ B)(2? = V2zx + 1) + (Cz + D) (2> + V22 + 1)
= (A4 )2’ + (—V2A+ B+V2C + D)2? + (A— V2B + C +v2D)z + (B + D);
thus comparing the coefficients, we find that A, B, C, D satisfy
A+C=0
—V2A+B++V2C+D =0

A—\2B+C++2D=0
B+D=1.



Therefore, the first and the third equations imply that A = —C' and B = D; thus the second
and the fourth equation shows that A = —C' = 1 and B=D = % As a consequence,

2v/2

11 T+4/2 —z++/2 ]
i1 2v2la2 \2r 1 22— 20+ 1)

N(z)
D(z)

N(x)
D(x)’
for

In order to find the integral of by writing in the form of (8.4.1), it suffices

ngx + ng

to find the integral of @+ bz + o)

J Aje flﬂg(l”rq]')l_“rc ite#1,
U B
(x + q;)* Aglnlz + gl +C  if =1,

Note that

ng!E—FOjg _ @ 2I+bj 4 (C
(22 +bjx + c)f 2 (224 bjx +¢)t it

_ bijg) 1
2 ($2 + bjl’ + Cj)e

and

(1:2—|—bw—|—04)"dx: e 2 -
J J In(z* + bjz +¢;) +C ife=1,

J 27 + b; L(x2+bjx+cj)1—f+c ift¢+#1,

1
it suffices to compute f @25 ba + cj)f dz.

B. .
thus to find the integral of jer + Cle

Nevertheless, with a denoting the number PR

] 1 1 b;
d.%:f 2 dw:J j dlr =5
ez (o= %)+ =)' [EETE

. . b;
which can be computed through the substitution x — 5] = atanu:

(=l

j) =g Jcos%_2 wdu .

1
[

Example 8.29. Find the indefinite integral f‘fif—l
X



Using the conclusion from Example 8.28, we find that

de 1 r+4/2 —x+4/2 J
Jx4+1_2\f 22 442z + 1 x2—\/§x+1} .
2 + /2 1 2z—4/2 ;
Q\FJ 2 24Pr+1 2 22—Pr+1 \fx+1} v
V2 1 V2
J_'—+_' ]dm
2f 2 22442041 2 22—\2r+1
_ J 27 + /2 N V2 242 N V2 }d:v
42 ) a2 42241 (l’—F%)Q—}—(%P 22 — 2z + 1 (x_%)Q_i_(l)Q
1 [lnx2+\/§x+l
44/2 -2z +1

+ 2arctan(v/2z + 1) + 2arctan(v2z — 1)] +C.

secx

dx.

Example 8.30. Find the indefinite integral f

Let u = secz. Then du = sec x tan x; thus

J secx dw_Jsecxtanxdx_J du _J du
tan®x tan? z @12 ) (ut1)2(u—1)2

Write o 1)21(u —)e is the form of (8.4.1):

1 A B C D

(u+1)2(u—1)2_u+1+(u+1)2+u—1+(u—1)2’

where A, B, C, D satisfy
Aw+1)(u—1+Blu—-12+Cu—1)(u+1)*+Du+1)*=1.
Therefore, A, B, C, D satisfy

A+C=0
-A+B+C+ D=0
—A-2B-C+2D =0
A+B-C+D=1



1
which implies that A= B=—-C = D = ~. As a consequence,

4
f du 1J[ 1 n 1 1 n 1 }d
== — u
(u+1)2(u—-1)2 4)lu+1 (u+1)? w—1 wu—1)2
1 1 1
[ - ———1 —1——] C
4[n|“+’ o ikl vy
1 u—+1 2u
_1y R e
4[11“_1 u? —1 T
thus
sec x 17, |secx+1 2secx
dz =[] - |+c.
JtanSx T A Msecz —11 T tantz *
Example 8.31. Find the indefinite integral J\/ tan x dzx.
2
Let u = v/tanz. Then u? = tanz which implies that 2udu = sec? z dx or 1_1?54 = dx.

Therefore,

2u? 1 U U
Vta d—f :—J —
J nrar 1—|—u4u V2 —V2u+1 u2 Vou+1
]_ _
I B s fu+1\+_j[ bt au
22 w2 +2u+1 \fu+1 u2 4++2u+1
1 w2 —\2u+1 V2

= In ‘ + — arctan(\/iu — 1) + arctan(v/2u + 1) + C

242 w2 +2u+1
1 tanz — v2tanz +1 V2 V2tanx

= In ‘+—arctan—+ ,

24/2  ltanz +/2tanzx + 1 1—tanz

where we have use the fact that

| au

T
arctan x + arctan y = arctan 1 Ty +C

to conclude the last equality.

Example 8.32. Find the indefinite integral J)l’ where n is a positive integer.
L4 am)n

and —2 "t dx = u" ! du; thus

Let 1 +27" = u". Then 2" =
u” —1

—_rn n—2
Jd—xlzf d 1:f ’ 1(*x_"_1)dx:*f " du
(1+azm)n r(l+az™)n (14+x=)n ur — 1




which is the indefinite integral of a rational function of u and we know how to compute it.

In particular, when n = 4,

u? u? 1 1 1 1 1 1

W1 @Dt D@+ 4 u—1 4 a+i 2 @1

thus

Ju4u_1d“: Zln‘U—U—Z—llﬂ\u+1|+§ar0tanu—|—(}

which further implies that

d 1 41 _ 1
J—wlz—ln W’+_arctan |:(1+x_4)ij|+c
A+29)s 4 TayzeHig1l 2

e The substitution of ¢t = tang

In Section 5.3 we have introduced the substitution ¢ = tan% to find the anti-derivative of

trigonometric functions. We recall that if t = tan g, then

sinx = 2t cosx = 1-¢ and dx = 2dt
1427 142 142

Using this substitution, the anti-derivative of rational functions of sine and cosine can be

computed via the integration of rational functions.

S€C T

Example 8.33. Find the indefinite integral f dx.

S
tan® z
Rewriting the integrand, we have

sec T cos?
5—dr = ——dr.
tan® x sin® x

L 2t 1—¢? 2t
L = —. Th i == _ -t _ Ay
et t tan2 en sinx 1+t2,COSJZ 1+t2anddx 1—|—t2’t us
qh 2dt 1 (1—1%)2 1
seer e [ aEEE 20t L fA=E) G L s gy
Jtan%dx_f(?ﬂg,ut? zJ Ea 4J(t 267 + 1) dt
(1+t2)3
= | — = _ 1 -
4[ 5t 2n|t|+2t +C
_ T2t 2:8}_1 ‘ x‘
_S[tan 5 cot 5 2111 tan2 +C.



Example 8.34. Find the indefinite integral J dx.

24 sinz
: 2t 1—¢2 2dt
Let ¢ = tan —. Then sinz = ——, cosx = —— and dr = ——; thus
2 1+¢2 1+¢2 1+¢2

2

1 dt
d _
JQ—i—sinx v JQ+1+t21+t2 Jt2+t+1 J(Hé)%r(x/ﬁ)?
+C =

2 + 1 2t +1
= arctan 2 arctan ——— + C
V3 f V3
2 2 x
= — arctan (—tan— + —) +C.
V3 V3 2 43

8.5 Improper Integrals - & f 4~

Recall that given a non-negative continuous function f : [a,b] — R, the area of the region

enclosed by the graph of f, the z-axis and lines z = a, x = b is given by f f(z) de.What
happened when ‘

1. the function under consideration is non-negative and continuous on the whole real line
and we would like to know, for example, the area of the region enclosed by the graph
of f and the z-axis and is on the right-hand (or left-hand) side of the line x = ¢?

2. the function under consideration blows up at a point ¢ € [a,b]; that is, lim+ f(x)
r—ct

diverges to o0 or —o0 (so that f is not continuous at ¢ but everywhere else) and we
would like to know the area of the region enclosed by the graph of f, the z-axis and

lines x = a and = = b?

b
Note that the definition of a definite integral | f(z)dx requires that the interval [a,b] be

0 a b b
finite and f be bounded. Therefore, J f(z) d, f f(z)dx and J f(z)dx when f is
a —00 a

unbounded are meaningless in the sense of Riemann integrals. How do we compute the area

of those unbounded regions?



Definition 8.34: Improper Integrals with Infinite Integration Limits

1. If f is Riemann integrable on the interval [a, b] for all a < b, then
oe b
J f(z)dx = lim | f(x)dx.
a b—0 Jg
2. If f is Riemann integrable on the interval [a, b] for all a < b, then

J_ flz)dx = lim | f(z)dx

—
a 0 a

3. If f is Riemann integrable on the interval [a, b] for all a < b, then

ff d:p_f e dx+ff

where ¢ is any real number.

In the first two cases, the improper integral converges when the limit exists. Other-
wise, the improper integral diverges. If the limits, as b approaches « (or a approaches
—0), approaches o0 or —oo, then the improper integral diverges to oo or —co. In the
third case, the improper integral on the left converges when both of the improper
integrals on the right converges, and diverges when either of the improper integrals
on the right diverges. The improper integral on the left diverges to oo (or —oo) if
it diverges and the improper integrals on the right is oo + o0, o0 + C or C' + o (or
(—0) + (=), (—20) + C or C + (—0)).

0

Example 8.35. Evaluate J
0

Since an anti-derivative of the function y =

e *dx and f dx.
2 +1

e and y = P is y = —e ™ and

y = arctan z, the Fundamental Theorem of Calculus implies that

r=b
=lim(l—-e?)=1-lime?’=1
=0 b—0 b—o0

0 b
J e “dr=1lim | e “dr=lim(—e™®)

0 b—0o0 0 b—o0

and
x=b

= lim arctanb = g

S| b
J dx = lim dx = lim arctanz
=0 b—0

0 «r2 + 1 b—0 0 SE2 + b—0o0

Q0

Example 8.36. Evaluate f (1 —z)e *dx.
1

Let u=1—2 and v = —e™* (so that dv = e™* dx). For any real number b, integration



by parts implies that

f@ e tdr = [(1—2)(—e )| - f(—e—w)(—dx) — (1—bet— f e d

1

—(1—=b)e " +e*

Therefore,

0 b
f (1—2)e®dr=lim | (1 -x)e"dr=lim(be™®—e!)=—¢7".
1

b—o0 1 b—o0

T

e}
Example 8.37. Evaluate J ¢ dr.

B
0
To evaluate the integral above, we evaluate the two integrals

o] x 0 x
f ¢ Qxdx and J e—zmd:v
o 1+e _o1l+e

By the substitution of variable u = ¢*, we find that du = e* dx; thus

: 1
flfe% dx:fl—ku? dU:arctanu—{—C’:arCtan(ex)_’_C‘

Therefore,
o e* b e* r=b
J - dr = lim dx = lim arctan(e”)
o 1+e% b—oo Jo 14 e b—a0 2=0
T
= li tan(e’) — arctan 1] = —
lim [arctan(e”) — arctan 1] 1
and similarly,
0 ex 0 ex =0
f - dr = lim dr = lim arctan(e”)
w1+ e a—s—o0 | 1+ 2 a——o0 z=a

. ay] T
= lim_ [arctan 1 — arctan(e®)] = R

Q0 T

The two integrals above implies that J 672 de ="
—plte® 4

Example 8.38. The improper integral J x dx diverges to oo, and the improper integral

0
f (sinx — 1) dx diverges to —co. The improper integral f sinz dx diverges, but not

—o0 o

diverges to o0 or —oo, and the improper integrals f x dx diverges but not diverges to oo
-0
or —oo.



o0
Example 8.39. The improper integral f >
0

w .
sin s
dr = —.
0 T 2

what its value is. In fact,

Theorem 8.40

1. If f is Riemann integrable on the interval [a, b] for all a < b, then

ff dx_jf dx—i—f flz Va<c,

provided that the improper integrals on both sides converge or diverge to oo (or
—o0).

2. If f is Riemann integrable on the interval [a, b] for all a < b, then

Jf dx—J f(x dx+Jf Ve<b,

provided that the improper integrals on both sides converge or diverge to oo (or
—0).

Q0
3. If f is Riemann integrable on the interval [a,b] for all a < b and f f(z)dx
—00

converges or diverges to o0 (or —o0), then

ff d:z:—l—ff dx—f f(z dx+ff Va,beR.

Proof. We only prove 1 and 3, for the proof of 2 is similar to the proof of 1.

1. By the properties of the definite integrals, for a < ¢ we have

Lbf(x) dr = ch(x) dx—i—fcbf(:c) dx

f d“”_e}i%Jf dx:gigg[ch(x)dﬁff(g;)dx}

:L f(x) dm+blggoff(m> du = ff(m dw+f f(z)dz

thus



a0
3. If J f(x)dx converges or diverges to oo (or —o0), then both improper integrals

J f(z)dx and f f(z) dx converge or diverge to oo (or —o0). Therefore,

ff da:—i—ff dx—J f(z dw+ff dx—i—ff
:J_Oof(x)da:—l—L flz)dz. O

Definition 8.41: Improper integrals with Infinite Discontinuities

1. If f is Riemann integrable on [a,c| for all a < ¢ < b, and f has an infinite

discontinuity at b; that is, lim f(z) = o or — oo, then
T—b~

Lbf(:v) dr = cligl— ch(x) dx

2. If f is Riemann integrable on [c,b] for all @ < ¢ < b, and f has an infinite

discontinuity at a; that is, hm f(z) =00 or — oo, then

w—>a

Lf( ir = tim [ (o) ds

C"(l c

3. Suppose that a < ¢ < b. If f is Riemann integrable on [a, c—¢] and [c+e€, b] for all

0 < € « 1, and f has an infinite discontinuity at ¢; that is lim+ f(z) =00 or —o0
r—C

and lim f(x) =0 or — o0, then

o Lb f(x)de = Lc f(z)dx + f f(z)dx

The convergence and divergence of the improper integrals with infinite discontinuities

are similar to the statements in Definition 8.34.

1

Example 8.42. Evaluate f 275 da.
0

We observe that the integrand has an infinite discontinuity at 0. Therefore,

1 1
3 =1 3
f r-3dr = lim t735dr = lim -3 = lim —(1—a§) =5
0

a—0t a—0t+ 2 T=a a—0t 2 2

2

Example 8.43. Evaluate f r 3 dx.
0



We observe that the integrand has an infinite discontinuity at 0. Therefore,

2 2 2
J 3 dr = lim 2 dr = lim ( 5 )

0 a—07t J, a—0t

o (L L)
= 1m —_— _— = N
T=a a—0t 8 2a2 ’

2
thus the improper integral f =3 dx diverges to 0.
0

2
Example 8.44. Evaluate f r3dx.

-1
Since the integrand has an infinite discontinuity at 0,

2 0 2
f 3 dr = f x 3 dr + f 3 dx.
1 1 0

We have shown in previous example that the second integral on the right-hand side diverges

to co. Similarly, the first integral on the right-hand side diverges to —oo since

= 11m {(— == — | = —00;
r=—1 b—0— 2()2 2 ’

0 b 2
3 dr = lim 3 dr = lim
-1 b—0— J_ b—0— 2

2
thus the improper integral f 73 dx diverges (but not diverges to oo or —0).
-1

-2
Remark 8.45. Even though y = —% is an anti-derivative of the function y = 272, you

cannot apply the “Fundamental Theorem of Calculus” to conclude that

2 —2 =2 1 1
f e 3de =2 :——+—:§
. e 87278

since y = 7% is not Riemann integrable on [—1,2].

Similar to Theorem 8.40, we also have the following

Theorem 8.46

If f is Riemann integrable on [a, ¢] for all a < ¢ < b, and f has an infinite discontinuity

at a or b, then

Lbf(x)dx:J:f(x)dx—l—f)f(x)dx Va<c<b,

provided that the improper integrals on both sides converge or diverge to oo (or —o0).




b
We can also consider improper integral J f(z)dx in which a = —o0 or b = o0, and f

has an infinite discontinuity at ¢ for a < ¢ < b. In this case, we define

Loof(x)dx—Ldf(x)dx—i—Loof(x)dx vd> e,
Jboof(x)dxZJdoof(x)dx+Lbf(x)dx Vd <c,

and etc. In other words, when the integrand and the domain of integration are unbounded,
we divide the integral into improper integrals of one type and compute those integrals

separately, pretending that the summing rule

Lbf(l‘>d:p _ El f(x)dx+fl2f(x)dx+...+J:1 f(a:)dx+£l f(z)dx

also holds for improper integrals.

0
Example 8.47. Evaluate L \/E((j;x—i—l)

We observe that the integrand has an infinite discontinuity at 0, and the domain of

integration is unbounded. Therefore,

J\fx—l— f\fx%—l ffx—i—l)

d
By the substitution v = \/x, du = —x; thus

NG
d 2d
fﬁ(;:_ 1 = JuQ fl = 2arctanu + C' = 2arctan/z + C .
Therefore,
| =1
J f&:+ ai0+f fx—i— a0t z=a
= alirgl+ <2 : % — 2arctan \/5) =—
and

foo dz ~ im J
1 Vr(z+1) b \f:v—i—l b

= lim <2arctan\[—2-—> =7 — T_
b—00 4 2

SEN

As a consequence,

oo™

J, D



Definition 8.48

b
absolutely if j | f(2)| dz converges.

b
Let J f(z) dx, where a,b could be infinite, be an improper integral.

b
1. The improper integral J f(x) dzx is said to be absolutely convergent or converge

b
2. The improper integral j f(z) dzx is said to be conditionally convergent or con-

b b
verge conditionally if J f(x) dz converges but j | f(2)| dz diverges (to o).

Remark 8.49. Even though it is not required in the definition that an absolutely convergent

improper integral has to converge, it is in fact true an absolutely convergent improper

integral converges.

S
Example 8.50. The improper integral J M g s conditionally convergent but not
x

0
absolutely convergent. To see that the improper integral is not absolutely convergent, we

note that if n e N,

sm x—|—2

fzm s1nx‘dx_z”:f2k” smx‘dx_ZJ%

0 o1 Y2(k-1)r

(T \smx| JQW |sm:c]
ZJ |z +2(k kz:l 2km

x+2

thus by the fact that

21 1+1+(1+1>+(1+1+1+1>+ < ! +o )
ko2 \3 4 5 6 7 8 7=t p ] 2nl 42 2n
1+1+(1+1)+(1+1+1+1> <1+1+ +1)
T2 \4 4 8§ 8 8 8 n o 2n 2"

1 1 1 n n 2"1vterms
=l+-4+-+ to==+1>—,
Tyt gt +% 5 t123

n terms

we find that

which approaches o0 as n — o0.



Theorem 8.51: A special type of improper integral

p—1

P diverges to co if p <1

fooda: — ifp>1,
1

e Comparison Test for Improper Integrals
In the last part of this section, we consider some criteria which can be used to judge if an
improper integral converges or diverges, without evaluating the exact value of the improper

integral.

Theorem 8.52: Direct Comparison Test

Let f and g be continuous functions and 0 < g(z) < f(z) on the interval [a, ).

o6}
1. If the improper integral f f(z)dx converges, then the improper integral
0 a
J g(x) dx converges.

a

2. If the improper integral J x) dz diverges to o0, then the improper integral
J f(z) dx diverges.

Similar result also holds for improper integrals given by other two cases in Definition

8.34 and the case with infinite discontinuities.

b b
Proof. For b > a, define G(b) = J g(x)dx and F(b) = f f(z)dz. By the Fundamental

Theorem of Calculus, F,G : [a,00) — R is differentiable (hence continuous). Since 0 <

g(x) < f(z) on [a,0), for all b > a we have 0 < G(b) < F(b), and F,G are monotone

increasing.
0
1. If the improper integral J f(z) dx converges, the blim F(b) = M exists. Since F' is
a —®0
monotone increasing, F'(b) < M for all b > a; thus G(b) < M for all b > a. By the
monotonicity of G, lim G(b) exists.
2. If the improper integral J x) dz diverges to oo, hm G(b) = 0; thus the fact that

G(b) < F(b) implies that lim F(b) = . O

b—o0

0
Example 8.53. Consider the improper integral f e dz. Note that e™** < e~ for all
1



x € [1,00). Since

o b z=b
e Pdr=1lim | e®dr=lim(—e™") = lim(e? —e™) = -,
1 b—w Jq b—ao0 =1 b—o0

0
by Theorem 8.52 we find that the improper integral J e dx converges.
1

D Gin2 202
. . . 1

Example 8.54. Consider the improper integral J Sm;p dx. Note that y < — for all
1z T T

x € [1,00). Since

© 1 ! , Lyje=b 1
L — dx = lim —Qda::hm(——) :hm(g—l):—l,

I‘z b—0o0 1 T b—0o0 T lx=1 b—0o0

o0
by Theorem 8.52 we find that the improper integral j e dx converges.
1

Example 8.55 (The Gamma Function). The Gamma function I' : (0,0) — R is defined
by

o0
['(x) = J t" e tdt.
0
We note that for each x € R, the integrand f(t) = t*~'e~" is positive on [0, 20).

1. If # > 1, the function y = t*'e~ 2 is differentiable on [0,0) and has a maximum at
the point t = 2(x — 1). Therefore,

0<fO) <2 Yz—1""'ez Vt=0.

By the fact that

0 . b . . t=b ,
J e2dt=1m | e 2dt = lim (— 26_5) = lim (2 - 26_5) =2,

0 b—w J b—0 t=0 b—o0
o0
we find that the improper integral f t*~le~t dt converges.
0

2. If 0 <z < 1, the function f has an infinite discontinuity at 0. Therefore,
0 1 0
J e dt:J tx—le—fdt+f et dt .
0 0 1

Again, the function y = t*~le~2 is bounded from above by 2*71(x — 1)*71; thus the



e}
same reason as above show that the improper integral J t*~le~t dt converges.
1

On the other hand, note that f(t) < ¢*~! for all ¢ € [0, 1]. By the fact that

t=1 1—-a”
= lim
t=a a—0t xT

1 1 t* 1
J " tdt = lim | ¢ 'dr = lim — =—,
0 a—0t J, a—0+ T x

1
we find that the improper integral J t*~le=tdt converges. Therefore, the improper
0
Q0
integral f t*~le~t dt converges.
0

3. If # <0, then t*"'e~" > t*"le~! for all t € [0, 1]. By the fact that

1 1
J t*te7tdt = lim t*te7ldt = o0,

0 a—0t J,

1
Theorem 8.52 implies that the improper integral J t*~le=t dt diverges to oo. This
0

0
implies that the improper integral J t*~le~t dt diverges to oo as well.
0

Theorem 8.56: Limit Comparison Test

Let f and ¢ be positive continuous functions on the interval [a,00). If the limit

lim f() = L for some 0 < L < o0, then
z—n g(x)

oe} e}
J f(z)dx converges if and only if J g(x)dzx converges.

a

Similar result also holds for improper integrals given by other two cases in Definition

8.34 and the case with infinite discontinuities.

Proof. By the fact lim J;Eg = L, there exists M > a such that
Tr—00
L
)M—L’ < —= whenever x> M .
g(x) 2
Therefore,
L 3L
0< §g(:v) < f(x) < 79(1‘) whenever x> M .

By the direct comparison test,

Q0 Q0
f f(x)dx converges if and only if J g(z)dx converges.
M M



The theorem is then concluded since J f(z) dx and f x) dz are both finite. [

1 - 1 -
Example 8.57. Consider the improper integral f re dx. Since lim (+16/)/$ =1,
r—00 X
the limit comparison test implies that
1+e® “dx
J + dx converges if and only if J — converges.
1 z 1 T

0
By Theorem 8.51, we find that the integral f dv diverges; thus the improper integral
1 X

Q0 1 —T .
f te dx diverges.
1

x
Example 8.58. Consider the improper integral J T Note that this is an improper
x + tanx
integral with infinite discontinuity at = = 0. Since
T+ tanz tan x sin
lim+—:1+lim =14 lim =2,
z—07F T z—0t X z—0t T COST
the limit comparison test implies that
B dx
—— converges if and only if — converges.
0 T+tanw
. . . Tdr i dx .
Since the improper integral — diverges (to ), we must have ———— diverges.
0o T 0 T+tanx
Example 8.59. Determine the convergence of the improper integral JOO _dr
p * . 1 g p p g 0 m *
_2 1 _1 . .
Note that i x73(x +1)73(x — 1)73. In the interval [0, 0), the integrand has

singular points at 0 and 1. Write

JOO x _J? dx _}_Jl dx +j2 dx +J°O dx (85.1)
o Vat—a2 ), Y2t — a2 1 Nt — 2 1 Vat — a2 o rt— a2 o
1. Let f(z) = —z 3 (z+1)"3(z—1)"3 and g(z) = 273. Then f, g are positive continuous
on [a, 5] for all a > 0. Moreover,
e

o = S -nT] =10,



and
% % 2 1 x:% 3
der = li “3dr = lim 3x3 -
L g(z) dzx ai%l+ ) x x ai%l+ T T

1
which shows that the improper integral J2 g(x) dx converges. Therefore, the limit
0

1
: Y 2 2 d
comparison test implies that JQ f(x)de = — JQ 3796 converges.
0 T

. Let f(z) = —a3(z +1)"3(z — 1)73 and g(z) = —(z — 1)3. Then f, g are positive

. 1 1
continuous on [5, b} for all 5 < b < 1. Moreover,

lim _f(x) = lim x_%(x—l— 1)_% —275 > 0,
e—1- g(r)  a—1-

and

1 b _
f (x)d lim | (z—1)3d lim Sz — )3 = 2
xr)dr = — lim x— xr=— lim —(x — =
%g 1= s o1 2 =1 24

1
which shows that the improper integral J g(x) dx converges. Therefore, the limit
1

converges.

2
1 1
. . . dx
comparison test implies that L f(z)de = — L Yk — 2

. Similar to the previous case, we let f(z) = 73 (z4+1)"3(z—1)"5 and g(z) = (z—1)3.

Then f, g are positive continuous on [a, 2| for all 1 < a < 2. Moreover,

lim J(@) = lim x*%(qﬁ— 1)*% =275 >0,
r—1t g(l’) r—1t
and ) )
3 g |2=2 3
dzl _]-_ld :_1 - —1)s = —
Jy stwrae= i | @ har= - im S 0i 7 <3

2
which shows that the improper integral J g(x)dx converges. Therefore, the limit
1
f _dr converges
1 vVt — a2 8es:

. Let f(z) =2 3(z+1)"3(x—1)"3 and g(z) = z~3. Then f, g are positive continuous

2
comparison test implies that J flx)de =
1

on [2,b] for all b > 2. Moreover,

i

2
_2 1)~
m ——= = lim vt )
r—00 g(;ﬂ) Tr—00 T~

Wl

(e = 1)

lim { i 1> 0
A\ @Dy T T

wik| ol



and

®© b 4 1 |x=b
J g(x)dr =1lim | z73dr=— lim 3z"3 =3

2 b—0 2 b—0 =2
0
which shows that the improper integral J g(x) dx converges. Therefore, the limit
ison test implies that | f(z)d [
comparison test implies tha x)dr = ———— converges.
p p L f L pa— g

Since the four improper integrals on the right-hand side of (8.5.1) converges, we find that

0
the improper integral J converges.
0

dzr
Yot _ 2

8.5.1 The Laplace transform (# > > % %)

Definition 8.60: Laplace Transform

Let f : [0,00) — R be continuous. The Laplace transform of f, denoted by Z(f), is
the function defined by

L(f)(s) = foo e=SUF(¢) dt (: lim Re—stf(t)dt>,

0 R—w Jo

and the domain of Z(f) is the set consisting of all numbers s for which the integral

converges.

Remark 8.61. In general, the Laplace transform of f can be defined, without assuming
Q0

that f is continuous on [0, c0), as long as the integral j et f(t) dt makes sense. Moreover,
0

if f is continuous and satisfies
()] < Me*™  Vte[0,0), (8.5.2)

then Z(f)(s) exists for all s > a. A function f is said to be of exponential order « if there
exist M > 0 such that the growth condition (8.5.2) holds.

Example 8.62. Let f : [0,00) — R be given by f(t) = t” for some p > —1. Recall that the
Gamma function I" : (0,00) — R is defined by

0
[(x) = J e~ dt
0



We note that if —1 < p < 0, f is not of exponential order a for all a € R; however, the

Laplace transform of f still exists. In fact, for s > 0,

R sR t

Z(f)(s) = lim | e dt = lim e*t(
0

R—0 0 R—0

)P@ _Tp+1)

s/ s sptl

In particular, if p = n € N u {0}, then

n!
(Z(f)(s):SnJrl Vs>0.

Example 8.63. Let g : [0,00) — R be given by ¢(¢) = e sin(bt) for some b # 0. Using
(8.2.1), we find that

1
Je(“_s)t sin(bt) dt = Goafi i (a — s)el" ) sin(bt) — bel@ ) cos(bt)| 4+ C'.
Therefore, for s > a,
Q0
Z(9)(s) = J et sin(bt) dt
0
=i 1 (a—s)t o bt b (a—s)t bt t=b
- bL%m (a—s)e sin(bt) — be cos(bt) o
B b
C(s—a)24 b2
Similarly, if h(t) = e* cos(bt), using (8.2.2) we find that for s > a,
Q0
Z(h)(s) = f el cos(bt) dt
0
— i ! @99 cos(bt) + be@ M sin(b) ||
- bglgom (a—s)e cos(bt) + be sin(bt) -
. s—a
(s —a)2+0b*"

Theorem 8.65: Linearity of the Laplace transform

Let f,g:]0,00) — R be functions whose Laplace transform exist for s > « and ¢ be
a constant. Then for s > «,

L Z(f+9)(s) = Z(f)(s) + ZL(9)(s). 2. Z(cf)(s) = cZ(f)(s)-




Theorem 8.66

Suppose that f : [0,00) — R is a function such that f, f', f”,--- , f™ are continuous
of exponential order a, and f(™ is piecewise continuous. Then .Z(f(™)(s) exists for

all s > a, and

L(f")(s) = s"L(f)(s) =" f(0)—s"2f'(0) =+ - —sf2(0) = f"7D(0) . (8.5.3)

Proof. We prove by induction. Suppose that f is continuously differentiable on [0, 00) and

is of exponential order a. Then for s > «,

oo b t=b b
f e S f'(t)dt = lim | e *" f'(t)dt = lim [e_St f(t) T sJ e f(t) dt]

0 b—o0 0 b—o0 0

=5 [ i) - 50+ i e 5 0) = s2(D)(s) - 1O

0

which shows that (8.5.3) holds for n = 1 and all continuously differentiable f.
Now suppose that (8.5.3) holds for all k-times continuously differentiable function f.

Then if s > a and f is (k + 1)-times continuously differentiable function on [0, ),

g(f(kJrl))(S):g((fl>(k))(8)
=5 L(f)(s) =" 0) =) (0) = = s(F) 2 (0) = (£)" 7 (0)

=" [sZ(f)(s) - ()] SLF0) = sF 2 (0) = — s FTD(0) = £(0)

=" L(f)(s) — 8" F(0) = sFTHF(0) = sF2F(0) — - - — s FD(0) — £(0)

which implies that (8.5.3) holds for the case n = k + 1. The theorem is then concluded by

induction. O]

e Applications in solving the ordinary differential equations

Let ag, a1, -+ ,an_1, Yo, Y1, " ,Yn_1 be given numbers, and g : [0,00) — R be a continuous
function of exponential order. The idea of solving an ordinary differential equation (here y

is the unknown function to be solved) of the form

any'™ + an 1y 4+ b ary’ + agy = g(s), (8.5.4a)
y(0) =40,4'(0) = 1, -+, " "(0) = Y1, (8.5.4b)

using the method of the Laplace transform is based on the following facts:



1. The Laplace transform is a one-to-one mapping in the sense that if f and ¢ are

continuous function such that Z(f) = Z(g) for s > «, then f = g on [0, ).

2. The solution of (8.5.4) is of exponential order « (so that the Laplace transform of

derivatives of y can be computed using Theorem 8.66).

Under these two facts, we then take the Laplace transform of (8.5.4a) and apply Theorem
8.65 and 8.66 to obtain, by letting Y (s) = Z(y)(s), that

an[s"Y () = " yo — " Pyr — -+ — SYn—2 — Yn1]
+ a1 [$"TY(8) = 8" Pyo — Sy — - — SYn—3 — Yn—2)
+ an—2 [SH_QY(S) - Sn_gyo - 3n_4yl — = SYn—a — ?/n—zﬂ

4+t [SY(S) — yo] —+ CLQY(S) = g(g)(s) ;
thus

1
Y(s) = X
ApS™ + Ap_18" 1+ a,_98" 2+ -+ ays+ ag

% [L(0)(5) + 5o(ans™ + 15" 2+ -+ ars + )

+y1(ans” ? + ap 18" 4 - azs+ag) £ + Yn—o(@ns + an_1) + yn,l}
1 n—1 n—j—1
= ZL(g)(s ; Gy s"_j_e_l} )
ApS™ + Ap_1 871 +an28”3+~-+a13+a0[ (9)(s) + Zy] Z ¢

7=0 £=0

The final step is to identify which function gives the Laplace transform above.

Example 8.64. Find the function y satisfying
y" + 2y’ + by = sint, y(0)=1, y'(0)=0.

Using the result in Example 8.63 and Theorem 8.66, with Y denoting .Z(y) we find that

1

s°Y (s) — s+ 2[sY (s) — 1] + 5Y (s) = o

Vs>a

for some a. Therefore,

Y (s) 1 < 1 n +2> s+2 . 1
s2+2s+5\s2+1 (s+1)24+22  (s24+2s+5)(s2+1)




Writing the last term as the sum of partial fractions, we have

1 B 1( s 3—2)'
(2425 +5)(s2+1) 10\s2+2s+5 s24+1/"

thus
5+2 1 S 1 s—2
Y N E————
O =z T G e 2 105241
11 s+1 9 2 1 s 1 1

01?42 06 F122 10241 5241
Therefore, Fact 1 and Example 8.63 imply that

9 1 1
y(t) = —e " cos(2t) + 2_O€_t sin(2t) — — cost + —sint.

10 10 )

8.6 Exercise

Problem 8.1. Find the following indefinite integrals.
vithe,, 3. stinzxdx 4. J exp(/x) dr

rlnx

1. chscxcotxdm 2. f

d. fa:arcsin:pdx 6. fxarctanxd:v 7. sz arctanzdr 8. f In(z? — 1) dx

Inzx
9. in/az d 10. tanz d 11.J —z% 12. ”“’ d
JSIH axr axr J<£IZ' an® rar £C€ X m X

13, J\/Eeﬁdx 14 farctanfd 15 J‘ln:c—kl

17. f\/tanxdx 18. stiancosxdx

Problem 8.2. The function y = e” ** and y = x2e” * don’t have elementary anti-derivatives,

but y = (222 + 1)e*” does. Find the indefinite integral f (222 + 1)e*” du.

Problem 8.3. Obtain a recursive formula for pr(ax” + b)4dz and use this relation to

find the indefinite integral fx3(a:7 +1)*dx.

Problem 8.4. Obtain a recursive formula for Jxm(ln x)" dx and use this relation to find

the indefinite integral Jx‘*(ln x)3 dx.



Problem 8.5. Find the area of the crescent-shaped region (called a lune) bounded by arcs
of circles with radii » and R. (See the figure)

B

[~

s
."// ....\ . Jl_ r /-; \".
| e \
|II R I.'I
\ /

\\._ﬁ M

Problem 8.6. Complete the following.

1. Let f : [a,b] — [c,d] be a continuously differentiable increasing function. Suppose
that f has an inverse f~!. Show that

b d
f f(x)da + f S () dy = bf(b) — af(a). (3.6.1)

2. How about if f is decreasing?

1

3. Use (8.6.1) to compute j

1
arcsin z dx and J arctan x dzx.
0 0

4. Let F' be an anti-derivative of a continuously differentiable function f with inverse

f~. Find an anti-derivative of f~! in terms of f and F.

Problem 8.7. For n € N u {0}, the Legendre polynomial of degree n, denoted by P,, is

defined by
1 ar

2 n
== (2 —1)".
2nn! dzn (@ )

Pu(x)

—_

1
. Show that f P, (x) Py (z)dz =0 if m # n.
-1

1
2. Show that f P,(x)?dx = for all n € N U {0}.
1

2n +1

w

1
. Show that J 2P, (z)dr =0 if m < n.
-1

W

1
. Evaluate f " P, (x) dz.
-1



Problem 8.8. Let aq,an, -, «a, be distinct real numbers, and

:]:

(x—ap)=(r—a)(x—) (. — ).

Use the partial fraction expansion to prove Newton’s formula

1 fork=n-1.

o/f 0/5 ok 0 fork=0,1,2,--- ,n—2,
/ + / +ot / =
g'(a1)  g'(a9) 9'(an)

Hint: By partial fraction, for k <n —1

(x—a)(r—a3) - (r—a,) xT—ay T—a3 T —ap
k(O‘J o)

Show that A;

7@ and conclude from here. Do the same for the case k =n — 1.
j

Problem 8.9. Find at least two ways to compute the following integrals.

z—1 322 —2 1+4cotx
L fo 4r — 5 du Z‘Jx3—2x—1dx 3 J 4 —cotx
1 4 2
4 Jx(af*—i—l) du g Jtanx—secxdx 0. fa:ﬁ—kxdx
Problem 8.10. Find the following indefinite integrals using the techniques of partial frac-
tions.
T T rz—1 2+ 1
1. J$4_1dx 2. JWCZ:E 3. Jx2—4x+5dx 4. fx3—x2

1 1 1 1
D. JxG—f—ldx 6. J(x—2)(x2+4)dx 7. fx+4+4 r4_1clgr: 8. f:r ﬁx—i—lda}

1 1 1 1

sinx cos 1 1
13. Jsm Y0+ cost dr 14, J3—2sinzd$ 15. Jl+sin9+cos€d€

Problem 8.11. Determine if the following improper integral converges or not.

1 JOO dx 5 foo dx 5 Joolnx 4 J'OO dx
o Jo at— a2 )i z(lnaz)e " Jip z(Inlnz)e

T T In 2 1 —vz
D. dix 6. J dix 7. f 2% do 8. J € dx
0 VT +sinz 0 T—sinz 0 0 VT




0 0 0 : 1
9. f do 10. f d 11. j Lsinr ;0 1o j In |z| dz.
—a0 ™ —1

1 et — eT 4+ e~ 2T ZIZ’2

1
Problem 8.12. Compute J de.

0 $2—|—1

. Uin(tz 4+ 1) d (YIn(tz+1) Lo In(tx 4 1)
Hint: Let I(t) = J;) T{—ldaj Usethe faCt that dtL T—i—l xr = . %T—Fl

where (i f(z,t) is the derivative of f w.r.t. ¢ variable by treating z as a constant.

1

Problem 8.13. Compute J : dr.
0 nr
. Lat -1 d Loat—1
Hint: Let I(t) = L s dz. Use the fact that £I(t) =) e
“ sinx
Problem 8.14. Compute . dx.
0
0 ,—tx o 0 —tx
Hint: Let I(t) = J % dx. Use the fact that I'(t) = %% dx and use the
0 0

fact that tlim I(t)=0.

—00



Chapter 9

Infinite Series

9.1 Sequences

Definition 9.1: Sequence

A sequence of real numbers (or simply a real sequence) is a function f : N — R.
The collection of numbers { f(1), f(2), f(3),--- } are called terms of the sequence and

the value of f at n is called the n-th term of the sequence. We usually use f, to

denote the n-th term of a sequence f : N — R, and this sequence is usually denoted
by {fn}2_, or simply {f,}.

Example 9.2. Let f : N — R be the sequence defined by f(n) =3+ (—1)". Then f is a

real sequence. Its terms are {2,4,2,4,---}.

Example 9.3. A sequence can also be defined recursively. For example, let {a,}*_; be
defined by

Q1 =20,  ap=V2.
Then as = V/2v/2, as = 1/24/2v/2, and etc. The general form of a,, is given by

1,1,1 1 2" —1
a, = 22Tatsttam — 9%

There are also sequences that are defined recursively but it is difficult to obtain the

general form of the sequence. For example, let {b,}>_; be defined by

bur1 =2+by, b =v2.
Then by = V2 4+ V2, bs = 1/2 + /2 + v/2, and etc.

200



Remark 9.4. Occasionally, it is convenient to begin a sequence with the 0-th term or even

the k-th term. In such cases, we write {a,}", and {a,}_, to denote the sequences.

Similar to the concept of the limit of functions, we would like to consider the limit
of sequences; that is, we would like to know to which value the n-th term of a sequence

approaches as n become larger and larger.

Definition 9.5

A sequence of real numbers {a,}°_, is said to converge to L if for every ¢ > 0, there
exists N > 0 such that

la, — L| <& whenever n > N.

Such an L (must be a real number and) is called a limit of the sequence. If {a,}>
converges to L, we write a,, — x as n — o0.

A sequence of real number {a,}> ;| is said to be convergent if there exists L € R
such that {a,}>_; converges to L. If no such L exists we say that {a,}_, does not

converge or simply diverges.

Motivation: Intuitively, we expect that a sequence of real numbers {a,}>_; converges to
a number L if “outside any open interval containing L there are only finitely many a,’s”.

[Ahi

The statement inside can be translated into the following mathematical statement:

Ve>0,#{neN|a,¢(L—¢c,L+¢)} <o, (9.1.1)

where # A denotes the number of points in the set A. One can easily show that the conver-
gence of a sequence defined by (9.1.1) is equivalent to Definition 9.5.
In the definition above, we do not exclude the possibility that there are two different

limits of a convergent sequence. In fact, this is never the case because of the following

Proposition 9.6

If {a,}>_, is a sequence of real numbers, and a, — a and a,, — b as n — o, then
a="b. (Flcach & ek - ).

We will not prove this proposition and treat it as a fact.

e Notation: Since the limit of a convergent sequence is unique, we use lim a, to denote
n—00

this unique limit of a convergent sequence {a,}>,.



Theorem 9.7

Let L be a real number, and f : [1,00) — R be a function of a real variable such that

lim f(x) = L. If {a,}*_; is a sequence such that f(n) = a, for every positive integer
T—00

n, then

lim a, = L.
n—aoo

Example 9.8. The limit of the sequence {e,}_; defined by e, = (1 + %)n is e.

When a sequence {a,}°_, is given by evaluating a differentiable function f : [1,0) — R

on N, sometimes we can use L’Hospital’s rule to find the limit of the sequence.

n?

Example 9.9. The limit of the sequence {a,};_, defined by a,, = 51 is

. x? . 2x . 2
lim = lim = lim —— =0.
z—0 2% — 1 z-022ln2 z-w 25”(111 2)2

There are cases that a sequence cannot be obtained by evaluating a function defined on
[1,00). In such cases, the limit of a sequence cannot be computed using L’Hospital’s rule

and it requires more techniques to find the limit.

!
Example 9.10. The limit of the sequence {s,}*_; defined by s, = nff, is v/2m; that
is, e
|
lim —" =1, (9.1.2)

n—0 A/2rnnte="

Similar to Theorem 1.14, we have the following

Theorem 9.11

Let {a,}°, and {b,}_, be sequences of real numbers such that lim a, = L and

n—0o0
lim b, = K. Then

n—a
1. lim(a, +b,) = L + K.
n—00
2. lim (a,b,) = LK. In particular, lim (ca,) = cL if ¢ is a real number.
3 dlim = L if K £0.

n—ow by, K




Theorem 9.12: Squeeze Theorem

Let {a,}?2;, {b,}°; and {c,}>_; be sequences of real numbers such that a,, < ¢, < b,
foralln > N. If lim a, = lim b,, = L, then lim ¢, = L.

n—ao0 n—a0 n—o0

Theorem 9.13: Absolute Value Theorem

Let {a,}>_; be a sequence of real numbers. If lim |a,| = 0, then lim a, = 0.
n—aoo n—aoo

Proof. Let {b,}r_, and {c,}°; be sequence of real numbers defined by b, = —|a,| and
¢y = |a,|. Then b, < a, < ¢, for all n € N. Since lim |a,| = 0, Theorem 9.11 implies that
n—ao0

lim b, = lim ¢, = 0 and the Squeeze Theorem further implies that lim a, = 0. ]
n—0o0 n—a0 n—0oo

Definition 9.14: Monotonicity of Sequences

A sequence {a,}r_; < R is said to be
1. (monotone) increasing if a, ;1 > a, for all n € N;
2. (monotone) decreasing if a, 11 < a, for all n € N;

3. monotone if {a,}? , is an increasing sequence or a decreasing sequence.

Example 9.15. The sequence {s,}> , defined in Example 9.10 is a monotone decreasing

sequence.

Definition 9.16: Boundedness of Sequences
Let {a,}>_; be a sequence of real numbers.

1. {a,}r_, is said to be bounded (3 % ) if there exists M € R such that

la,| < M for all n e N,

2. {an}y_, is said to be bounded from above (7 } % ) if there exists B € R,
called an upper bound of the sequence, such that a,, < B for all n € N. Such

a number B is called an upper bound of the sequence.

3. {an}y_, is said to be bounded from below (7 T % ) if there exists A € R,
called a lower bound of the sequence, such that A < a,, for all n € N. Such a

number A is called a lower bound of the sequence.




Example 9.17. The sequence {a,}_; defined by a, = n is bounded from below by 0 by

not bounded from above.

Proposition 9.18

A convergent sequence of real numbers is bounded (#7|jzar<s 5 &) .

Proof. Let {a,}_; be a convergent sequence with limit L. Then by the definition of limits

of sequences, there exists N > 0 such that
a,e€(L—1,L+1) Vn>=N.
Let M = max {|ai|, |as|,- -, lan—1],|L| + 1}. Then |a,| < M for all n. € N. O

Remark 9.19. A bounded sequence might not be convergent. For example, let {a,}>_; be
defined by a,, = 3 + (—1)". Then

a1:a3:a5:-~:a2k_1:--~:2 and a2:a4:a6:---:a2k:---:4.
Therefore, the only possible limits are {2,4}; however, by the fact that

#{neN|a, ¢ (1,3)} =#{neN|a, ¢ (3,5)} =0,
we find that 2 and 4 are not the limit of {a,}> ;. Therefore, {a,}>; does not converge.

e Completeness of Real Numbers:

One important property of the real numbers is that they are complete. The complete-
ness axiom for real numbers states that “every bounded sequence of real numbers has a least
upper bound and a greatest lower bound”; that is, if {a,}>_; is a bounded sequence of
real numbers, then there exists an upper bound M and a lower bound m of {a,}°; such

that there is no smaller upper bound nor greater lower bound of {a,}>_;.

Theorem 9.20: Monotone Sequence Property (MSP)

Let {a,}y; be a monotone sequence of real numbers. Then {a,};_, converges if and

only if {a,}*_; is bounded.

Proof. 1t suffices to show the “<"” direction.
Without loss of generality, we can assume that {a,}~, is increasing and bounded. By

the completeness of real numbers, there exists a least upper bound M for the sequence

{an};.zozl-



Let e > 0 be given. Since M is the least upper bound for {a,}*_,, M —¢ is not an upper
bound; thus there exists N € N such that ay > M —¢. Since {a,}, is increasing, a,, = ay
for all n = N. Therefore,

M—-—c<a, <M Yn>=N

which implies that
|an_M|<5 Vn>=N.

The statement above shows that {a,}?_; converges to M. O

Remark 9.21. A sequence of real numbers {a,}>_, is called a Cauchy sequence if for

every € > ( there exists N > 0 such that
la, —am| < e whenever n,m > N .

A convergent sequence must be a Cauchy sequence. Moreover, the completeness of real

numbers is equivalent to that “every Cauchy sequence of real number converges”.

9.2 Series and Convergence

An infinite series is the “sum” of an infinite sequence. If {a,}>_; is a sequence of real

numbers, then

o0
Zak:a1+a2+---+an+---
k=1
is an infinite series (or simply series). The numbers ay, ag, as, --- are called the terms of

the series. For convenience, the sum could begin the index at n = 0 or some other integer.

Definition 9.22

0
The series Y, ay is said to be convergent or converge to S if the sequence of the partial
k=1

sum, denoted by {S,}>°, and defined by

Sp= Y ap=a1+ay+ - +ay,

k=1
©¢]
converges to S. S, is called the n-th partial sum of the series )] a.
k=1
Q0 Q0
When the series converges, we write S = > a; and ), ay is said to be convergent.
k=1 k=1
If {S,}°_; diverges, the series is said to be divergent or diverge. If lim S, = « (or

n—o0
—0), the series is said to diverge to oo (or —o0).




Example 9.23. The n-th partial sum of the series Z ! is
~ k(k+1)

n

ZMH “2Gm0=0-)G g+ G )

k=1 k=1

Il
—_

n+1;

0
. 1
converges to 1, and we write

thus the series —_ , —_— =
Z k(k+1) = k(k+1)

2
Example 9.24. The n-th partial sum of the series Z TP 1 is

NgE
I

2 " 2 no 1
k2 =1 g(zk—1)(2k+1):Z<2k—1_2k+1>

k=1 k=1 k=1
_(1 1)+<1 1>+ +< 1 1 )_1 1
- 3 3 5 on—1 2n+1/) 2n 41’
hus th 1, and ite 3 2
thus the series Z T2 1 converges to 1, and we write ]Elm =

The series in the previous two examples are series of the form

n

Z(bk_bk+1):(bl_b2)+(b2_b3)+"'+(bn_bn+1)+"'a
k=1

and are called telescoping series. A telescoping series converges if and only if lim b, con-
n—00

verges.

©¢]

Example 9.25. The series > r*, where r is a real number, is called a geometric series
k=1

(with ratio r). Note that the n-th partial sum of the series is

n 1—7”n+1 if 1
Sn:Zrk:1+7’+r2+---+7’”: 1—7r r=4,
k=1 n+1 ifr=1.

Therefore, the geometric series converges if and only if the common ratio r satisfies |r| < 1.



Theorem 9.26

0 Q0
Let > ar and ). be convergent series, and c¢ is a real number. Then
k=1 k=1

Theorem 9.27: Cauchy Criteria

0
A series Y. ai converges if and only if for every e > 0, there exists N > 0 such that
k=1

)Zak‘<€ whenever n> N, (> 0.

o6}
Proof. Let S, be the n-th partial sum of the series >, ag. Then by Remark 9.21,

k=1
0

> ax converges < {S,}°_, is a convergent sequence
= < {S,}¥, is a Cauchy sequence
< for every € > 0, there exists N > 0 such that
Sy, — Sm| < € whenever n,m > N

< for every ¢ > 0, there exists N > 0 such that

lay + ani1 + -+ anse| < e whenever n > N and ¢ > 0. H
Corollary 9.28: n-th Term Test
e}
If the series )  aj converges, then klim ap = 0.
k=1 —©
a0
Remark 9.29. It is not true that lim a,, = 0 implies the convergence of > a;. For example,
o]
. . . 1 .. .
we have shown in Example 8.50 that the harmonic series »| % diverges to co while we know
k=1

that lim 1 =0.

n—ow N



Corollary 9.30: n-th term test for divergence

0

Let {a,}?, be a sequence. If lim a, # 0 or does not exist, then the series > aj
n—00 k=1

diverges.

9.3 The Integral Test and p-Series

9.3.1 The integral test

Suppose that the sequence {a,}?; is obtained by evaluating a non-negative continuous
decreasing function f : [1,0) — R on N; that is, f(n) = a,. Then

J f(x zi: ar < a; + f f(z)da. (9.3.1)

Since the sequence of partial sums {S,}>°, of the series Z ay, is increasing, the complete-
k=1
ness of real numbers implies that {S,}°; converges if and only if the improper integral

Q0
f f(z) dx converges.
1

Theorem 9.31

Let f :[1,00) — R be a non-negative continuous decreasing function. The series

Z f(k) converges if and only if the improper integral J f(z) dx converges.

o0
Example 9.32. The series ), converges since
k=1

— k21
* dx b dw =b m
J 5 = lim f = lim arctanx = lim (arctanb — arctan 1) = —
L 2241 s, 2241 b =1 b 4

and the function f(z) = is non-negative continuous and decreasing on [1, o0).

2+ 1
&, k
Example 9.33. The series »] -5—— diverges since
= B2+
0 b 2 —
1 =t 1
J T e —lim [ =t de = tm B D L M@ 1) — 2] =
1

241 b ) 22 + 1 b—o0 2 =1 2b->w0

and the function f(z) = is non-negative continuous and decreasing on [1, c0).

241



a0
Example 9.34. The series ), converges since
k=2

klnk
“ dx . b dr (pmev b pudy, . b Ju , u=Inb
= lim =" lim = lim — = limlnu
9 xlnx  bow )y xlnx b—o Jl o €¥Iner  boow o U bow u=In2
= lim(Inlnb —Inln2) = o
b—00

and the function f(x) =

i is non-negative continuous and decreasing on [2, c0).
rinr

9.3.2 p-series

A series of the form

is called a p-series. The series is a function of p, and this function is usually called the

Riemann zeta function; that is,

)=

n=1

A harmonic series is the p-series with p = 1, and a general harmonic series is of the form

=1
;akﬁLb'

By Theorem 8.51 and 9.31, the p-series converges if and only if p > 1.

0 2
Remark 9.35. It can be shown that ] % = % In fact, for all integer £ > 2, the number
k=1

a0

1 .. . .
2. — can be computed by hand (even though it is very time consuming).
k=1"T

Remark 9.36. Using (9.3.1), we find that

<l+Inn VYneN.

=

In(n+1) < Z
k=1

Therefore, the sequence {a,}*_; defined by

"
p= 3 =1
a l;lkj nn



is bounded. Moreover,

— —il—l —Tflﬂ( +1)=1 (1+1)— !
a, an+1—k:1k nn kzlk n(n =In - 1l

Since the derivative of the function f(z) = In(1 + z) — - Y is positive on [0, 1], we find

+1
that f is increasing on [0, 1]; thus
1 1 1 0
1n(1+ﬁ)—n+1 =f(-)=f(0)=lnl-7=0 V¥neN

which shows that a,, > a,41. Therefore, {a,})°_; is monotone decreasing and bounded from
below (by 0). The completeness of real numbers then implies the convergence of the sequence
{a,}*_;. The limit

n

. 1
T (3] 7~ 1nn)

is called Euler’s constant. FEuler’s constant is approximated 0.5772.

9.3.3 Error estimates

Similar to (9.3.1), under the same setting we have
o0 e0]
Sn+f f(x)dx<5<5’n+f f(z)dx VneN. (9.3.2)
n+1 n

The inequality above shows the following

Theorem 9.37: Bounds for the Remainder in the Integral Test

Let f : [1,0) — R be a non-negative continuous decreasing function such that the

o0 n
series S = >, f(k) converges. Then the remainder R, = S —S,,, where S,, = >} f(k),
k=1 k=1

satisfies the inequality

J:Llf(a:) dr < R, < LOO f(z)dx.

0

Example 9.38. Estimate the sum of the series ) % using the inequalities in (9.3.2) and
n=17

n = 10.

Since

“1 —1p=b 1
f —dxr = lim — = —,

n X2 b= T lz=n N



using (9.3.2) we find that

5+1<§:1<5 +1
10 11 \\k:ﬂrk2 X 210 10.

Computing S1g, we obtain that

1 1 11
=144+t —+ — ~ 1.54977;
510 49 TR

thus

0
1.64068 < )| — < 1.64977.
k=1

1
K2
9.4 Comparisons of Series

When the sequence {a,}r_; is not obtained by a, = f(n) for some decreasing function
0

f :[1,0) > R, the convergence of the series > a; cannot be judged by the convergence
k=1

o0
of the improper integral f f(z)dz. To determine the convergence of this kind of series,
1

usually one uses comparison tests.

9.4.1 Direct Comparison Test

Theorem 9.39

Let {an}2, {b,}2_, be sequences of real numbers, and 0 < a,, < b, for all n e N.

o0 o0
1. If >} by converges, then >’ a; converges.
k=1 k=1

o0 Q0
2. If > ay diverges, then > a; diverges.
k=1 k=1

0 0

Proof. Let S,, and T,, be the n-th partial sum of the series > a; and > by, respectively;
k=1 k=1

that is, n

Sn:Zak and Tn:ibk.
k=1 k=1

Then by the assumption that 0 < a,, < b, for all n € N, we find that 0 < .S,, < T,, for all

neN, and {S,}, and {7,,}°, are monotone increasing sequences.



e}
1. If > by converges, lim T,, = T exists; thus 0 < S,, < 7T,, < T for all n € N. Since
k=1 n—90

{Sn}2_, is increasing, the monotone sequence property shows that lim S, exists; thus
n—0o0
Q0

> ay converges.
k=1

2. If 2 ay diverges, hm S, = o0; thus by the fact that S, < T, for all n e N, we find
k=1

that lim 7, = co. Therefore Z by diverges (to o). O

n—0o0

Remark 9.40. It does not require that 0 < a,, < b,, for all n € N for the direct comparison
test to hold. The condition can be relaxed by that “0 < a,, < b,, for all n = N” for some N

since the sum of the first N — 1 terms does not affect the convergence of the series.

. & 1+sink . 1+ si 2
Example 9.41. The series ), =TT converges since TSR 2 forall ne N and the
- k2 n? n?
. =
p-series Y, 73 converges.
k=1

& 1 1
Example 9.42. The series ), 5 gk converges since 5 < I for all n € N and the
k=1

+ 3% +3n
Q0
geometric series Y, — 3k converges.
k=1
Example 9.43. The series Z ! diverges since L > L for all n € N and the
2+ Vk 2+4/n " 3yn
. 1 1& 1
p-series dlverges
kgl 3VE 3 kzl
1 1 1
One can also use the fact that — for all n > 4 and Z — diverges to conclude
2+ \/ﬁ n =k

o0
1
that ——— diverges.
k§1 2+ \/E &

9.4.2 Limit Comparison Test

Theorem 9.44

Let {an}> , {bn}2_, be sequences of real numbers, ap, by, > 0 for all n € N and

lim 2% — =1L,
n—o0 b
e} e 6}
where L is a non-zero real number. Then )] a; converges if and only if ] by con-
k=1 k=1

verges.




Proof. We first note that if L # 0, then L > 0 since Z—” > ( for all n € N. By the fact that

n

lim & = L, there exists N > 0 such that n L‘ <3 whenever n > N. In other words,
n—a0 Oy n
£<0L—"<%f01raulln>]\7;thus
2 by, 2
3L 2
O<a, < Tbn and 0<b, < Zan whenever n > N.

0 0
By Theorem 9.39 and Remark 9.40, we find that > a; converges if and only if > by

k=1 k=1
converges.

o0
Remark 9.45. 1. If lim 2 = 0, then the convergence of >’ by implies the convergence of
n—oo by, =1
[ee}

> ax, but not necessary the reverse direction.
k=1

2. The condition “a,,b, > 0 for all n € N” can be relaxed by “a,, and b,, are sign-definite
for n = N, where a sequence {c,}>_, is called sign-definite for n = N if ¢,, > 0 for all

n>=Norc,<0foralln=>N.

Example 9.46. Recall that in Example 9.42 and 9.43 we have shown that the series

0 e 6}
—— converges and the series ——— diverges using the direct comparison test.
k§12+3k & 1;:124-\/% & & P
Note that since )
1
lim 2+13n =1 and lim ﬂ =1,
n—oo n—w -
3n Jn
using the convergence of the p-series and the limit comparison test we can also conclude
Q0 Q0
that ———— converges and —— diverges.
PIEE aesand 2, o e
0
Example 9.47. The general harmonic series ) 1l diverges for the following reasons:
k=14
L1
1. if a =0, then clearly >’ 7 diverges.
k=1
1
: & 1. . ok
2. if a # 0, then >, — diverges and lim —4*— = 1.
k=1 ak n—ao0

ak+b



9.5 The Ratio and Root Tests

9.5.1 The Ratio Test

Theorem 9.48: Ratio Test

0
Let > ax be a series with positive terms.
k=1
1. The series Y, aj converges if lim <1
k=1 n—o0 Qp
. L . . . Gp41
2. The series ), a diverges (to co) if lim > 1.
k=1 n—w 0n
. . L+1
Proof. Suppose that lim Gntl _ J exists. Define r = ———.
n—00  Op

1. Assume that L < 1. Then for ¢ = %, there exists N > 0 such that

Ap4-1 1-—
" _L|< == whenever n > N;
Qy, 2
thus
Ap+1
0< 2L whenever n > N .
ap,

Note that 0 < r < 1, and the inequality above implies that if n > N, a,.1 < ra,.
Therefore,

0<a, <ayr™% foralln > N.
oo a0
Now, since the series ), anT"® converges, the comparison test implies that > a con-
k=1 k=1
verges as well.

2. Assume that L > 1. Then for ¢ = %, there exists NV > 0 such that

n L—-1
it —L|<T whenever n > N ;

Qn

thus

Ap+1
< = whenever n > N .

Qp,
Note that r > 1, and the inequality above implies that if n > N, a,,1 > ra,.
Therefore,

0<ayr™ ¥V <a, forallm > N .



0 o0
Now, since the series Y. an7*~V diverges, the comparison test implies that . a

. k=1 k=1
diverges as well.
. an—|—1 . &
Remark 9.49. When lim = 1, the convergence or divergence of >} a; cannot be
n—0 Qp n=1

concluded. For example, the p-series could converge or diverge depending on how large p

is, but no matter what p is,

1 p
lim M — 1.
n—00 npkP

0 2k
Example 9.50. The series ), 77 converges since
k=1

gn+1 1)! 2
i 2/ DY 2y
n—00 2”/n! n—on + 1

0 f29k+1
Example 9.51. The series ’El 3

converges since

1 22n+2 3n+l 2 1 2 2
lim (n+1) / = lim _—(n—i— ) =

- <1.
00 n22n+1/3n n—w 3 nQ 3

© 1.k
Example 9.52. The series ) o diverges since
k=1

n+1 1| 1 n
i DT/ DY (1+—) —e>1.

n—00 nn/nl n—o0

9.5.2 The Root Test

Theorem 9.53: Root Test

o
Let > ax be a series with positive terms.
k=1

0
1. The series Y] aj converges if lim ¢/a, < 1.
k=1 n—w

0 ¢]
2. The series ), a; diverges (to oo) if lim {/a, > 1.

k=1 n—0

. L+1
Proof. Suppose that lim {/a, = L exists. Define r = i.
n—aoo



1. Assume that L < 1. Then for ¢ = %, there exists N > 0 such that

1—-L
|«"/an — L’ < — whenever n > N ;
thus
0< Wa, <r whenever n > N
or equivalently,
0<a,<r" whenever n > N .

oe}
By the fact that 0 < r < 1, the series Y, ¥ converges; thus the comparison test

k=1
Q0
implies that > a; converges as well.
k=1
2. Left as an exercise. O
Q0
Remark 9.54. When lim {/a, = 1, the convergence or divergence of > a; cannot be

n—00 n=1

concluded. For example, the p-series could converge or diverge depending on how large p
is, but no matter what p is,

mnvﬁ:(hmq%le.

n—0o0 n—00

o 2k
Example 9.55. The series ];1 2% COTVerges since

2n L 2
e\ w . e
lim(—) =Ilm —=0<1.
n—ow \ N" n—w 1
We also note that the convergence of this series can be obtained through the ratio test:
2(n+1) n+1 2
e n+1 e
lim é( ) = lim (
n—o e2n /nn n—owon 4+ 1

1\—"

1+-) T =0<1.

n
© 29kt

Example 9.56. The series ), 3
k=1

converges since

R L .
Example 9.57. The series Z o diverges since
=1 R

n

3=

i (n”)i "y ( n 27mn”e‘") . ( e )
im | — = lim = lim
n—ow \ n! n—0 \4/2mnn"e " n! n—0 \4/27n

here we have used Stirling’s formula (9.1.2) to compute the limit.

=e>1,



Remark 9.58. Observe from Example 9.51, 9.52, 9.56 and 9.57, we see that as long as

. a 1 . . .. e e . .
lim 2 and lim {/a, exists, then the limits are the same. This is in fact true in general,
n—o n—0o0

but we will not prove it since this is not our focus.

9.6 Absolute and Conditional Convergence

In the previous three sections we consider the convergence of series whose terms do not have

different signs. How about the convergence of series like
0 k+1 e} .
(—1) sin k
Z T Z T and etc.
k=1 k=1

In the following two sections, we will focus on how to judge the convergence of a series that

has both positive and negative terms.
Definition 9.59
Q0

An infinite series Y ay is said to be absolutely convergent or converge absolutely if the
k=1

o0 Q0
series Y |ay| converges. An infinite series ) ay is said to be conditionally convergent
k=1 k=1
Q0 0
or converge conditionally if > a; converges but > |ax| diverges (to o).
k=1 k=1

(—1)F
kP

Q0
Example 9.60. The series )’ converge absolutely for p > 1 but does not converge
k=1

0
1
absolutely for p < 1 since the p-series )| Tp converges for p > 1 and diverges for p < 1.
k=1

Example 9.61. The series ), % converges absolutely for p > 1 since
k=1

1
< — VneN

npk

sinn

o<]

npkP

a0
and the p-series )] Tp converges for p > 1.
k=1

Theorem 9.62

An absolutely convergent series is convergent. (% ¥4z achJzac)




0

Proof. Let >’ a; be an absolutely convergent series, and € > 0 be given. Since Y, |ag]
k=1 k=1
converges, the Cauchy criteria implies that there exists N > 0 such that

n-+p
‘ Z |ak|‘ <e whenever n > N and p > 0.

Therefore, if n > N and p > 0,

n+p n+p

‘Zak‘éZ\akl<€
k=n k=n

o0

thus the Cauchy criteria implies that > a; converges. O
k=1

Corollary 9.63: Ratio and Root Tests

0

The series ), aj converges if hm la ‘n+’1| <1lor hm an| < 1.
k=1 n

. & (—1)k2k .
Example 9.64. The series )’ L converges since
k=1 :
‘ (_1)n+12n+1 2n+1
: (n+1)! ‘_ . (n+1) .
T Ty T T = i o =0 <
‘ n! n!
which shows the absolute convergence of the series the series }] T
k=1 :
& (—1)kF1E! .
Example 9.65. The series ) converges since
2135 (2k+1)
‘ "+2(n+1) ‘ (n+1)!
.3.5..... 1 1
o 112305 1(2n+3) gy L35 @n+3) . oontl 1 _
n—00 ‘ 1)”Jr n! ‘ n—00 n! n—ow 2n +3 2
1-3. 5 ..... (2n +1) 1-3-5----- (2n+1)
(_ )k+1k!

which shows the absolute convergence of the series Z T35 @il




0 2 o k
Example 9.66. Consider the series 1;1 W Since
2n % 2 1
lim[n ] — lim = = lim -~ =0<1,
n—oo L(n!)" n—onl  nson—1(n—2)

0 k‘2k
= (kD

the series converges absolutely. By the fact that
k

(n%sinn)™| _ (n?*)"
| e Sy TN
(k? sin k)*

0
the comparison test implies that the series | converges absolutely.

s (kD

9.6.1 Alternating Series

In the previous two sections we consider the convergence of series whose terms do not have

different signs. How about the convergence of series like

e} o0] .
(—1)k+t Z sin k
Z — and etc.
ok =k

In the following two sections, we will focus on how to judge the convergence of a series that

has both positive and negative terms.

Theorem 9.67: Dirichlet’s Test

Let {an} 1, {pn}, be sequences of real numbers such that

0

1. the sequence of partial sums of the series ). ay is bounded; that is, there exists
k=1
M e R such that | > ak‘ < M for all n e N.

k=1
2. {pn}, is a decreasing sequence, and lim p, = 0.
n—0oo

n—

a0
Then ) axpy converges.
k=1

Proof. Let € > 0 be given. Since {p,}r_, is decreasing and lim p,, = 0, there exists N > 0
n—a0

such that
whenever n > N.




Define S,, = >, ag. Then if n > N and ¢ > 0,
k=1

n+4
’ Z Clkpk‘ = |(Sn - Sn—l)pn + (Sn—l—l - Sn)pn+1 + (Sn+2 — Sn+1>pn+2 + -
k=n

+ (Snir—1 = Snie—2)Pnye—1 + (Snie — Sn—l—(—l)pn-l-ﬂ‘

= | =Sn-1Pn 4 Sn(Pn = Put1) + Sn1(Prsr = Prr2) + -+ Sngec1(Dnre1 — Pute)
+ S tPrse]

< [Sn—1pal + 180 (Pn = Pra1) | + [Sns1 (Pt — Ps2) | + - 4 [Sne(Prre—1 — Prte)|
+ [Sntes1Pnrel

< Mpn + M(pn = pns1) + M(pays — paya) + -+ M(Ppyo—1 — Prye) + Mprye

2Me
=2M .
Pn < 57 1 <e
0
The convergence of Y axpy then follows from the Cauchy criteria (Theorem 9.27). 0]
k=1
Corollary 9.68
©¢]
Let {p,}®_, be a decreasing sequence of real numbers. If lim p, = 0, then Y (—=1)¥p
n—®w k=1

e}
and Y (—1)*1p, converge.
k=1

0 (_1\k+1
Example 9.69. The series ), ( ? converges conditionally for 0 < p < 1 since
k=1
0 (_1)k+1
1> converges due the fact that
=1 kP
’ Z(—l) H‘ <1 and {—p} is decreasing and converges to 0.
neJn=1
k=1
2 (=1)k o . :
2. > ‘ P ) diverges for it is a p-series with 0 < p < 1.
k=1

0 (_ )k
Similarly, — - converges conditionally.
¥ 2 Taih 1) ONVers Y

. & sink .
Example 9.70. The series ), % converges for p > 0 since
k=1



1 2k+1

n COS 5 — COS 5=
1. Y sink = 22sm —2 (thus
= 2

1 . . 1
2. {—p}oozl is decreasing and 7}1_1}1(}0 i 0.

DO o} 1 DO o
We remark here that | Slzk =Z 5 Y Smgm) is the Fourier series of the
k=1

. om—
function

e Alternating Series Remainder

Theorem 9.71

Let {a,}2 1, {pn}2; be sequences of real numbers satisfying conditions in Theorem

ak’ < M for all n € N, then

k=1

‘ Z Upr — Z akpk‘ = ‘ akpk‘ < 2Mppy1 -
k=n+1

Moreover, if a; = (—1)*, then

D = > ()" | < payt VneN.

k=1 k=1

o6}

Sketch of Proof. Let S, = >, aj. According to the proof of the Abel test, we have
=1

n+4
‘ Z @kpk‘ [Sn—1[pn + [Sul(Pr = Pat1) + [Sna1l (Prs1 — Pat2) + -+ + [Snsel (Prte—1 — Pate)
(9.6.1)

+ [Snter1|Pore -

Note that for the general case, by the fact that |S,| <

decreasing, we conclude that for all £ > 0

n+¢
)Zakpk‘ 2Mp, VneN;

thus if n e N,
n+1+z n+1+€

‘ Z axpr — Z akpk‘ = lim ) kpr — Z akpk) = lim ’ akpk‘ < 2Mppy1 -

=n+1

M for all n € N and {p,}>, is



For the case of alternating series, we note that terms of {S,}*_; are {1,0,1,0,1,---};
thus (9.6.1) implies that

ee} n
DD e = D (-0 e <pupr ¥neN. O
k=1 k=1

Q0
1
Example 9.72. Approximate the sum of the series ) (—1)’““5 by its first six terms, we
k=1 -
obtain that

6
101 1 1 1 1
_1\k+1 - - - = T~
,;1( D n=n gty a Ty g ™ 063194

Moreover, by Theorem 9.71, we find that

1
—— & (0.0002.

(=1) 71 5040

k!

M=

’i(_l)k—&-ll_ 1 ‘ 1
= k!

k

I
A

Example 9.73. Determine the number of terms required to approximate the sum of the
] 0 (_1)k+1
series Y.

k=1

By Theorem 9.71,

e with an error of less than 0.0001.

O (71)k+1 n (_1)k+1 1 ‘
’Z kA -2 A ’g(n—I—l)‘“

< 0.0001 (that is, n = 9), we obtain that

thus choosing n such that e

9.7 Taylor Polynomials and Approximations

d* f .
continuous on (a,b) for 1 < k < n + 1, then for z € (a,b), the Fundamental Theorem of

Suppose that f : (a,b) — R is (n + 1)-times continuously differentiable; that is



Calculus and integration-by-parts imply that

Jf t)dt = )(t — x) Jﬂ
— f(e)e—2) - f )
— F(e)(z — ¢) U(w x_ijqw@EMQﬁ]

C

e
f

/( )(x_c)2+fmf///(t) (t _2x)2 dt

SN o

mea )ﬁ

where the last equality can be shown by induction. Therefore,

o C)(x—c)’“r(—1)”fo(”“)(t)¥dt. (9.7.1)

k=0

Definition 9.74

If f has n derivatives at ¢, then the polynomial

is called the n-th (order) Taylor polynomial for f at ¢. The n-th Taylor polynomial
for f at 0 is also called the n-th (order) Maclaurin polynomial for f.

Example 9.75. The n-th Maclaurin polynomial for the function f(x) = e® is

n f(k)
-3

k=0

2 .1'3 ™

0, w1 T
xzzyx—Hw+§+§+ +




Example 9.76. The n-th Maclaurin polynomial for the function f(z) = In(1 4 z) is given

k=0 k! k=1 k! k=1 k! k=1 k
$2 N I3 .%'4 N N (_1)n—1 .
=T — — —_— = — T
2 3 4 n ’

here we have used ¢ (z) = (=1)*1(k — 1)!(z + 1)~* to compute ¢ (0).
The n-th Taylor polynomial for the function g(z) = Inx at 1 is given by

n o) n o) YR —
(e

:];1 (- 1)

:(x_l)_(:v—zl) +(:1:—31) _(x:ll) +”'+(—173J” (x—1)",

here we have used ¢ (z) = (—1)*1(k — 1)!2™ to compute ¢*)(1). We note that @, (z) =
Po(z —1) (and g(z) = f(z — 1)).

Example 9.77. The (2n)-th Maclaurin polynomial for the function f(z) = cosx is given
by

2n on n B
Pon(z) = 2 f(lz'(())xk . f(’::'(O) F_qg Z J(v(2k 1)(0)x2’“*1 . Z FER(0)

k=0 k=1 k=1

- f(%)(()) 2k ?  xt af (=D)" ,
=1 — 14 2 n
+§ 2Ky " SRR TIR C TR

here we have used f®(z) = cos (z + %T) to compute f*)(0). We also note that Py, (r) =
Py,11(x) for all n e N.

The (2n — 1)-th Maclaurin polynomial for the function g(x) = sinx is given by

2n—1 (k 2n—1 g i g(zk 1) L2k n g 2H
Q2n71(x) = ];) Z Z (2/{ — 1 N Z
_ Zn: g(2k—1)(0) Z‘Qk_l — x_3 + $_5 — 56_7 + .+ &@gn_l
2 2k —1) 31 BT (2n —1)! ’

here we have used ¢ (z) = sin (x + km ) to compute ¢®(0). We also note that Qan_1(z) =
Qan(x) for all n e N.



9.7.1 Remainder of Taylor Polynomials

To measure the accuracy of approximating a function value f(x) by the Taylor polynomial,
we look for the difference R, (z) = f(x) — P,(z), where P, is the n-th Taylor polynomial
for f (centered at a certain number ¢). The function R, is called the remainder associated

with the approximation P,.

e Integral form of the remainder
By (9.7.1), we find that if P, is the n-th Taylor polynomial for f at ¢, then

o) = (1 [ o

n!

dt . (9.7.2)

Example 9.78. Consider the function f(x) = exp(z) = e*. If P, is the n-th Maclaurin

polynomial for f, the remainder R, associated with P, is given by

—1)an s gy — (aye f el g

0 n!

Therefore, if x > 0,

_A\n x x . .n+1
e k"_‘f dt‘ J udtgf g CT (97

n! o nl n!
o] xn—f—l
Note that for each x > 0, the series )] e® — converges since
k=0 T
. p(n+1)+1
! x
7}5&% =
T
¢ n!
n+1
thus the n-th term test shows that lim e*2 —=0. Therefore, for each x > 0,
n—00 n:
no ok
. z |
2, |° kZ k!‘ =0

or equivalently,
. ZOO zk 1 r? "
e = H— +x+§+§+ +H+“‘



In particular, if z = 1, (9.7.3) implies that

)

‘ (&
=0 ! n!

w|H

17 1 8
thus ’e— Zo k:" < 10~
Example 9.79. Consider the function f(z) = cosx and its (2n)-th Maclaurin polynomial

Py, in Example 9.77. If x > 0,

ol N B Tt
|f(x) = Pon(z)] = [ f(2) = Ponsa( U SO G dt‘gjo @nsr
B _(x . t)2n+2 - 2n+2
N (2n + 2)! t:O_(2n+2)!’

while if x < 0,

0) = P = @)~ P < | [ gm0 G ] < [

(2n +1)! (2n +1)!
(t x)2n+2 2n+2
T 2n+2)! o (2n + 21"
Therefore,
o (=DF Qk‘ i
— ) e S VzeR. 9.7.4
‘C‘)” ,;) 2 1S 2nt o) v (9.7.4)
Similarly,
‘sinx—iix2k+l‘<w VzeR (9.7.5)
(2k + 1)! = (2n + 3)! ' o
k=0
Moreover, by the fact that
|SE|2("+1)+2
. Rh+D) 42 z?
R S T e Gn 132+ 4
(2n +2)!
and
|x‘2(n+1)+3
n—oo  |z|? 3 n—o (2n 4+ 4)(2n + 5)

(2n + 3)!



| ‘2n+2 00 |$‘2n+3

the ratio test implies that Z . 202 and )] 3 converge; thus for each x € R,
n i—o (2n !

|x|2n+2 ) |x|2n+3

li L E—— [ R ——
n1—r>r010 (2n + 2)! n—00 (2n + 3)!

thus
o0
(_1)k 2% z? ot (—1)" 2
= e 1 - P n
cosx kZ:O (2k>‘x 5 + 1 ++ (2n)'x + ;
o0
B (—1) 2%+1 a? 2P (=) 2n+1
51nx—]§<2k+1)'x xr — 3l + 5l +-+ 2n+1) +

Using (9.7.4), we conclude that

w
O
—_

o

‘cosOl

k

3 (—
thus cos(0.1) =~ >, (<2;)‘ (0.1)%* ~ 0.995004165 which is accurate to nine decimal points.
k=0 :

Remark 9.80. By Example 9.78 and 9.79, conceptually we can explain why the Euler
identity e = cosf + isinf for all § € R. Recall that the (2n)-th Maclaurin polynomial for

exp, cos, sin are

2 xQn
Pe(x) =1 T o
c ‘rg $4 (_1)71 2n
P35 (x) 1—E+Z+ + (2n)!$ ,
s ° z° (_1)n71 2n—1
P; (z) x_§+§+ + (2n—1)'x

Substitution x = 6, we find that
Ps.(i0) = Py, (0) + iP5, (0) VOeR.

Passing n — o0, by the fact that the remainders R, (x) for exp, sin and cos all converges to

zero as n — o for each x € R (and even x € C), we conclude that

e = cosf + isinf VheR.



e Lagrange form of the remainder

Theorem 9.81: Taylor’s Theorem

Let f : (a,b) — R be (n + 1)-times differentiable, and ¢ € (a,b). Then for each

€ (a,b), there exists £ between x and ¢ such that

f(‘r> = f(C) +f/(C)(QZ—C) —+ fHQ(C)(q;—C)2_|_..._|_

F"™(e)

n!

(x — )" + Ry(x), (9.7.6)

where Lagrange form of the remainder R, () is given by

f(n-i—l)(g) ({E _ C)n—i—l

(@) = (n+1)!

Proof. We first show that if h : (a,b) — R is m-times differentiable, and ¢ € (a, b). Then for
all d € (a,b) and d # ¢ there exists £ between ¢ and d such that

m (k) - (k)
I e T R N V(SR s et
st = = (9.7.7)
(d—c)m*t m+1 (€—c)m
Let F(x) = h(x) — Tzn] h(l:'(c) (x — ¢)* and G(z) = (¥ — ¢)™. Then F,G are continuous on
k=0 A

[e,d] (or [d, c]) and differentiable on (¢, d) (or (d,¢)), and G'(x) # 0 for all x # c. Therefore,
the Cauchy Mean Value Theorem implies that there exists £ between ¢ and d such that

F(d)~ Fle) _ F'(¢)

G(d)—Gle)  G'(§)°
and (9.7.7) is exactly the explicit form of the equality above.
Now we apply (9.7.7) successfully for h = f, f', f”, --- and f and find that

I S ALCI Y

Friay) =5 YL gy — o

P 1 =
(d — c)ntt n+1 dy — )"
" (W)
o T ,EOT(OZ? —of
Tn+lon (dy — )1




thus
C f(k) C 1 n+1 n+1
= 3 T2 = o = g @ =

(9.7.6) then follows from the equality above since d € (a, b) is given arbitrary. O

Example 9.82. In Example 9.76 we compute the Taylor polynomial @),, for the function
y = In(1 4 z). Note that the Taylor Theorem implies that

In(l1+z) = P,(x) + R,(x),

where

ln(1+x)>:p”+1 ( D (L&)

B () = n+1

1 dn+1
(n+1)! (d:v"“

for some & between 0 and .

a=¢

-1 —z \"t1
1. If —1 < 2 < 0, then R, (x) = 7H%(1+9 < 0; thus

2 g3 gt (—1)"
In(1 _ryr . r
(1+z)<z sty -ttt

" Vrxe(—1,0) and ne N.

2. If x > 0, then

(a) R,(z) < 0if n is odd; thus

2 3 4 1

x X x
In(1 <t -4 ="+ ——2®1  Vr>0andkeN.
n(l+z) <z 2+3 T +2k+1$ z>0and ke

(b) R,(z) > 0if n is even; thus

22 23 ot 1

Ty —1 ok
In(l+2z)>x 5+ T 1 tot g Vo >0and keN.

Example 9.83. In this example we show that

k 1 k 2 3 (_1)n—1xn

e
T T
1+x:g —1-_?4_?4_..._'_7—0—--- Ve (0,1]. (9.7.8)

Note that Taylor’s Theorem implies that for all x > —1, there exists £ between 0 and x such
no(_1 k—1,.k
that the remainder associated with P,(z) = ). )~

is given by
k=1 k




Note that since ¢ is between 0 and x, we always have

T
— <1 v 1];
O<1+£< z e (0,1];

for all z € (—1,1] and (9.7.8) is concluded because

1
<
thus |R,(z)| 1

lim |R,(z)| =0.

n—o0

Example 9.84. In this example we compute In2. Note that using (9.7.8) we find that

1 1 1 (=)t
mn2=1--+-—=-+--- (1),
n 5tz 1T T + R, (1)
where . o (1)
A1) = < ‘ In(1 >1"+1 - 1 —(n+1)
Fn(1) (n+ 1! \dont! lz=¢ n(l+7) n—i—l( 9

for some £ between 0 and 1. Since £ could be very closed to 0, in this case the best we can

estimate R, (1) is
1
R,(1)] < )
‘ ( )‘ n+1
Therefore, to evaluate In2 accurate to eight decimal point, it is required that n = 10%.
Let ¢ = 5 ~ 1.359140914. Then

(c—1)?

lnc:ln(1+(c—1)):(c_1)_ 5 e

where R, (c — 1) is given by

1 ! ,_ (=n” | |
Rale = 1) = gy (Gl I+ ) (e = 70 = S (1 7 e -
for some & between 0 and ¢ — 1. Note that
_ n+1
ol <
thus the value
(c—1?2 (=1 (c—1)* 1 17
1) — _ i —(e—1
(c—1) 5 T3 4++17(c)

. . . . 1
to approximate In ¢ is accurate to eight decimal points (since 1—80.418 < 107®). On the other

hand, we have In2 =1 — In ¢, so the value

1—(0—1)—1—(0_21) _(C_?)l) +<C—41) +"'_%(0_1>17

to approximate In 2 is also accurate to eight decimal points.




9.8 Power Series

Recall that for all x € R, we have shown that

k .CIZ'2 .%'3 n

a0
. x x
e _Zk__1+x+§+§+ Rk
ee}
(-1 a? (=" ,
— _1__ - L.
cos T ,; 2k:) 2'—1—4'-1— -+ (2n)!x + )
o6}
o (=D)" 2k+1 _ a? a2 (=" o1
Smx_;(zkﬂ) B A O +

The identities above show that the functions y = exp(z), y = cosx, y = sinz can be defined
using series whose terms are multiples of monomials of x. These kind of series are called

power series. To be more precise, we have the following

Definition 9.85: Power Series

Let ¢ be a real number. A power series (of one variable x) centered at ¢ is an infinite

series of the form
o0
Zak(x—c)k:ao—l—al(x—c)l+a2(a:—c)2+--- ,
k=0

where ay, is independent of x and represents the coefficient of the k-th term.

Theorem 9.86
o0

o0
Let {ax};2, be a sequence of real numbers. If Y ayd® converges, then ) ay(z — c)*
k=0 k=0
converges absolutely for all z € (¢ — |d|, c + |d]).

[oe}
Proof. First we note that since Y a,d® converges, lim a,d" = 0; thus the boundedness of
k=0 n—o0

convergent sequence implies that there exists M > 0 such that

la,d"| < M VneN.

Suppose that |z — ¢| < |d|. Then there exists £ > 0 such that |z — ¢| < |d| —e. Then

@ —c|" /]d]—eyn d| — e\
n —c|" = ndn S M| ——
an| [ — | = |ay||d] <|d|_€)n( a ) ( a )




Therefore, by the convergence of geometric series with ratio between —1 and 1, the direct

0
comparison test implies that the series > a,(x — ¢)™ converges absolutely. O

n=0
Corollary 9.87

For a power series centered at c, precisely one of the following is true.

1. The series converges only at c.

2. There exists R > 0 such that the series converges absolutely for |z —¢| < R and

diverges for |z —¢| > R.
3. The series converges absolutely for all x.

Definition 9.88: Radius of Convergence and Interval of Convergence

Let a power series centered at ¢ be given. If the power series converges only at c,

we say that the radius of convergence of the power series is 0. If the power series
converges for |z — ¢| < R but diverges for |z — ¢|] > R, we say that the radius of
convergence of the power series is R. If the power series converges for all x, we say
that the radius of converges of the power series is co. The set of all values of = for
which the power series converges is called the interval of convergence of the power

series.

Remark 9.89. The radius of convergence of a power series centered at c is the greatest

lower bound of the set

{r > ( ‘ there exists x € (¢ — r, ¢+ r) such that the power series diverges} )

e ¢]
Example 9.90. Consider the power series Y. k!z*. Note that for each z # 0,
k=0

) k+ 1)1kt )
,}L%% = lim (k + D] = oo

o0
thus the ratio test implies that the power series Y| klz* diverges for all x # 0. Therefore,
k=0

Q0 00
the radius of convergence of > klz* is 0, and the interval of convergence of > klz* is {0}.
k=0 k=0



e ¢]
Example 9.91. Consider the power series . 3(z — 2)*. Note that for each r € R,

k=0
3l —2 k+1
limu: lim |z —2| = |z —2|;
k—o0 3|$ —-2|k k—0o0

0¢]
thus the ratio test implies that the power series > 3(z—2)* converges absolutely if |z —2| < 1

and diverges if |x — 2| > 1. Therefore, the radili;soof convergence is 1.

To see the interval of convergence, we still need to determine if the power series converges
at end-point 1 or 3. However, the power series clearly does not converge at 1 and 3; thus
the interval of convergence is (1, 3).

0 .k
Example 9.92. Consider the power series )| % Note that for each z € R,
k=1

‘ $k+1
R IESE . kP
1 I+ P _ lim —— = |z|;
A R T ey
k2
0 Lk
thus the ratio test implies that the power series | 3 converges absolutely if |z| < 1 and
=0k
diverges if |z| > 1. Therefore, the radius of convergence is 1.
0
: 1 . o .
To see the interval of convergence, we note that >’ 72 converges since it 1s a p-series

k=1

1)k o . o
with p = 2, and ;;1 k:2) converges since it converges absolutely (or simply because it is

an alternating series). Therefore, the interval of convergence of the power series is [—1, 1].

e}
Example 9.93. Consider the power series Z % Note that for each z € R,
Ik+1 i
. E+1] . k‘x | )
Jm o A ey el
k
0 .%'k
thus the ratio test implies that the power series )| - converges absolutely if |z| < 1 and
k=0

diverges if |z| > 1. Therefore, the radius of convergence is 1.

e @]
To see the interval of convergence, we note that )| z diverges since it is a p-series with

k=1
0 (71)k’
p =1, and 1;1 3

convergence of the power series is [—1,1).

converges since it is an alternating series. Therefore, the interval of




. .5 (—1)kak
Similarly, the power series )|
k=1

has interval of convergence (—1,1].

0 k
Example 9.94. Consider the power series ), % Note that for each z € R,
k=1

’ xn+1
. +1)2 ‘ . n?lz|
N[OV o
n?
0 .k
thus the ratio test implies that the power series > Z—g converges absolutely if |z| < 1 and
k=1

diverges if |z| > 1. Therefore, the radius of convergence is 1.

|
To see the interval of convergence, we note that >’ 73 converges since it is a p-series with
k=1

0 (_1)k
p =2, and ’z‘l 2

test). Theref;)re, the interval of convergence of the power series is [—1, 1].

also converges since it converges absolutely (or because of Dirichlet’s

Remark 9.95. Even though the examples above all has radius of convergence 1, it is not

necessary that the radius of convergence of a power series is always 1. For example, the
k

a0
power series Y| 2%{ is obtained by replacing x by g in Example 9.93; thus
k=1

Ok
T T
]; ok converges for 5 € [—1,1)

0 k

or equivalent, the interval of convergence of )]

o is [—2, 2); thus the radius of convergence
k=1

of this power series is 2.

0 (71)kx2k+1

Example 9.96. The radius of convergence of the power series Y| is oo since for

= (2k+1)!
all x € R,
’(—1)k+1x2(k+1)+1 (_1)k+1x2k+3
. R+ +1r | ‘ Qk+3) | . z? -
kILHOlO ‘<_1)k$2k+1 = klggo ‘(_1>kx2k+l = klgrolo Ch+3)(2k+2) 0
k1 1) 2kt 1)

e Differentiation and Integration of Power Series

Q0
Let {a;}, be a sequence of real numbers and ¢ € R. If the power series Y. a(x — c)*

k=0
converges in an interval (c—r, c+7), we can ask ourselves whether the function f : (c—r, c+7)



0

defined by f(z) = >} ar(z—c)¥ is differentiable or not. We note that even though the power

series is an infinite sum of differentiable functions (in fact, monomials), it is not clear if the

o d =
limiting process — commutes with > since
dx =0
lim lim nh? =0 but lim lim nh? = 0.
n—o0 h—0 h—0n—w0

Theorem 9.97: Properties of Functions Defined by Power Series

If the function

o0]

f($):Zak($_0)k:a0+a1<l’—c)+a2(:ﬁ—0)2+...
k=0

has a radius of convergence of R > 0, then

1. f is differentiable on (¢ — R,c+ R) and

f(x) = i kap(z — ) ' = ay + 2as(z — ¢) + 3ag(z —c)* + - - - .
k=1

2. an anti-derivative of f on (¢ — R,c+ R) is given by

ff(x)dx:C'—i—Z L (a:—c)kH:C+a0(x—c)+%(x—c)2—|—~--.

The radius of convergence of the power series obtained by differentiating or integrating

a power series term by term is the same as the original power series.

Remark 9.98. Theorem 9.97 states that, in many ways, a function defined by a power
series behaves like a polynomial; that is, the derivative (or anti-derivative) of a power series

can be obtained by term-by-term differentiation (or integration). However, it is not true for

Q0
general functions defined by series of the form > bi(z). For example, we have talked about
k=0
. . & sink D —
(but did not prove) the series >’ "2 which is the same as -
k=1

T on (0,27); that is,

isinkx T—x Ve (0,27)
= T ).
= k 2 ’



Then

1 d & sinkz
o= Ve (0,2
2 da:; 2 v € (0,2m)

but

d & sinkx L d sinkx
d—Z Zd— Zcosk:x Ve (0,2m)

o0
since the series Y] cos kxz does not converges for all z € (0, 27).
k=1

Example 9.99. Consider the function f defined by power series

OCI’ 2 3
Z——x+—+——|— Vre[-1,1).
Sk 3

Then the function
o0 e}
k=1 k=0
obtained by term-by-term differentiation, converges for x € (—1,1), and the function

2 3 4

o]
xr xXr
Zj .y Zk; =t E g

obtained by term-by-term differentiation, converges for = € [—1, 1].

Example 9.100. Suppose that x is a function of ¢ satisfying
z"(t)+x(t) =0, z(0) =2'(0) = 1.

o0

Assume that z(t) = ) apt* for t € (—R, R) with some radius of convergence R > 0. Then
k=0

Theorem 9.97 implies that

0 0

2(t) = Y k(k — Dagt"? = > (k+2)(k + Dageot®  Vte (R R);
k=2 k=0

thus if t € (—R, R),

a0 o0

DUk +2)(k + Dagss + ap]t" = D (k +2)(k + Dagot® + i agt® = 2" (t) +2(t) = 0.

k=0 k=0 k=0

The equality above implies that

(k:+2)(k:—|—1)ak+2+ak:0 VkﬁENU{O}



Therefore,

__ -1 (=1)? T G Vi
T 0R 2k — 1) 2T 2k 2k — 1)(2k — 2)(2k —4) T T T 2k
__ -1 (=1)? U G Vi
G T 0 D)(2k) T T 2k + D202k — D2k —2) T T k™
Since x(0) = z'(0 ) =1 1mphes ap = a; = 1, we have
2 2k+1 241 _
2[ 2k.t (2k t } kZ;) +Z 2k +1 )t cost +sint.
Corollary 9.101
For a function defined by power series
0

(on a certain interval of convergence), the n-th Taylor polynomial for f at ¢ is the

n
n-th partial sum Y. ag(z — ¢)* of the power series.
k=0

9.9 Representation of Functions by Power Series

We have shown the following identities:

ok
exp(w)zzz— VzeR,
sinx:iw VzelR
= (2k+1)! ’
s k,.2k
cosx:];)% VreR,
ln(l—i—:l:):i% Vaee (—1,1].

In this section, we are interested in finding the power series representation (centered at c)

of functions of the form




(without differentiating the function). In other words, for a given ¢ € R\{b} we would like

to find {ax}72, (which usually depends on c¢) such that f(z) agrees with the power series

. 1 . . .
thus to “expand the function about 5”; that is, to write the function y =

as a power
— X

. 1
series centered at 50 e have

0¢]
B :22[z(x—1)]kifxsatisfying2\x—1\<1.
1-=z 5—(9&—5) 1—2(1’—5) k=0 2 2

In other words, we obtain

1 O et 1\*
1_:5:];)2 (x—§) vae (0,1)

1
at —.
1—z 2

e @]
We emphasize that f is defined on R\{c} and the power series >. ax(x — ¢)* converges
k=0

without computing the derivatives of the function y =

only on an interval; thus the function y = f(z) is never the same as the function defined by

power series.

e Geometric Power Series

0
Recall that the geometric series Y| 7 converges if and only if |r| < 1. The function g(z) =
k=0

is defined on R\{1}, and by the fact that

1 — xn—f—l n

— 2 .« .. n _ k
- =l+z+a°+ -+ —Zx Vo #1,

we find that if |z| < 1, then

- ke 1 —gntt 1
lim Zx = lim = ;
n—0 = n—ow 1 —x l1—=x




o0
thmsl1 = > 2% on (—1,1). Therefore, for ¢ # b,
- k=0
1 1 1 R A T —c
- o satistying |22 <1
b—z b-c | _T-¢ ez (=) RIS [ e

b—c
or equivalently,

0
1
:Zm(x—c)k Vee(c—|b—cl,c+|b—c]|).
k=0

Replacing x by —z, we find that
b+x_2 kﬂyc—i-c)]~C Vee(—c—|b—c|l,—c+1]b—¢|).

1
Example 9.102. Find a power series representation for f(x) = —, centered at 1.
X

I 1
To find the power series centered at 1, we rewrite — = ———; thus
x l—i—(x—l)
1 1 - -
—_—= = 1— —1)" Vie—-1| < 1.
r 1-(1-2) 2, (1 —a)f Z (z [z =1

Example 9.103. Find a power series representation for f(x) = Inz centered at 1.
d 1
Note that — Inz = —; thus
dx T

d < k k
%lnx—kgo(—l) (x—1) Vae(0,2).
Therefore, by Theorem 9.97,

0
(—1)]“ )i K
Inx = + —1 2).
nx C’+k50k+1 =C+ E ) Ve (0,2)

To determine the constant C', we let x = 1 and find that In1 = C; thus C = 0 and we

conclude that

1 i D™ vee(0.2)
nr= x — x ,2).
o ok
We note that the power series converges at z = 2, and Example 9.84 shows that
0
_ N\ (=D
k=1
0 (_l)kfl

In other words, the power series > (x — 1)* is continuous at 2

k=1



e Operations with Power Series

a0 0
Let f(z) = Y} ap(z — ¢)F have interval of convergence I; and g(x) = Y. bi(x — ¢)* have
k=0 k=0

interval of convergence I5.

L. flaz) =3 aa®(z — é)k onl={zeR|azel}.
k=0
Q0
2. f(z)+g(x)= Y (ar+bp)z* on I =1, n L.
k=0

Q0
3. Ifc=0and N eN, then f(zV) = 3 axa™* on I = {z e R|2" e I}.
k=0

0 k
4. f(z)g(x) = Y, dp(x —c)f on I = I N Iy, where di = Y. apbj_y.

k=0 Jj=0
Example 9.104. Find a power series for f(z) = arctan z centered at 0.

d 1
Note that — arctanz = ——; thus
dx 1+ 22

0

=Y (=f™ Ve (-1,1).

k=0

—arctanx =
dz 1+ x2

By Theorem 9.97,

1 k
arctan:p—C’—i—Z 2k‘+)1$2k+1 Vze(—1,1),

and the constant C'is determined by applying the identity above at x = 0; thus C' = arctan 0

and -
arctanx = Z ﬂx%ﬂ Vze(-1,1)
2k +1 T
k=0
1 1

We note that the power series converges at x = +1. Is it true that arctan1l =1 — 3 + E
1
- Lol
- +

e}

In general, suppose that the function f defined by power series Y. ay(z—c)* has a radius
k=0

of convergence R > 0, and ¢ is a continuous function defined on some interval I such that

f(z) = g(z) for all z € (¢ — R,c+ R) < I. If f is also defined on ¢+ R (or ¢ — R), by
Theorem 9.97 it is not clear if linJ}Rf(a:) = g(c+ R) (or lime(x) = g(c — R)). The

following theorem concerns with this issue.



Theorem 9.105: Continuity of Power Series at End-points

Q0

Let the radius of convergence of the power series f(z) = > ax(x — ¢)* be r for some
k=0

r > 0.

o]
1. If >} apr® converges, then f is continuous at ¢ + r; that is,

k=0
lim  f(z)= f(c+7r).
z—(c+r)~

o0
2. If > ap(—r)* converges, then f is continuous at ¢ — r; that is,

k=0
lim +f(:zc) =flc—r).

z—(c—r)
Therefore, it is true that
7r_1 1+1 1+1+ +(—1)"+
47 3 5 79 2n+1

9.10 Taylor and Maclaurin Series

Definition 9.106

If a function f has derivatives of all orders at x = ¢, then the series

© (k) (. .

is called the Taylor series for f at c. It is also called the Maclaurin series for f if
c=0.

Theorem 9.107: Convergence of Taylor Series

Let f be a function that has derivatives of all orders at * = ¢, and P, be the n-
th Taylor polynomial for f at c¢. If R,, the remainder associated with P,, has the
property that

lim R,(z) =0 Veel

for some interval I, then the Taylor series for f converges and equals f(z); that is,

O (k) (o
f(x):ka!()(x—c)k Veel.




Corollary 9.108

Let f be a function that has derivatives of all orders in an open interval I containing
c. If there exists M > 0 such that | f*)(z)| < M for all z € I and each k € N, then

© ek,
f(x)zsz'()(x—c)k Veel.

Proof. By the Taylor Theorem,

where

for some ¢ between ¢ and z. Since |f*)(z)| < M for all z € I and k € N, we find that

M

et VR | (% o |
<n+1)!|a: c| Veel.

|R,(z)| <

Therefore, by the fact that lim a—' = 0 for all @ € R (the same reasoning as in Example
n—o0 N!

9.79), the Squeeze Theorem implies that

lim R,(z) =0 Veel

n—0o0

f¥(e)
!

: (z — c)*. O

e}
and Theorem 9.107 further shows that f(x) = >’
k=0
Example 9.109. Since the k-th derivatives of the sine function is bounded by 1; that is,

k
‘%sinx)gl VreRand ke N,
x

Corollary 9.108 implies that for all ¢ € R,

. o 1 km k
sinx = Esm(c—i—?)(x—c) VreR,

k=0



k

d k C .
here we have used ﬂsinx = sin (95 + g) to compute the k-th derivative of the sine
X

function. In particular,

0]
Lo (—1)* 2%k+1 _ a?
Slnx—;mx —I'_§+§+ VreR.

Similarly, for all ¢ € R,

B | km 5 VreR
Cosm—kzg)gcos(c—i——)(x—c) reR.

Example 9.110. Consider the natural exponential function y = exp(x). Note that for all

real numbers R > 0, we have

=e"<e®  VYre(-R,R)and keN;

thus Corollary 9.108 implies that
k 2

e}
z xr X
e :%H:1+x+§+--- Vre(-R,R).

Since the identity above holds for all R > 0, we conclude that
T
e“:Z—:1+x+—+~-- VreR.
Example 9.111 (Binomial Series). In this example we consider the Maclaurin series, called

the binomial series, of the function f(z) = (1 + x)®, where a € R and o # N u {0}.
We compute the derivative of f and find that

dk
w(l—l—x)a:a(a—1)(@—2)---(a—k+1)(1—1—:1:)“”“.
Therefore,
k
f®(0) = % I:O(l +z)*=ala—1)(a—2) - (a—k+1)

and the Maclaurin series for f is

£, [9(0)
2

i OOoz(oz—1)(04—2)~--(oz—k;+1)k
x :Z x "

k=0



To see the radius of convergence of the Maclaurin series above, we use the ratio test and

find that
la(a = 1) (@ —2) - (a—(n+1)+1)

‘|x|n+1
: (n+1)! o —n] .
lim =1l |z| = |=|;
n—0 la(a—1)(a—2) - (@ —n+1)| " n—w n+ 1
] ]
w _— _— ... —_—
thus the radius of convergence of the power series > ala—@=2)-(a=k+ Umk is 1.

k!
k=0
Moreover, by Taylor’s theorem, for each x € (—1,1) there exists £ between 0 and x such

that N
(1+2)° = Z Oz(ozfl)(a22!...(afk+1)xk+Rn(x)’

k=0

where
ala—1)(a—2)---(a—mn)

(n+ 1)

Rn(l') _ (1 + g)a—n—ll,n-‘rl .

Similar to Example 9.76, we have

| < B0t e

thus (without detail reasoning) we find that

lim R,(x) =0 Vze(0,1).

n—ao0

Therefore,

(1+:c)a—§: T Vze(0,1).

In fact,

(L+a) =) O‘(O‘_l)(o‘_le"'(O‘_kJrl)x’f Vre(~1,1).
k=0 ’

9.11 Exercise

Problem 9.1. Determine whether the sequence {a,}>_; converges or diverges. If it con-
verges, find the limit.

Inn (—1)"*in

@ an =" 08

(3) an :nsin% (4) ap =n—+/n+1yn+3



(5) an=n>+n  (6)a,=(3"+5"  (7)a,=

B 1 1:3.5----(2n—1) 1:3-5- - (2n—1)
(8) an = v/nln (1+ ﬁ) (9) an = 2nn! (10) an = 27 (n +1)!
0
Problem 9.2. Determine whether the series >} a, is convergent or divergent. If it is
n=1
convergent, find its sum.
1 n?+1 1
1 = 2 =Iln(—— =e"
(1) a 1+ () @ an=mn(3r7) Ga=c"+ 00
1 40n
4 = =
(4) an n3 —n (5) @ (2n —1)2(2n + 1)2

Problem 9.3. Find values of « for which the following series converges.

J- & & sin” x &
(1) 21(—4)"(96—5)" 2) X = 3) % (4) glem:
Problem 9.4. Let {a,}*_; and {b,}>_, be sequences of real numbers.

(1) Show that if lim (a, + b,) D.N.E. and lim b, converges, then lim a, D.N.E.

n—o0 n—o0 n—a0
0 Q0 o0

(2) Show that if > (a, + b,) diverges and )] b, converges, then > a, diverges.
n=1 n=1 n=1

Problem 9.5. Let {a,}?; be a sequence of real numbers, and {o,}_, be a sequence of

real numbers defined by

o, = =

_a1+a2+~-+an_lzn:a
n n = ke

(1) Show that if lim a, = a exists, then lim o, = a.
n—o0 n—o0

(2) Suppose that lim o, = a exists, is it necessary that lim a, = a?
n—aoo n—a0

Problem 9.6. Let {a,}r_, be a sequence of real numbers defined recursively by

&n+1:\/1+an VHENU{O},GQZO.
Show that {a,}°, converges and find the limit.

Problem 9.7. Let a,, = (1 + l)n
mn



(1) Show that if 0 < a < b, then
bn—i—l _ an—l—l

1b".
<+l

(2) Deduce that b"[(n+ 1)a — nb] < a™.

1 1
(3) Usea=1+ 1 and b =1+ - in (2) to show that {a,} is (strictly) increasing.

n
(4) Usea=1land b=1+ % in (2) to show that as, < 4.
(5) Use (3) and (4) to show that a,, < 4.
(6) Deduce that {a,}>_; converges.

Problem 9.8. Let a,b be positive real numbers, a > b. Let two sequence {a,}>_; and

{b,}°_, be given by the recursive relation

n bn b
an+1:a_2|— 7bn+1:m VTLEN7 alza; 761:\/%,

Complete the following.
(1) Show (by induction) that a,, > an41 > bpy1 > by, for all n e N.
(2) Deduce that {a,}*_; and {b,}>2_; both converges.
(3) Show that lim a, and lim b, both exist and are identical.

n—0o0 n—0o0

Problem 9.9. Let {a,}_, be a sequence of real number defined by the recursive relation

1
Vi =0, _—
2%a, =5

Upy1 =
Complete the following.

(1) Show that the sequence {as,}>_, is a decreasing sequence; that is, ag, 2 < ag, for all
neNu {0}.

(2) Show that the sequence {ag,41}i°, is an increasing sequence; that is, asni3 = aoni1
for all n € N u {0}.

(3) Show that ag,y1 < ag for all k, ¢ € N U {0}.



(4) Show that the two sequences {as,}o, and {ag,+1}, converges to the same limit.

(5) Show that {a,}_, converges.
Problem 9.10. The Fibonacci sequence {f,}>_, is a sequence defined recursively by

fi=1, fo=1 and for2 = fos1+ fn YneN.

Show the following.

1 1 1
1 - ~
( ) fnflfn+1 fnflfn fnfnJrl
&L 1
2 — =1
@) n§2 Jn—1fnt1

for all n > 2.

3 %I —2

n=2 fn—lfn-‘rl

00

Problem 9.11. Consider the series nzzjl ﬁ

(1) Find the partial sum Sy, Ss, S3 and S;. Do you recognize the denominators? Use the
pattern to guess a formula for S,,.

(2) Prove your guess by induction.

(3) Show that the given series is convergent, and find the sum.

0

Problem 9.12. Determine whether the series )] a, is convergent or divergent.
n=1
1 1 2" 43" 1
(1) a, = s (2) a, =In(1+ ﬁ) (3) a, = TS (4) a,, = tan -

(5) ay = sin” \/1% (6) an =" (Dan= |- (@ + %)]n

nll

(8) an=(1- l)n2 (9) a, = (1+ %)_"2 (10) a, = (n;)z (11) ay, = _nllnn_

1= % s) = n'(r(wli;'((g:i W= Lae el

(15) an = (=1)"(v/n+/n—+/n)  (16) a, = (_1)nW (17) ay = <—13L"("'>”



© (Ink)d
kP

Problem 9.13. Find all p and ¢ such that converges.
k=2
0 00
Problem 9.14. Show that if ) a; is a convergent series of positive terms, then )] sinay
k=1 k=1

converges.

[os} 2
Problem 9.15. Let S = % Buler found that § = % in 1735 AD.
k=1

1
1000000 | 1000
(2) Which of the sums ] 72 Or 1+ > I should give a better approximation
k=1 k=1
of S7 Explain your answer.
. 1 1 1
Hint: (1) n2(n+1) n2 nn+1)
&, cos(kx)

converges.

Problem 9.16. Find all real numbers x such that )| Ik
k=1 I

Q0 e ¢] o0
Problem 9.17. Show by example that )| axby may diverge even if > ay and > by both
converge. = = =
Problem 9.18. Let {a,}r_, and {b,}*_, be sequences of real numbers such that a,, b, > 0
for all n > N. Define

Cn = by — bps1 =L YnpeN. (9.11.1)

n

0
1. Show that if there exists a constant r > 0 such that r < ¢, for all n > N, then > a;
converges. b=t

Hint: Rewrite (9.11.1) as b, = ¢, + %bnﬂ and then obtain
a

n

aAN+1 N+1 a
bN:CN—i- bN_H—CN—F < )ZCN+
anN an
aGN+1 AN +2 aN+3
=cy + CN+1 T (CN+2 + bnyg) =
anN anN AN 42
aN+1 aAN+2 AN+n AN+n+1
=cy + CN4L Tt~ et CNyn + ON4nt1 -
N

Use the fact that 0 < r < ¢, for all n > N to conclude that



b
ZakéaNN VYneN.

k=N "
o]
Note that then the sequence of partial sum of > a; then is bounded from above (by
k=1
N—-1 b
Z ar + aN N).
k=1 r

1 o0
2. Show that if Z — diverges and ¢, < 0 for all n = N, then )] a; diverges.
=1 k k=1

Hint: The fact that ¢, <0 for all n > N implies that b,a,, < b,11a,11 for alln > N.
Use this fact to conclude that

anby < ay, Vn>N
br
0
and then apply the direct comparison test to conclude that >’ a; diverges.

k=1

& an+1

Problem 9.19. Let Y ax be a series with positive terms, and lim P = 1. We know
k=1 n—o0 n

from class that the ratio test fails when this happens, but there are some refined results

concerning this particular case.

1. (Raabe’s test):

Ot -1 P foralln = N, then Z ay

(a) If there exists a constant p > 1 such that
an n P

converges.

ot o1 for all n > N, then
an n

(b) If there exists a constant 0 < p < 1 such that

Z ay, diverges.
k=1

0
Hint: Consider the sequence {b,}x_, defined by b, = (n — 1)a,, — na,4+1. Then > by
k=1
is a telescoping series. For case (a), show that {nanﬂ}:}: n 18 a positive decreasing

e}

sequence and then conclude that > by converges. Note that b, > (u — 1)a, for all
k=1

n = N. For case (b), show that {nanﬂ}w N isa positive increasing sequence; thus

Nayi1

\%

for all n = N + 1 which implies that Z ay diverges.
k=1

Qn

0
Remark: ;3 % 7| (a) #enf 4% {a,}0, aEFIm2 & TR EHE > 708 Y a

feato 5 2o bk {a e, TE AR BRI R S 0y B -

k=1

i



2. (Gauss’s test): Suppose that there exist a positive constant e > 0, a constant u, and

a bounded sequence {R,}°_, such that

anﬂ—l—ﬁ—i—}f foralln > N.
an, nlte
a0
(a) If > 1, then >} aj converges. (b) If 4 < 1, then Z ar, diverges.

k=1 =1

Hint: Show that if 4 > 1 or i < 1, one can apply Raabe’s test to conclude Gauss’s
test. For the case p =1, let b, = (n—1) ln(n 1) for n > 2. Using the second result of

Problem 9.18 to show the divergence of Z ay, (by showing that ¢, defined by (9.11.1)

k=1
is non-positive for all large enough n).
Problem 9.20. Complete the following.
Show that 3 Ly*
1. Show that (1 — —) converges.
=R i
1 1) -1
2. Show that Z og(k+1) — 5 ogk converges.
k= (log k)

00

3. Use Gauss’s test to show that both the general harmonic series Z where a # 0,

| ak + ak + b’

o0
. 1 ..
and the series )| 7 diverge.
k=1

k!
(a+1)(a+2)- - (a+k)

5. Test the followmg “hypergeometric” series for convergence or divergence:

4. Show that Z converges if a > 1 and diverges if o < 1.

& +D(@+2)---(atk-1) a ala+l)  ala+l)(a+2)

® 2 GGG T = 5t 5T Ao
a-ﬂ ala+1)-B(B+1) | ala )(a 2)-B(B+1)(B+2)

(b) 1+ 1 ,Y+ 1-2y-(y+1) + 23 v(y+1D(y+2) +

a0 e ¢]
Problem 9.21. Let ) a, be a conditionally convergent series. Show that >} [1+sgn(ax)]ay
k=1 k=1

Q0
and )’ [1 — sgn(ak)} aj both diverge. Here the sign function sgn is defined by
k=1

1 ifa>0,
sgn(a) = 0 ifa=0,
-1 ifa<0.



Problem 9.22. A permutation of a non-empty set A is a one-to-one function from A onto
A. Let m : N — N be a permutation of N.

1. Suppose that {a,}2_; be a convergent sequence of real numbers. Show that {a() }le

0

is also convergent; that is, show that if {b,}; is a sequence defined by b, = ar (),

then {b,}° , also converges.

o6} o0
2. Suppose that ), a; is absolutely convergent. Show that »] a.) is also absolutely
k=1 k=1

convergent, and
0 0
PIEDITE
k=1 k=1

o0
3. Suppose that >} ay is conditionally convergent. Show that for each r € R, there exists
k=1
a permutation 7 : N — N such that

o9
Z aﬂ-(k) =T.
k=1

Problem 9.23. The second Taylor polynomial for a twice-differentiable function f at x = ¢
is called the quadratic approximation of f at z = ¢. Find the quadratic approximate of the

following functions at x = 0.

(1) f(z) =Incosz  (2) flz) =€ (3) f(z) =tanz  (4) f(z) =
(5) f(z) = e*sin’x (6) f(x) =e*In(1 + x) (7) f(x) = (arctan z)?

Problem 9.24. Let f have derivatives through order n at x = ¢. Show that the n-th Taylor
polynomial for f at ¢ and its first n derivatives have the same values that f and its first n

derivatives have at x = c.
Problem 9.25. Complete the following.

(1) Let f,g : [a,b] — R be continuous and ¢ is sign-definite; that is, g(x) = 0 for all
x € [a,b] or g(x) <0 for all x € [a,b]. Show that there exists ¢ € [a, b] such that

b b
f(c)f g(z)dx = f f(z)g(z)dx. (9.11.2)



(2) Let f : [a,b] — R be a function, and ¢ € [a,b]. Prove (by induction) that if f is

(n + 1)-times continuously differentiable on [a, b], then for all z € [a, b],

ue (n) c
£@) = £ + £ o)+ T e Ty
F(=1)" f f(”“)(t)—(t :f)n dt
- i f<’2!(c) (x —c)f + (=1)" r f("“)(t)—(t ;f)n dt .

(3) Use (9.11.2) to show that if f is (n + 1)-times continuously differentiable on [a, b] and

c € [a, b], then for all z € [a, b] there exists a point £ between x and ¢ such that

" B (e (n+1)
fla) = Z ! k'( )(x—c)k+J2nT1()§!)(9€—c)”“.

(4) Find and explain the difference between the conclusion above and Taylor’s Theorem.

Problem 9.26. Suppose that f is differentiable on an interval centered at x = ¢ and that
g(x) =by+bi(x—c)+ -+ b,(x—c)" is a polynomial of degree n with constant coefficients
bo, by, -+, by. Let E(z) = f(x) — g(x). Show that if we impose on g the conditions

1. E(c) =0 (which means “the approximation error is zero at x = ¢”);

— = 0 (which means “the error is negligible when compared to (z — ¢)"),

then g is the n-th Taylor polynomial for f at ¢. Thus, the Taylor polynomial P, is the
only polynomial of degree less than or equal to n whose error is both zero at

x = ¢ and negligible when compared with (z — ¢)".

Problem 9.27. Show that if p is an polynomial of degree n, then

R V(CO)

l
= K

Problem 9.28. In Chapter 3 we considered Newton’s method for approximating a root/
zero 1 of the equation f(z) = 0, and from an initial approximation x; we obtained successive
approximations x,, xs, - - -, where

f(xn) vn

n




Show that if f” exists on an interval I containing r, z,, and z,,1, and |f”(x)| < M and

|f/(z)| = K for all x € I, then

M
<_
2K

|$n+1 —T” |In_7‘|2

This means that if x, is accurate to d decimal places, then x,,, is accurate to

about 2d decimal places. More precisely, if the error at stage n is at most 107",

M
then the error at stage n + 1 is at most ﬁl()”m.

Hint: Apply Taylor’s Theorem to write f(r) = Py(r)+ Ra(r), where P; is the second Taylor

polynomial for f at x,,.

Problem 9.29. Consider a function f with continuous first and second derivatives at x = c.
Prove that if f has a relative maximum at x = ¢, then the second Taylor polynomial centered

at x = ¢ also has a relative maximum at x = c.

Problem 9.30. Suppose that f : [a,b] — R is three times continuously differentiable,
h = b—a ot b. Show that there exists £ € (a, b) such that

and ¢ =
pie) = LU T I oy

Hint: Find the difference f(b) — f(a) by write f as the sum of its third Taylor polynomial

about ¢ and the corresponding remainder. Apply the Intermediate Value Theorem to deal

with the sum of the remainders. We note that the identity above implies that

fle+h)—flc—h) h? (3)
< — .
o 5 e, 110 @)]

fe) =

Problem 9.31. Suppose that f : [a,b] — R is four times continuously differentiable, h =
b—a and ¢ = %M. Show that there exists £ € (a, b) such that

a) —2f(c @)
g - L0210 SO0,

Hint: Find the sum f(a)+ f(b) by write f as the sum of its third Taylor polynomial about

¢ and the corresponding remainder. Apply the Intermediate Value Theorem to deal with

(9.11.3)

the sum of the remainders. We note that the identity above implies that

Fleth) =2+ fle—h) _ B
h? h 12 ze[c—h,c+h)]

MO [FY ()]



Problem 9.32. Suppose that f : [a,b] — R is four times continuously differentiable. Show

that
5

2h
)+ F8)]] < G5 max |9 (x) (9.11.4)

a+b

z)d “[fla) + 4 (5

through the following steps.

b b—
1. Let ¢ = % and h = Ta. Write f as the sum of its third Taylor polynomial about

¢ and the corresponding remainder and conclude that
J f dx = 2hf( + f// J R3

2. Show (by Intermediate Value Theorem) that there exists £ € (a,b) such that

Jb R3(x)dx = f(42)4(§) Jb(:c —co)tdr = %h‘r’. (9.11.5)

a a

3. Use (9.11.3) in (9.11.5) and conclude (9.11.4).

Problem 9.33. Find the interval of convergence of the following power series.

X 1 n n & n & n . n n? n
(1) 21 (1+ 5) ™ (2) Zl(lnn):c (3) 21 (Vn+1—yn)z™ (4) 21 (n n 1) x
© ol 2246+ (20) oo © (=13 711 (dn—1)
6) 2 o™ O X s e ” (7 )n; n
® 2ot @ Wiissr oot D 2Zsee . 6
w o oe e —
(10) >, Rk + 1)k + 271' (k+n 1)x", where k is a positive integer;
n=1 :
11 5 (1)" here £ i itive int ; 12 o 13 S
(11) T;O (lm)!x , where k is a positive integer;  (12) 2 on (13) n§2 ()2

(14) §[2+¢4wkx+1w4

n=1

Problem 9.34. The function J, defined by

0 (_1)n$2n

VIGEDY (e

n=0
is called the Bessel function of the first kind of order 0. Find its domain (that is, the interval

of convergence).



Problem 9.35. The function J; defined by

0 (_1)nx2n+1

Ji(z) = Z nl(n + 1)1220+1

n=0

is called the Bessel function of the first kind of order 1. Find its domain (that is, the interval

of convergence).

Problem 9.36. The function A defined by

x3 20 x?

2372356 23506809
is called an Airy function after the English mathematician and astronomer Sir George Airy

(1801-1892). Find the domain of the Airy function.

Alx) =1+

Problem 9.37. A function f is defined by
fxy=1+20+2>+ 223 + 2+

that is, its coefficients are co, = 1 and c9,11 = 2 for all n > 0. Find the interval of

convergence of the series and find an explicit formula for f(z).

Problem 9.38. Let f: (—r,7) — R be n-times differentiable at 0, and P,(z) be the n-th

Maclaurin polynomial for f.

1. Show that if g(x) = 2 f(2™) for some positive integers m and ¢, then the (mn + ¢)-th

Maclaurin polynomial for g is z*P,(z™).

2. Show that if h(z) = x¢f(—a™) for some positive integers m and £, then the (mn+/¢)-th

Maclaurin polynomial for h is /P, (—2™).
3. Find the Maclaurin series for the following functions:

1
) y=—
1)y 1+ 22

Hint for (1) and (2): See Exercise 3 Problem 4.

(2) y = 2?arctan(23) (3) y =In(1+2z*) (4) y = xsin(a?®) cos(z?).

2

express 1 as a geometric series,
— X

e}
Problem 9.39. To find the sum of the series }] ;l—n,

n=1
differentiate both sides of the resulting equation with respect to x, multiply both sides of

. : . . . 1
the result by z, differentiate again, multiply by x again, and set x equal to 5 What do you
get?



Problem 9.40. Complete the following.

(1) Use the power series of y = arctan to show that

SIE
= Ni;o (2n + 1)3"

1
(2) Using 23+ 1 = (x+1)(2? — 2z + 1), rewrite the integral JQ # and then express
o 12—

+1

25 as the sum of a power series to prove the following formula for 7:
x

(e

W3 (), 2 1
_ 33 3 (=1) ( N ).
4 = 8 \3n+l 3n+2
Problem 9.41. Show that the Bessel function of the first kind of order 0, denoted by J,
and defined by

n.2n

o (=)
Jo() = 2 92 (pl)2
satisfies the differential equation
a?y" () +ay'(z) + 2’y(2) =0,  y(0) =1, y'(0)=0.

Problem 9.42. Show that the Bessel function of the first kind of order 1, denoted by .J;

and defined by
a0
(_1)nx2n+1
h@) = ), nl(n + 1)122041

n=0

satisfies the differential equation
2’y"(x) + 2y’ (2) + (2* = Dy(x) =0, y(0) =0, y'(0) =

Problem 9.43. Suppose that z;(t) and x(t) are functions of ¢ satisfying the following

equations

where " denotes the derivatives with respect to t.



1. Assume that the function z4(t) and z5(¢) can be written as a power series (on a certain

0 0
interval), that is, z1(t) = Y. axt* and x5(t) = > bit®. Show that
k=0 k=0

(k+2)(k+ 1ago =ar and (k+2)(k+ 1)bgyo = by Vk=0.

2. Find a; and b, and conclude that x; and x, are some functions that we have seen

before.
3. Find a function z(t) satisfying
z"(t)—x(t) =0, z(0)=a, z'(0)=0.
Note that x can be written as the linear combination of x; and x,.
Problem 9.44. Find the series solution to the differential equation
y'(@)+aty(@) =0, y(0)=1, y'(0)=0.
What is the radius of convergence of this series solution?

Problem 9.45. In this problem we try to establish the following theorem
Theorem 9.112

e¢]
Let the radius of convergence of the power series f(z) = > ar(z — ¢)* be r for some
k=0

r > 0.

0

1. If >} apr® converges, then f is continuous at c+7; that is l(im) fz) = fetr).
k=0 z—(ct+r)~

0
2. If > ap(—r)* converges, then f is continuous at ¢ — r; that is, l(irn " flx) =
k=0 rz—(c—r

fle—r).

Prove case 1 of the theorem above through the following steps.

a0
(1) Let A= Y apr*, and define

k=0

0

o0 Q0
g(z) = fre+c¢)—A=— Z agr® + Z aprFat = Z bra®
k=1 k=0

k=1



[es}
where b, = a;r* for each k € N and by = — > arr®. Show that the radius of conver-

0 k=1

gence of ¢g is 1 and )] b, = 0. Moreover, show that f is continuous at ¢ + r if and
k=0

only if g is continuous at 1.
(2) Let s, =by+ by + -+ b, and S,(z) = by + byx + - - - + b,z"™. Show that
Sp(x) = (1 —2)(s0+ 8120+ + 8, 12" ") + s,2"
and conclude that

g(z) = lim S,( (1—x) Z spa® (9.11.6)

n—o0

(3) Use (9.11.6) to show that g is continuous at 1. Note that you might need to use £-9

argument.

1 0

xdr = )] i
k=1~

Hint: Write 27 = e *!* and use the Maclaurin series for exp to conclude that

f xd:L_J xlnx) dz .
k=0

Problem 9.46. Show that J
0

k w el _1\k k
Use the fact that Z —TlnT) de = ] J M dz. You will also need to
0 k=0 k=0 Jo k!
recall the Gamma function.
1 o 0 (_1\k
Problem 9.47. Show that Izl +2) de = ), ( D :
0 € o K
1 0 1)l<: Lpk—1
Hint: Use (9.7.8) and rewrite the integral above as Inz Z ~——~———dx. Assume
0 k=1

that you know that

f lnTZ

Problem 9.48. Let {a,} ", and {b,}°_, be sequence of real numbers such that the series
k n

Z a,, and Z b, both converge. Define ¢, = > a;b;—; and C,, = Y] ¢;.

i=0

n=0 n=0 7=0

1
2" Inzdr.

k’lk;l




ee}
1. Show that if »] a, converges absolutely, then

n=0

e @] 0 ¢]

lim C, = (Z an> ( 3 bn) (9.11.7)

n=0 n=0

by completing the following.

n k
(a) Show that C,, = >, a,_xBg, where By = > b; is the k-th partial sum of the
k=0 i=0

o0
series > b;.
=0

k 0

(b) Let Ay = > a; be the k-th partial sum of the series »  a;, and A = lim A,
i=0 i=0 o

B = 3} B,. Then

n—ao0
Co—AB =Y a, x(By— B) + (A, — A)B.
k=0

Use the e-N argument to show that lim C, = AB.

n—0o0

o0 e¢] 0¢]
2. > ¢y is called the Cauchy product of the series >; a, and Y] b,. Show that (9.11.7)

n=0 n=0 n=0

o0 o0
may fail if both )] a, and }] b, converges conditionally by looking at the example
n=0 n=0

an:bn:\(/%forallneN.




Chapter 10

Vectors and the Geometry of Space

10.1 Preliminaries

In this section we review some of the materials from the high school (or even linear algebra).
First we consider vectors in the plane. We let i (or e;) and j (or e3) denote the vectors (1,0)
and (0, 1), respectively. Any vectors v in the plane can be written as v = v1i+ v9j. For two
vectors u = uji+ ugj and v = v1i + vyj, the dot product of u and v, denoted by u - v, is
defined by

2
UV =1uv + Uy = Zujvj.
7j=1

Let 6 denote the angle between two non-zero vectors u and v. The law of cosines then
implies that

u-v = [uffv]cost,

where |[u| = 4/u} +u3 and |[v]| = \/v} 4+ v3 denote the length of vectors u and v, respec-
tively.

Similar ideas can be extended for vectors in space. Let i, j, k denote the vectors
i=(1,0,0)=e;, j=(0,1,00=e; and k=1(0,0,1) =e;.
The standard unit vector notation for a vector v in space is
3
vV = Uli -+ ’UQj -+ ng = vi€e; + Ve + vze3 = Z v;€; .
7=1

260



For two vectors u = u1i+ usj + uz and v = v1i + vyj + vsk, the dot product of u and v,

again denoted by u - v, is defined by
3
UV =1uUv + UgUy + UgV3 = Z UV .
7=1

If € denote the angle between u and v when u, v are non-zero vectors, then the law of cosines
also implies that
u-v=|uf|v|]cosb, (10.1.1)

where |lu]| = \/u} + u3 + u and |[v| = /v} + v3 + v3 again denote the length of vectors u

and v, respectively.

10.2 The Cross Product of Two Vectors in Space

Definition 10.1

Let u = uyi+usj+usk and v = v1i+voj+ v3k be vectors in space. The cross product

of u and v, denoted by u x v, is the vector

u X v = (ugv3 — ugve)i+ (usv1 — uyv3)j + (w1ve — ugvr)k.

Remark 10.2. Using the notation of determinant, the cross product of u and v can be

computed as

i j ok
uxXv=/|uU Uz U3
U1 V2 Us

Remark 10.3. A sequence (ky, ko, -, ky,) of positive integers not exceeding n, with the
property that no two of the k; are equal, is called a permutation of degree n. The
collection of all permutations of degree n is denoted by P(n). For 1 <i,j < n and i # j, the
operator 7(; j) interchange the i-th and j-th elements of a sequence in P(n). For example, if
n = 3, the permutation (3,1, 2) can be obtained by interchanging pairs of (1,2, 3) twice:

7(1,3) 7(2,3)

(172’3) - (372a ]-) - (37 1a2)a

thus (3, 1, 2) is called an even permutation of (1,2, 3). On the other hand, (1, 3, 2) is obtained
by interchanging pairs of (1,2, 3) once:

7(2,3)

(17 2a3> - (173a 2)a



thus (1, 3,2) is an odd permutation of (1,2, 3).

For n = 3, the even and odd permutations can also be viewed as the orientation of the
permutation (ki, k2, k3). To be more precise, if (1,2,3) is arranged in a counter-clockwise
orientation (see Figure 10.1), then an even permutation of degree 3 is a permutation in the
counter-clockwise orientation, while an odd permutation of degree 3 is a permutation in the
clockwise orientation. From figure 10.1, it is easy to see that (3,1, 2) is an even permutation

of degree 3 and (1, 3,2) is an odd permutation of degree 3.

(Y L)

Even permutations Odd permutations

Figure 10.1: Even and odd permutations of degree 3

The permutation symbol is a function on P(n) defined by

1 if (ky, ko, -+, k) is an even permutation of (1,2,--- n),
Erhy ke =
Fukz:hn —1 if (ky, ko, -+, k,) is an odd permutation of (1,2,--- n).

In general, one can define

1 if (k1 ko, -+, ky) is an even permutation of (1,2,--- ,n),
Ekikgkn = 4 —1 if (k1, ko, -+ ,ky) is an odd permutation of (1,2,---,n),

0 otherwise.

Using the permutation symbol, we have

3

3 3
uxv= Z EijkU;VE€; = Z ( 2 €iijjUk> e;, (1021)

where u = (uy, us, u3) and v = (vq,v2,v3). In other words, the i-th component of u x v is
3

€ijkU;Vk.
jk=1
In the following, for simplicity we let (u x v); denote the i-th component of the vector
u x v. In other words,

3
(uxv), = Z EijkU; Uk -
k=1



Theorem 10.4

Let u = (uy, us,u3), v = (v1,v2,v3) and w = (wy, ws, w3) be vectors in space, and ¢

be a scalar.
(a) uxv=—(vxu).

ux (v+w)=(uxv)+(uxw).

We note that (b) and (c) can be simplified as
ux (cv+dw) =c(uxv)+duxw) V vectors in space u, v ,w and scalars ¢, d.
Proof of Theorem 10.4. We provide two proofs for (f), and the others are left as exercise.
1. Since v x w = (vaws3 — v3ws)i+ (v3wy — vyws)j+ (viwe — vow; )k and u x v = (ugvz —
ugve)i+ (uzvy — uqv3)j + (u1ve — ugvy)k, we find that
u- (v x w) = up(vows — vsws) + ug(vzw; — viws) + us(viwy — vewy)
= w1 (ugvs — usvy) + wo(usvy — wrvs) + w3(u1vy — Ugvy)
=w-(uxv)=(uxv) w.

2. Using (10.2.1) and the fact that e;;, = gy,

V X W ZUZ Z EijkVjWE = Z EijkW VW = Z Wi Z EkijUiVj

=1 k=1 ,7,k=1 1,j=1
3

Z ruxv)y=w-(uxv).

Lemma 10.5

1 ifi— i
Let 9;; be the Kronecker delta defined by 4;; = { Be=gy

.7 Then
0 ife#7.

3
Z Eijk€irs = 0jrOks — 0jsOkr - (10.2.2)




Theorem 10.6: Geometric properties of the cross product

Let u and v be non-zero vectors in space, and let 6 be the angle between u and v.
(a) u x v is orthogonal to both u and v.
(b) Ju>x v = Julv]sind.

(¢) ux v =0if and only if u and v are scalar multiples of each other.
)

(d

|u x v| is the area of parallelogram having u and v as adjacent sides.

Proof. We only prove (b). Using (10.2.2),

3

luxv|]2=(uxv) (uxv)= Z(u X v)(uxv), = Z < Zg:_ sijkujvk) ( i &tmurvs)

3 i=1 3 =1 j, r,s=1
n
= 2 Eijk€irsUjVEUrUs = Z <Z gijkgirs>uj"l]kur'l)s
1,9,k,r,s=1 7,krs=1  i=1
3 3
= Z (6jT6kJS - 6j35kr)ujvkurvs = Z [Uivi - (ujvj)(ukvk)}
J,k,r,s=1 j,k=1
3 3 3 3
= (X (D) = (X we) (X mee) = [ullv]? — fu- v,
Jj=1 k=1 j=1 k=1

Using (10.1.1), we find that
[u > v]* = [ v]* = fu- v[* = u*[v]* — Ju*|v|* cos® § = [u]*|v]?sin® §

which concludes (b).

Definition 10.7: Triple Scalar Product

For vectors u, v and w in space, the dot product of u and v x w is called the triple

scalar product (of u, v, w).

Theorem 10.8

For u = wii+ usj + usk, v = vii + v2j + vsk and w = wqi + wqj + wsk, the triple
scalar product u- (v x w) is
Uy Uy U3
u-(vxw)=|vy vy v3

w; W2 w3




Theorem 10.9
The volume V' of a parallelepiped with vectors u, v, and w as adjacent edges is

V=|uxv) w=u(vxw).

Height = |w||cos 8|} e

————  =luxy|

Volume = area of base - height
= |u X v||w]||cos 8]
=|(u X v)-w|

Figure 10.2: The number |(u x v) - w| is the volume of a parallelepiped.

10.2.1 Alternative definition of the cross product

We start with two nonzero vectors u and v in space. If u and v are not parallel, they
determine a plane. We select a unit vector n perpendicular to the plane by the right-hand
rule; that is, the unit normal vector m points the way your right thumb points when your

fingers curl through the angle 6 from u to v (figure 10.3).

Figure 10.3: The construction of u x v

Then we define a new vector as follows.



Definition 10.10

Let u and v be vectors in space, 6 be the angle between u and v, and n be a unit

vector defined by the right-hand rule. The cross product u x v is the vector

uxv=|uf|v]|sindn.

We note that if u and v are parallel, then n is not well-defined; however, in this case
6 = 0 or w so that sinf = 0; thus the definition above suggests that u x v =0 if u and v
are parallel. This is indeed the case we should have in mind.

Using this definition of the cross product, properties (a)(c)(d)(e) in Theorem 10.4 clearly
hold. For example, property (a) can be visualized by the following figure

Figure 10.4: The construction of u x v

In the following, we prove (b) in Theorem 10.4 under this alternative definition of cross

product. To derive (b), we construct u x v in a new way (see Figure 10.5 for reference).

Figure 10.5: As explained in the text, u x v = |u|||v”|. (The primes used here are purely
notational and do not denote derivatives.)



We draw u and v from the common point O and construct a plane M perpendicular to
u at O. We then project v orthogonally onto M, yielding a vector v/ with length |v/ sin 6.
We rotate v/ 90° about u in the positive sense to produce a vector v”. Finally, we multiply
v” by the length of u. The resulting vector |ul|v” is equal to u x v since v” has the same

direction as u x v by its construction and
[all[v" = Tal[ v = [al|v]sin 6 = > v].
Now each of these three operations, namely,
1. projection onto M,
2. rotation about u through 90°,
3. multiplication by the scalar |ul,

when applied to a triangle whose plane is not parallel to u, will produce another triangle.
If we start with the triangle whose sides are v, w, and v + w (Figure 10.6) and apply these

three steps, we successively obtain the following:

1. A triangle whose sides are v/, w’, and (v 4+ w)’ satisfying the vector equation
vVi+w =(v+w).

2. A triangle whose sides are v/, w”, and (v + w)” satisfying the vector equation
vitw'=(v+w)".

3. A triangle whose sides are [[u|v”, |[u|w”, and |u/(v+w)” satisfying the vector equation

[ullv" + fJuw” = [uf(v+w)".

r

Figure 10.6: The vectors, v, w, v + w, and their projections onto a plane perpendicular to
u.



Substituting |u[v” = u x v, Julw” = u x w, and [ju|(v+ w)” = u x (v + w) from our
discussion above into this last equation gives u x v+u x w = u x (v+ w), which is the law

we wanted to establish.
When we apply the definition to calculate the pairwise cross products of i, j, and k, we

find that ix j=k, jx k=iand k x i =j.

x ‘
i=jxk

Figure 10.7: The pairwise cross products of i, j, and k.

Having establishing (b) in Theorem 10.4 under the alternative definition of cross product,

we are able to derive the formula for cross product in Definition 10.1:

u x v = (ui+ ugj+ usk) x (v1i+ vaj+ v3k)
= uvo(i x j) +ugvz(i x k) 4+ ugvy(j x 1) + ugus(j x k) + ugvy(k x i) + ugve(k x j)

= (UQUg — U3U2)i + (U3’01 - ulvg)j + (Ul’UQ — Ug’Ul)k .

10.3 Polar Coordinate

In this section we review the polar coordinate (on the plane) that we introduction in Remark
0.8 and make some extensions. To form the polar coordinate system in the plane, fix a point
O, called the pole (or origin), and construct from O an initial ray called the polar axis, as

shown in Figure 10.8.
Pir.8)

N6
Oe - -
polar axis X

Figure 10.8: Polar coordinate



Then each point P in the plane can be assigned polar coordinates (r, 6), also called the polar

representation of P, as follows.

r = distance from O to P,

6 = angle (in [0,27)) measured counterclockwise from polar axis to segment OP.

Let the polar axis as the positive z-axis on the plane (that is, let i or e; denote the unit

vector pointing in the direction of the polar axis), and j or e; be the unique unit vector

in the plane obtained by rotating i counterclockwise by angle g Then every point P in

the plane can be expressed as an ordered pair (z,y) in the way that the vector OP can be
expressed as re; + yeo. In other words, (x,y) is the Cartesian coordinate of P with e; and
e, being the unit vectors on the z-axis and y-axis of the plane. If P # O, and (z,v), (r,0)

are the Cartesian and polar coordinate of P, respectively, then we have

x=rcosb, y=rsinf, (10.3.1a)

arctan ifz >0,
T

™

— ifr=0andy >0,

=2, 0= 2 v (10.3.1b)
7+ arctan = if z <0,
X

3T
L 2

ifr=0andy<0.

(10.3.1a) is sometimes called the polar-to-rectangular and (10.3.1b) is sometimes called
the rectangular-to-polar (coordinate) conversion. Note that the polar coordinate gives
an one-to-one correspondence between the region (0,00) x [0,27) and the plane with the

origin removed.

Remark 10.11. Often time we use the region [0,00) x [0,27] on the rf-plane to denote
the set to which (r,6) belongs. The segment {0} x [0,27] is treated as the origin (of the
xy-plane), while the ray [0,00) x {0} and [0,00) x {27} both represent x-axis.

Such as some rectangular regions can be easily represented using the Cartesian coordinate
(for example, [a,b] x [c, d] represents a rectangle), some special regions in the plane can be

easily represented using the polar coordinate.

Example 10.12. The sector enclosed by the circle with radius rq and two radii 6 = 6, and

6 = 0, can be expressed as (r,0) € [0, 7] x [0y, 01].



Curves in the region [0,00) x [0,27] of the rf-plane corresponds to curves in xy-plane
through relation (10.3.1a). For example, the line segment {1} x [0,27] (or simply r = 1)
corresponds to the unit circle centered at the origin, and the ray [0,00) x {#y} (or simply

0 = 6y) corresponds to the ray to which the angle measured from the polar axis is 6.

Example 10.13. The curve r = cosf in the region [0, ) x [0, 27] corresponds to the circle
22 + 9% = 2 in the xy-plane.

As we did not distinguish the angle 0 and 27, we should not distinguish any 6 with all
0 + 2km (k € Z). In general, for a given point P = (x,y) in Cartesian coordinate system,
we should treat (r,6) as the polar coordinate of P as long as (r, 6) satisfies (10.3.1a). This

includes the possibility that r is negative since
(rcos@,rsind) = ((—r)cos(d + ), (—r) sin(6 + 7))

which means if (r,0) is a polar representation of P, then (—r,0 + 7) is also a polar repre-
sentation of P.

To be more precise, the polar coordinate (r,0) of a point P satisfies

r = “directed” distance from O to P,

0 = “directed” angle measured counterclockwise from polar axis to segment OP.

We note under this convention, each point have infinitely many polar representation.
Remark 10.14. {8 fin & AR B > 215 (nehit > £ o phen » 5 > 5 R Epht F B ¥
o pEEM I GHEF DG V- BANRATDE S 2N REM  -2 5B
R e EHTR IR A TH S F - BRE A -2 04 o SR i B fRie i
A (—2,0) 0 Bt —2 L A9 o directed distance @ 0 E_directed angle ° directed
distance #@F f BLBAA (TR 7 B A REBR GRG0 2w 4e— G T o

From now on, the polar coordinate, given the pole and the polar axis, refers
to this non-unique polar representation of points in the plane.

Theorem 10.15

The polar coordinates (r, ) of a point are relation to the Cartesian coordinates (z,y)

of the point as follows.

Polar-to-Rectangular Rectangular-to-Polar
x =rcost tan@z%

y = rsinf r? =% +y?




10.4 Cylindrical and Spherical Coordinates

10.4.1 The cylindrical coordinate

Definition 10.16

In a cylindrical coordinate system, a point P in space is presented by an ordered triple
(r,0, z) such that

1. (r,0) is a polar representation of the projection of P in the xy-plane.

2. z is the directed distance from (r,0) to P.

(r, 8,0)

Figure 10.9: Cylindrical coordinate

The point (0,0, 0) is called the pole. Moreover, because the presentation of a point in the
polar coordinate system is not unique, it follows that the representation in the cylindrical
coordinate system is also not unique.

We have the coordinate conversion formula:

1. Cylindrical to rectangular: © = rcosf, y =rsinf, z = z.

2. Rectangular to cylindrical: r? = 22 + ¢?, tanf = %, 2=z

10.4.2 The spherical coordinate

Definition 10.17

In a spherical coordinate system, a point P in space is represented by an ordered
triple (p, 0, ¢) such that

1. pis the distance between P and the origin (so p = 0).
2. 0 is the same angle used in cylindrical coordinates for r» > 0.

3. ¢ is the angle between the positive z-axis and the line segment OP (so ¢ € [0, ]).

Note that the first and third coordinates, p and ¢, are nonnegative.




P(p, 6, ¢)

Figure 10.10: Spherical coordinate

The collection of all points whose “spherical representation” has the same p > 0 is the
sphere center at the origin with radius p. Therefore, for fixed p > 0 the (6, ¢) coordinate
system can be used to represent points on the sphere (centered at the origin with radius p)
which is similar to the latitude-longitude system used to identify points on the surface of
Earth. In fact, for p = 6371 kilometer (which is the radius of Earth), with the convention

W

“north is positive and south is negative”, “east is positive and west is negative”, then @ is the
latitude and g — ¢ is the longitude (here 6 = 0 and 0 = 7 correspond to the prime meridian

(&4 = #) and the international date line (B"s 4% p 4), respectively, if 6 € (—m, 7).

We have the coordinate conversion formula:

1. Spherical to rectangular: z = pcosfsin ¢, y = psinfsin ¢, z = pcos ¢.

z
N2+ 4 22

We can also convert the spherical coordinate to cylindrical coordinate and vice versa, by

2. Rectangular to spherical: p? = 22 +¢2 + 22, tanf = 2, ¢ = arccos
X

the following conversion formula:
1. Spherical to cylindrical: r? = p?sin® ¢, § = 0, z = pcos ¢.

2. Cylindrical to spherical: p = /72 + 22, 6 = 0, ¢ = arccos N
y P p ¢ g

10.5 Exercise

Problem 10.1. In class we have introduced the permutation symbol e;;, and use it to
3

define the cross product: for two given vectors u = uji+ ugj + usk = >, ue; and v =
i=1



3
vii+ vej + vsk = Y] v;e;, the cross product u x v is defined by
i=1

3 3
uxv= Z ( 2 6iijjUk>ei = Z EijkU; VL€ .
i=1  jk=1 1,5,k=1

Use the summation notation above without expanding the sum (7 & & B = » £ frch3;
Y0 B8 Y HiT) and the identity

3
Z €ijkEirs = 5jr5ks - 6j55kr
i=1

to prove the following.

(1) ux (vxw)=(u-w)v—(u-v)w for all vectors u, v, w in space. (Is the associative law

ux (vxw)=(uxv)xwtrue?)

a-¢c b-c

(2) (axb)-(exd)=| "

for all vectors a, b, c,d in space.

Problem 10.2.

(1) Let u, v be vectors in space satisfying u-v = /3 and u x v = i+ 2j + 2k. Find the

angle between u and v.
(2) Let u,v be vectors in space. What can you conclude if u x v=0 and u-v = 07

(3) Let u, v, w be vectors in space. Show that if u-v =u-w and u x v=u x w, then

vV =w.
Problem 10.3.

(1) Let P be a point not on the line L that passes through the points @ and R. Show
that the distance d from the point P to the line L is

where a = @\%andb = 6715



(2) Let P be a point not on the plane that passes through the points @, R, and S. Show
that the distance d from P to the plane is

la- (b x c)|
a="2 20
Ja > b]

Wherea:@\%,b:@andc:@.

Problem 10.4. Show that the polar equation r = asinf 4+ bcos 6, where ab # 0, represents

a circle, and find its center and radius.

Problem 10.5. Replace the polar equations in the following questions with equivalent

Cartesian equations.
(1) 7%sin20 =2 (2) r =4tanfsecl (3) r =cscle s’ (4) rsind =Inr + Incosf.
Problem 10.6. Let C' be a smooth curve parameterized by
. o Tom
r(t) = (costsint,sintsint, cost), te [—— —] .
(1) Show that C'is a closed curve on the unit sphere S2.

(2) Using the spherical coordinate, the curve C' above corresponds to a curve on the
f¢-plane. Find the curve in the region {(6,¢)|0 < 6 < 27,0 < ¢ < 7}.

y

Remark: B 3fa £+ 3 AR KPHGFT C SHRERN - T FREALL K+ B H
BRIV - B %= JHETLERAL AR ISR RE P o

Problem 10.7. Let C' be a smooth curve parameterized by

r(t) = (cos(sint)sint, sin(sint) sin¢, cost) , te0,2n].



(1) Show that C'is a closed curve on the unit sphere S2.

(2) Using the spherical coordinate, the curve C' above corresponds to a curve on the
f¢-plane. Find the curve in the region {(6, ¢) ’ 0<f<2r,0<¢<nm}




Chapter 12

Vector-Valued Functions

12.1 Vector-Valued Functions of One Variable

A function of the form

r(t) = f@)i+g()j or  r@)=f)i+g(t)j+h(Dk

is a vector-valued function of one variable, where the component function f, g and h

are real-valued functions of the parameter t. Using the vector notation, vector-valued

functions above are sometimes denoted by

r(t) = (f(t),9(t))  or ()= (f(t),9(t).h(t)).

Remark 12.2. When r is a vector-valued function, we automatically assume that its com-

ponents f, g (and h) have a common domain.

Definition 12.3: Limit of Vector-Valued Functions

1. If 7 is a vector-valued function such that r(t) = f(t)i+ g(t)j, then
i r(6) =t 70) -+ (fimotn))
provided that the limits lgr; f(t) and gr; g(t) exist.
2. If r is a vector-valued function such that r(¢) = f(¢)i+ g(t)j + h(t)k, then
() = (S0 i+ (o) -+ (o))

provided that the limits Pm f(t), 2leim g(t) and %im h(t) exist.

—a
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Remark 12.4. Using the e-6 language, the limit of a vector-valued function 7 is defined as

follows: Let I be the domain of r. The notation %im r(t) = L means for every € > 0 there

exists 6 > 0 such that |r(¢) — L|| < & whenever 0 < |t —a| < and t € I.

Definition 12.5: Continuity of Vector-Valued Functions

A vector-valued function 7 is said to be continuous at a point a if the limit Pm r(t)
—a
exists and lim r(t) = r(a).

—a

Definition 12.6: Differentiation of Vector-Valued Functions

The derivative of a vector-valued function r at a point a is

. r(a+ h) — r(a)
h—0 h

provided that the limit above exists. If r(a) exists, then 7 is said to be differentiable
at a and r’'(a) is called the derivative of r at a. If r’(t) exists for all ¢ in an interval

I, then r is said to be differentiable on the interval I.

1. If 7 is a vector-valued function such that r(t) = f(t)i+ g(t)j, then
r'(a) = f'(a)i+g'(a)]
provided that f’(a) and ¢'(a) exist.

2. If r is a vector-valued function such that r(t) = f(t)i+ g(¢t)j+ h(t)k, then
r'(a) = f(a)i+g'(a)j+ h'(a)k
provided that f’(a), ¢'(a) and h'(a) exist.

Theorem 12.8

Let r and u be differentiable vector-valued functions and f be a differentiable real-
valued function.

@) L = FOr + 0. b) L £ u)] = ) £ )
(C) %[T(t) * u(t)] = 'r"(t) * ’u,(t) + 'T’(t) * ’l.l,/(t), where * is the dot product or the
cross product.

(@) Sr(f(0) = £ (£(1)).




Proof. We only prove (c) for the case * being the cross product. Write r(t) = ri(t)i +
ro(t)j + r3(t)k and w(t) = uy(¢)i+ ua(t)j + us(t)k. By the definition of the cross product,

[7(t) x w(t)],, the i-th component of r(t) x u(t), is given by >} eypr;(t)ux(t). By the
1<j,k<3
product rule,

£ [r(t) x u(t)], = %Kj,kgg e (Dun(t) = K%;ég gijk% [ (Hus(t)]
= Eijk [r;(t)uk(t) + 7 (t)u]’(t)] =7r'(t) x u(t) + r(t) x u'(t),
1<5,k<3

where we have used 7/(t) = r{(t)i+ r5(t)j + r4(t)k and w'(t) = u{(t)i+ uy(t)j + us(t)k to
conclude the last equality. [

Remark 12.9. The proof presented above in fact can be used to show that

p an(t) aia(t) ai(t)
7 axn(t) axn(t) axa(t)
asi(t) asa(t) ass(t)
ay () afa(t) afs(t)| |aun(t) a2(t) as(t)] |aun(t) ax(t) ais(t)
= lan(t) an(t) ax(t)|+|ag(t) an(t) ax(t)|+ |axa(l) axn(t) as(t)
azi(t) asa(t) ass(t)| |asi(t) as(l) ass(t)] |ag(t) azn(l) ags(l)

is given by Y. einaii(t)az;(t)asi(t). The
1<i,j, k<3
formula above shows that the differentiation of determinants is obtained by differentiating

since the determinant of A = [aij(t)]l <ij<s

row by row (or column by column).

e Integration of vector-valued functions of one variable

Similar to the differentiation of vector-valued functions which mimics the differentiation of
real-valued functions, we can also define the Riemann integral of a vector-valued function r

on [a,b] as the “limit” of the Riemann sum

n

Z (&) (tk — ti-1) (12.1.1)

k=1
where {a =ty < t; < --- < t, = b} is a partition of [a,b]. To be more precise, a vector-
valued function 7 : [a,b] — R? where d = 2 or 3, is said to be Riemann integrable on
[a,b] if there exists a vector A such that for all & > 0 there exists § > 0 such that if

P={a=1t <t <---<t,=>b}is a partition of [a, ] satisfying |P| < ¢, any Riemann



sum of 7 for P (given by (12.1.1)) locates in (A — &, A + ¢), where the vector A + ¢ is the

vector obtained by adding or subtracting € from each component of A. The vector A, if
b

exists, is written as f r(t) dt. Since the limit of a vector-valued function can be computed
a

componentwise, we have the following

Theorem 12.9

1. If 7 is a vector-valued function such that r(t) = f(t)i+ g(t)j, then

Jb r(t) dt = (be(t)dt>i+ (ng@e) dt>j

provided that J f(t)dt and f t) dt exist.

2. If r is a vector-valued function such that r(¢t) = f(¢)i+ g(¢)j+ h(¢)k, then

J £) dt = ff dt J (t)dt>j+(fbh(t)dt>k

a

provided that J f(t)dt, f

a

g(t) dt and J h(t) dt exist.

The Fundamental Theorem of Calculus provides a way to compute the definite integral of
vector-valued functions, and this enables us to define the indefinite integral of vector-valued

functions as follows.

Definition 12.10

1. If 7 is a vector-valued function such that r(t) = f(t)i+ g(t)j, then the indefinite

integral (anti-derivative) of r is

fr(t) dt = (Jf(t)dt)i+ (Jg(t) dt)j

provided that J f(t)dt and f t) dt exist.

2. If r is a vector-valued function such that r(t) = f(t)i+ g(t)j+ h(t)k, then the

indefinite integral (anti-derivative) of r is

Jr(t) dt = <ff(t)dt>i+ (Jg(t) dt)j + <fh(t) dt)k

provided that ff(t) dt, fg(t) dt and fh(t) dt exist.




Having defined the indefinite integral of vector-valued functions, by the Fundamental
Theorem of Calculus and Theorem 12.7 we have

d

pr r(t) dt = r(t)

as long as r is continuous.

12.2 Curves and Parametric Equations

Definition 12.11

A subset C' in the plane (or space) is called a curve if C' is the image of an interval

I < R under a continuous vector-valued function r. The continuous function r: I —

R? (or R?) is called a parametrization of the curve, and the equation
(x,y)=7r(t), tel (or (x,y,2) = r(t), te[)

is called a parametric equation of the curve. A curve C' is called a plane curve

if it is a subset in the plane.

Since a plane can be treated as a subset of space, in the following we always assume that
the curve under discussion is a curve in space (so that the parametrization of the curve is
given by r: I — R3).

A curve C' is called simple if it has an injective parametrization; that is, there exists
r : I — R? such that r(I) = C and r(z) = r(y) implies that * = y. A curve

C with parametrization r : I — R3 is called closed if I = [a,b] for some closed

interval [a,b] € R and 7(a) = r(b). A simple closed curve C is a closed curve with
parametrization r : [a,b] — R?® such that 7 is one-to-one on (a,b). A smooth curve
C is a curve with differentiable parametrization r : I — R? such that 7’(t) # 0 for all
tel.

Example 12.13. The parabola y = 2% + 2 on the plane is a simple smooth plane curve

since r : R — R? given by r(t) = ti+ (r? 4+ 2)j is an injective differentiable parametrization
of this parabola. We note that 7 : (—g, g) — R? given by 7(t) = tanti+ (sec’t + 1)j is
also an injective smooth parametrization of this parabola. In general, a curve usually has

infinitely many parameterizations.



Example 12.14. Let I < R be an interval, and r : I — R? be defined by r(t) = costi+
sintj. Since r is continuous and the co-domain is R?, the image of I under r, denoted by C,
is a plane curve. We note that C' is part of the unit circle centered at the origin. Moreover,

C'is a smooth curve since 7'(t) # 0 for all t € I.
1. If I =a,b] and |b — a| < 27, then C is a simple curve.
2. If I =[0,27], then C' is not a simple curve. However, C' a simple closed curve.

Example 12.15. Let 7 : [0,27] — R? be defined by r(¢) = sinti+ sintcostj. The image
r([0,27]) is a curve called figure eight.

Figure 12.1: Figure eight

Example 12.16. Let r: R — R? be defined by r(t) = costi+ sintj+ tk. Then the image

r(R) is a simple smooth space curve. This curve is called a helix.

In the following, when a parametrization r : I — R? of curves C' is mentioned, we always
assume that “there is no overlap”; that is, there are no intervals [a, b], [c,d] < I satisfying

that r([a,b]) = r([c,d]). If in addition
1. Cis a simple curve, then r is injective, or
2. Cis closed, then I = [a,b] and r(a) = r(b), or
3. Cis simple closed, then I = [a,b] and r is injective on [a,b) and r(a) = r(b).

4. C is smooth, then r is differentiable and r'(¢) # 0 for all t € I.

12.2.1 Polar Graphs

In Example 10.13 we talk about one particular correspondence between a curve on the rf-
plane and a curve on the xy-plane. The equation r = cos is called a polar equation which
means an equation in polar coordinate, and the corresponding curve given by the relation

(z,y) = (rcosf,rsinf) on the xy-plane is called the polar graph of this polar equation.



Definition 12.17

Let (r,0) be the polar coordinate. A polar equation is an equation that r and 6
satisfy. The polar graph of a polar equation is the collection of points (r cos ), r sin )

in zy-plane with (7, 0) satisfying the given polar equation.

Remark 12.18. Usually, the polar equation under consideration is of the form

r=f0) o 9=g(r)

for some functions f and g. The polar graph of the polar equation r = f(#) is the
curve parameterized by the parametrization 7 : R — R? given by r(t) = f(t)costi +
f(t)sintj (where t is the role of #), while the polar graph of the polar equation 6 = g(r) is
the curve parameterized by the parametrization r : R — R? given by 7(t) = tcosg(t)i +

tsing(t)j (where t is the role of r).

Example 12.19. 1. The polar graph of the polar equation r = ry, where rq # 0 is a

constant, is the circle centered at the origin with radius |rg|.

2. The polar graph of the polar equation 8 = 6y, where 6, is a constant, is the straight

line with slope tan 6.
3. The polar graph of the polar equation r = sec is x = 1 (in the zy-plane).

4. The polar graph of the polar equation r = acos, where a is a constant, is the circle

centered at (g, O) with radius ’;‘.

5. The polar graph of the polar equation r = asin @, where a is a constant, is the circle

centered at (O, g) with radius M.
2 2

Example 12.20. A conic section ([Fl48# %) can be defined purely in terms of plane
geometry: it is the locus of all points P whose distance to a fixed point F' (called the focus
& 2L) is a constant multiple (called the eccentricity e &t 5) of the distance from P to a
fixed line L (called the directrix # 4). For 0 < e < 1 we obtain an ellipse, for e = 1 a
parabola, and for e > 1 a hyperbola.

Now we consider the polar equation whose polar graph represents a conic section. Let
the focus be the pole of a polar coordinate, and the polar axis is perpendicular to the

directrix but does not intersect the directrix. Then the eccentricity e is given by

d(P, F
e= ﬁ for all points P on the conic section, (12.2.1)



where d(P, F') is the distance between P and the focus F', and d(P, L) is the distance between
P and the directrix.
Let P denote the distance between the pole and the directrix, and the polar coordinate
of points P on a conic section is (r,6). Then (12.2.1) implies that
r
©T rcosO+ P
Therefore, the polar equation of a conic section with eccentricity e is given by
eP
T T ecost”

In general, for a given conic section we let the principal ray denote the ray starting from
the focus, perpendicular to the directrix without intersecting the directrix. Let the focus F
be the pole of a polar coordinate and 6, be the directed angel from the polar axis to the
principal ray. If (r,0) is the polar representation of point P on the conic section, then (r,6)

satisfies
T eP

rcos(f —6p) + P o CamivaleRby, e ecos(f — 6p)

e

Example 12.21 (Limacons - $#44). The polar graph of the polar equation r = a + bcos 6
or r = a+bsinf, where a,b > 0 are constants, is called a limacon. A limacons is also called
a cardioid (=5 ) if a = 0.

Y Y Y Y

<1

SalS]

a
b
(1) There is an inner loop when % < 1. (2) When a = b it is also called the cardioid.

(3) When 1 < %

is called dimpled limagons.  (4) When % > 2, it is called convex limacons.

Figure 12.2: Limagons r = a £ bcos# with the ratio — in different regions

< 2, the region enclosed by the limacon is not convex. This kind of limagons

Example 12.22 (Rose curves). The polar graph of the polar equation r = acosnf or

r = asinnf, where a > 0 is a given number and n > 2 is an integer, is called a rose curve.



Figure 12.3: Rose curves r = a cosnf: n petals when n is odd and 2n petals when n is even

Yy Yy
n=4
T T T
n—3 n=>5

Figure 12.4: Rose curves » = asinnf: n petals when n is odd and 2n petals when n is even

Y

Example 12.23 (Lemniscates - # .= 4). The polar graph of the polar equation r?> =

a?sin 20 or 2 = a? cos 26 is called a lemniscate.
Yy Yy

Q r2 = a2sin 26

r2 = a2 cos 20

Figure 12.5: Lemniscate r? = a? cos 26 or r? = a?sin 20

12.3 Physical and Geometric Meanings of the Deriva-
tive of Vector-Valued Functions

Let I < R be an interval and = : I — R? be a differentiable vector-valued function.

12.3.1 Physical meaning

Treat I as the time interval, and r(t) as the position of an object at time ¢. For a,b € I and



r(b) — r(a)

<b
“ ’ b—a

is the average velocity of the object in the time interval [a, b]. Therefore,

() = }Lli% r(c+ h})L —7(c) |

is the instantaneous velocity at t = ¢, and |7’(c)| is the instantaneous speed at t = ¢. If 7

is twice differentiable, then the derivative of the velocity vector 7’ is the acceleration.

Definition 12.24

Let I < R be the time interval and r : I — R3 be the position vector. The velocity

vector, acceleration vector and the speed at time t are
Velocity = v(t) = r'(t),
Acceleration = a(t) = r"(t),
Speed = [v(t)[ = ['(1)] -

Example 12.25. Suppose a satellite is under uniform circular motion ( % i# & [f] % &8 # )

and the position of the satellite is given by
r(t) = (Rcos(wt), Rsin(wt)) ,

where R is the distance between the satellite and the center of Earth, and w is the angular

velocity. Then
r'(t) = Rw(—sin(wt),cos(wt)) and 7"(t) = —Rw”( cos(wt), sin(wt)) ;

thus

R L O] e (O]
la(®)] = [7"()] = Rw” = == =

which gives the famous formula for the centripetal acceleration ( w & 4eif & ) .

Example 12.26. In this example we consider the motion of a planet around a single sun.
In the plane on which the planet moves, we introduce a polar coordinate system and a

Cartesian coordinate system as follows:

1. Let the sun be the pole of the polar coordinate system, and fixed a polar axis on this

plane.

2. Let i be the unit vector in the direction of the polar axis, and j be the corresponding

unit vector obtained by rotating i counterclockwise by g



Suppose the position of the planet on the plane at time ¢ € I is given by r(t) = z(t)i+y(t)].
For each t € I, let (r(t),0(t)) be the polar representation of (x(t),y(t)) in the trajectory.
We would like to determine the relation that r(¢) and 6(t) satisfy.

Define two vectors 7(t) = cos(t)i + sinf(t)j and é\(t) = —sinf(t)i + cosf(t)j. Then
r = r7. Moreover, let M and m be the mass of the sun and the planet, respectively. Then

Newton’s second law of motion implies that

GM
T — e (12.3.1)

2
By the fact that 7’ = 0’0 and ' = —0'7, we find that
r = %(r’?Jr r0'0) = r"F+7'0'0 +1'0'0 + 10”9 — r(0')*F
= [r"—r(0')]7+ [2r'0" + 7’6”]5.
Therefore, (12.3.1) implies that

GJQW?: [ = r(0")?]7 + [2r'0" +70"]0.

r

Since 7 and @ are linearly independent, we must have
GM

2

=r" —7r(0)?, (12.3.2a)
2r'0" + 10" =0. (12.3.2b)

r

Note that (12.3.2b) implies that (r?6')’ = 0; thus 7?0’ is a constant. Since mr?6’ is the
angular momentum, (12.3.2b) implies that the angular momentum is a constant, so-called

the conservation of angular momentum ( & # € = {5 ) .

12.3.2 Geometric meaning

Suppose that the image r(I) is a curve C. Since r(c+ h) — r(c) is the vector pointing from
r(c) to (¢ + h), we expect that r’(c), if it is not zero, is tangent to the curve at the point
r(c). This motivates the following

Definition 12.27

Let C' be a smooth curve represented by r on an interval I. The unit tangent vector

T (associated with the parametrization 7) is defined as

e
T = o)




Remark 12.28. Since there are infinitely many parameterizations of a given smooth curve,
different parameterizations of a smooth curve might provide different unit tangent vector.

However, this is not the case and there are only two unit tangent vectors.

Theorem 12.29

Let I < R be an interval, and = : I — R3 be a differentiable vector-valued function.

If |(¢)| is a constant function on I, then

r(t)-r'(t)=0 Vtel.

Proof. Suppose that |r(t)| = C for some constant C. Since |7(¢)]|* = r(t) - r(t),
r(t)-r(t)=C*> Vtel;

thus by the fact that »r is differentiable, Theorem 12.8 implies that

1 1d
r(t)-r'(t) = 3 [r(t) () +r'(t) - r(t)} =55 [r(t) ) r(t)} -0 Viel. 0
Corollary 12.30
/
Let C be a smooth curve represented by 7 on an interval I, and T(t) = ‘:/& be the

unit tangent vector (associated with the parametrization r). If T is differentiable at

t, then
T(t) -T'(t)=0  Vtel.

Definition 12.31

/
t
Let C' be a smooth curve represented by 7 on an interval I, and T(t) = :,8|
be the unit tangent vector (associated with r). If T’(¢) exists and T'(t) # 0, then
the principal unit normal vector (associated with the parametrization r) at t is

defined as

_T'Q)
Tl

N(?)

Theorem 12.32

Let C' be a smooth curve represented by r on an interval I, and the principal unit
normal vector N exists, then the acceleration vector a lies in the plane determined by

the unit tangent vector T and N.




Proof. Let v = r’ be the velocity vector. Then

v r’
=[]

v =|v] = [v|T.

] ]

Therefore,
a=v"=|v|'T+|v|T" = [v|'T + ] |T'|N.
The equation above implies that a is written as a linear combination of T and N, it follows

that a lies in the plane determined by T and N. [

Remark 12.33. The coefficients of T and N in the proof above are called the tangential

and normal components of acceleration and are denoted by
ar=v|" and  an=|v]|T’|

so that a(t) = ar(t)T(t) + an(t)N(t). Moreover, we note that the formula for ay above
shows that ax = 0. The normal component of acceleration is also called the centripetal

component of acceleration.

The following theorem provides some convenient formulas for computing ar and ay.

Theorem 12.34

Let C be a smooth curve represented by = on an interval I, and the principal unit

normal vector N exists. Then the tangential and normal components of acceleration

are given by

an=|v|'=a T=""1,
Kl
X
PR 1 S N LAY
||
Proof. Tt suffices to show the formula ax = v a”. Since a = arT + anxN, we find that

]

axT=an(NxT);
thus using the fact that ay = 0, by Theorem 10.6 we find that

la < T| |a > T| |vx a
= =axT| =

INx T INJIT]sing

an = |an| =
]



12.4 Arc Length and Area

12.4.1 Arc length
12.4.2 Area enclosed by simple closed curves
Let C be a simple closed curve in the plane parameterized by 7 : [a,b] — R?. Suppose that

1. 7(t) = (x(t),y(t)) moves counter-clockwise (that is, the region enclosed by C'is on

the left-hand side when moving along C') as t increases.

2. There exists ¢ € (a,b) such that z is strictly increasing on [a,c| and is strictly
decreasing on [c, b] (this implies that every vertical line intersects with the curve C'

at at most two points)

3. z'y is Riemann integrable on [a,b] (for example, x is continuously differentiable on

[a, b]).

Based on the assumption above, in the following we “prove” that

b
the area of the region enclosed by C' is — f z'(t)y(t)dt. (12.4.1)

a

We remark that condition 2 above implies that r(a) is the “leftmost” point of the curve,
and r(c) is the “rightmost” point of the curve.

Since x is strictly increasing on [a,c] and x is continuous, by the Intermediate Value
Theorem (Theorem 1.58) we find that for each point p € [z(a),z(c)] there exists a unique
t € [a,c] such that x(t) = p. Define ¢ = y(t). Then the map p — ¢ is a function. This
implies that the curve 7([a, c]) is the graph of a continuous function f : [z(a),z(c)] — R.
Moreover, y(t) = f(z(t)) for all t € [a,c]. Similarly, the curve r([c,b]), the “upper part of
C”, is the graph of a continuous function g : [z(b),z(c)] — R and y(t) = g(x(t)) for all
t € [¢,b]. Since xz(a) = x(b), the substitution of variable x = z(t) implies that

z(c)
f [9(x) — f(2)] da

(c) (c) c c
= J gle)yde — | fla)de = L g(w(t))z'(t) dt — J fla(t))a'(2) dt

x(b) z(a)

c c b
=Ly@f@ﬁ—fy®fmﬁ=—jxwwwﬁ;

a



thus (12.4.1) is concluded since the area of the region enclosed by C'is given by the left-hand
side of the equality above.

Similar argument can be applied to conclude that

b
the area of the region enclosed by C'is J x(t)y'(t)dt. (12.4.2)

a

if zy’ is Riemann integrable on [a,b] and every horizontal line intersects with the curve C

at at most two points. Combining (12.4.1) and (12.4.2), we obtain that

1
the area of the region enclosed by C'is §J [m(t)y'(t) —a'(t)y(t)| dt (12.4.3)

a

provided that z'y and xy’ are Riemann integrable on [a,b] and every vertical line and

horizontal line intersects with the curve C' at at most two points.

Remark 12.34. In general, the restriction that every vertical line or horizontal line
intersects with curve (' at at most two points can be removed from the condition

for the use of (12.4.1), (12.4.2) and (12.4.3). We will see this later in Chapter ?? (but for

now we will treat this as a fact for we have proved a special case).

Remark 12.35. Using the convention that u x v .= wjvy — usv; when u = wuqi + usj,

v = v1i+ vpj are vectors in the plane, (12.4.3) can be rewritten as

1t
the area of the region enclosed by C' is 3 J r(t) x r'(t)dt. (12.4.3")

a
b

. . . 1
Without confusion, the area can also be written as QJ r(t) x dr(t).
a

Example 12.36. Let C be the curve parameterized by r(t) = (cost,sint), t € [0, 27]. Then
clearly r satisfies condition 1-3. Therefore, the area of the region enclosed by C' can be

computed by the following three ways:
1. Using (12.4.1),

27 27 27 . _
dcost 1— 2t 1 )\ (=2
—f o sintdt:f sithdt:f L()dt:_G_Sln( )) -
0 dt 0 0 2 2 2 t=0
2. Using (12.4.2),
27 : 2T 27 : —
dsint 1 2t 1 o)\ [t=2n
f cost i dt:f COSQtdt:J Ls()dt:—(t—i—sm( )> =T.
0 dt 0 0 2 2 2 t=0

3. Using (12.4.3),

1 (> dsint  dcost L[ 1
- f (cost St 4o sin t) dt = - J (C082 t + sin® t) dt = —
2 Jo dt dt 2 Jo 2




12.4.3 Area and arc length in polar coordinates

Now we consider the area of the region given by the polar representation
{(r,0)|0<r<[(0),6 <O<b}, (12.4.4)

where f : [0y, 05] — R is non-negative and continuous.

Y
r=f(0)
R
01
x
O
)
///// L7 T:f(e)
/////’B/:::::/
7z > 01
T
@)

Remark 12.37. Note that the region given in (12.4.4) is enclosed by the curve C' parame-

terized by
(t — 91 + f(@l))(cos 01,811101) if 91 — f(@l) <t < 91 s
r(t) = (z(t),y(t)) = f(t)(cost,sint) if 0y <t <6y,
(92 —+ f(eg) — t) ( COS 92, sin 92) if 92 <t < 92 + f(92) .
Then
0 1f61-f<01)<t<61,
w(t)y'(t) — ' (ty(t) = (2'(t),y' (1) - (—y(),2(t)) = { f()* if 1 <t <02,
0 1f62<t<92+f(62),



thus using (12.4.3) we find that

1 (%
the area given in (12.4.4) is 5 f(0)*do.
01

Example 12.38 (Kepler’s second law).

12.5 Exercise

Problem 12.1. Let C be a curve parameterized by the vector-valued function = : [0,1] —
RQ

)
et —et 2

et + et et 4 et

r(t)z( ) 0<t<l.

(1) Show that C' is part of the unit circle centered at the origin.

(2) Plot the curve C. (The plot does not have to be very precise. You only need to specify

the starting and end points as well as the orientation.)
(3) Find the length of the curve C.

Problem 12.2. Let C' be the curve given by the parametric equations

3+ t2 2t
= —-—— t pu—

x(t)
on the interval t € [0,1].
(1) In fact C' is the graph of a function y = f(z). Find f.
(2) Find the arc length of the curve C.
(3) Find the area of the surface formed by revolving the curve C' about the y-axis.

Problem 12.3. In class we talked about how to find the total distance that you travel when
you walk along a path according to the position vector r : [a,b] — R?. The total distance

travelled can be computed by
b
| irnar

when 7 is continuously differentiable. Complete the following.



1. Let 7 : [0,47] — R? be given by r(t) = 3costi+ 3sintj. Find the image of [0, 47]

under 7.

4
2. Compute the integral f |7'(t)] dt. Does it agree with the length of the curve C' =
0
([0, 47])?

Problem 12.4. To illustrate that the length of a smooth space curve does not depend on
the parametrization you use to compute it, calculate the length of one turn of the helix in

Example 1 with the following parametrizations.
1. 7(t) = cos(4t)i+ sin(4t)j + 4tk, t € [0, g] :
t. Lt ot
2. r(t) =cos-i+sin=j+ -k, t € [0,4n].
2 2 2
3. r(t) = costi—sintj —tk, t € [-27,0].
Problem 12.5. Parametrize the curve

r = r(t) = arctan

i+ arcsintj+ arccostk, te [— 1, 0.5],

t
V91—t

in the same orientation in terms of arc-length measured from the point where ¢t = 0.

Problem 12.6. (15%) Parametrize the curve

r =r(t) = arcsin i+ arctantj 4 arccos tel-1,1],

t 1
k,
V14 t2 V14 t2

in the same orientation in terms of arc-length measured from the point where ¢ = 0.

Problem 12.7. Give a parametrization of the simple closed curve C' shown in the figure

below
Y

Y=z

O

and find the area of the region enclosed by C using (12.4.1), (12.4.2) or (12.4.3).



Problem 12.8. Give a parametrization of the simple closed curve C' shown in the figure

below

@)

and find the area of the region enclosed by C' using (12.4.1), (12.4.2) or (12.4.3).

Problem 12.9. Let C} be the polar graph of the polar function » = 1 + cos @ (which is a
cardioid), and Cy be the polar graph of the polar function r = 3cosf (which is a circle).

See the following figure for reference.

Y

Figure 12.6: The polar graphs of the polar equations » = 1 + cos and r = 3 cos @

(1) Find the intersection points of Cy and Cs.

(2) Find the line L passing through the lowest intersection point and tangent to the curve

Cs.
(3) Identify the curve marked by = on the fr-plane for 0 < 6 < 27.

(4) Find the area of the shaded region.

Problem 12.10. Let R be the region bounded by the lemniscate 72 = 2 cos 20 and is outside
the circle 7 = 1 (see the shaded region in the graph).



Figure 12.7: The polar graphs of the polar equations r? = 2cos26 and r = 1
(1) Find the area of R.

(2) Find the slope of the tangent line passing thought the point on the lemniscate corre-
sponding to 6 = %

(3) Find the volume of the solid of revolution obtained by rotating R about the z-axis by

complete the following:

(a) Suppose that (z,y) is on the lemniscate. Then (z,y) satisfies
y' + a(z)y® +b(x) =0 (12.5.1)

for some functions a(z) and b(x). Find a(x) and b(x).

(b) Solving (12.5.1), we find that 3* = c(x), where c¢(z) = c12% + 3 + c3v/1 + 422 for

some constants ¢, ¢o and c3. Then the volume of interests can be computed by

[=2x [7r L;c(x)dx - wﬁ d(x)da;} .

2

Compute J; [d(z) — (1 — 2?)]dx.

2

V2

(c¢) Evaluate I by first computing the integral f\f v/1+ 422 dx, and then find I.
3
5

(4) Find the surface area of the surface of revolution obtained by rotating the boundary

of R about the z-axis.



Problem 12.11. Let R be the region bounded by the circle r = 1 and outside the lemniscate
r? = —2co0s 26, and is located on the right half plane (see the shaded region in the graph).

Y

r?2=—2cos 20

Figure 12.8: The polar graphs of the polar equations r = 1 and 72 = —2 cos 26
(1) Find the points of intersection of the circle r = 1 and the lemniscate r? = —2 cos 2.

. . 1. . .
(2) Show that the straight line z = 5 I8 tangent to the lemniscate at the points of

intersection on the right half plane.
(3) Find the area of R.

(4) Find the volume of the solid of revolution obtained by rotating R about the z-axis by

complete the following:
(a) Suppose that (z,y) is on the lemniscate. Then (z,y) satisfies
y* + a(x)y® + b(x) =0 (12.5.2)

for some functions a(x) and b(x). Find a(x) and b(x).

(b) Solving (12.5.2), we find that y* = c(x), where c(x) = c12? + co + c3v/1 — 422 for

some constants c;, co and c3. Then the volume of interests can be computed by

[=n L : c(z)dz + 7 ﬁ d(z)dz.

2

Compute f [d(az) -(1- $2)} dz.

(c¢) Evaluate I by first computing the integral J2 v1 — 422dz, and then find I.
0



(5) Find the area of the surface of revolution obtained by rotating the boundary of R

about the z-axis.

Problem 12.12. Let (', C5 be the curves given by polar coordinate » = 1 — 2sinf and
r =4 + 4sin 0, respectively, and the graphs of C; and C5 are given in Figure 12.9.

Y Y

Cy:r=4/44sin6

/NI
A B 2 N

P4 Pl

Ci:r=1-—2sinf

Figure 12.9: The polar graphs of the polar equations r =1 — 2sinf and r = 4 + 4sin 6

(1) Let Py, ---, P, be four points of intersection of curves C; and Cy as shown in Figure
12.9 (the fifth one is the origin). What are the Cartesian coordinates of P, and P»?

(2) Let L; and Lo be two straight lines passing P; and tangent to Cp, Cs, respectively.

Find the cosine value of the acute/smaller angle between L; and L.

(3) Compute the area of the shaded region.



Chapter 13

Functions of Several Variables

13.1 Introduction to Functions of Several Variables

Definition 13.1

Let D be a set of ordered pairs of real numbers. If to each ordered pair (z,y) in D
there corresponds a unique real number f(x,y), then f is a real-valued function of
(two variables) x and y. The set D is the domain of f, and the corresponding set of
values for f(x,y) is the range of f. For the function z = f(x,y), = and y are called

the independent variables and z is called the dependent variable.

Definition 13.2

Let f, g be real-valued functions of two variables with domain D.

1. The sum of f and g, the difference of f and ¢ and the product of f and g,
denoted by f + g, f — g and fg, are functions defined on D given by

(f+9)(z,y) = flz,y) +g(x,y) Y(z,y)eD,
(f =9z, y) = flz,y) —g(z,y) Y(z,y)eD,
fo)(x,y) = f(z,y)g(x,y)  V(r,y)eD.

—~

2. The quotient of f and g, denoted by i, is a function defined on D\{(:p,y) €
g
D |g(z,y) = 0} given by

Sy = 1@:9)
g( ) g(w,y)

V(z,y) € D such that g(z,y) # 0.

298



Remark 13.3. A function f of two variables should be given along with its domain. When
the domain of a function is not specified, as before the domain should be treated as the

collection of all (x,y) such that f(z,y) is meaningful.

Definition 13.4

Let h be a real-valued function of two variables with domain D, and g : I — R be a

real-valued function (of one variable) on an interval /. The composite function of g
and h, denoted by g o h, is a function defined on D n {(z,y) € D |h(z,y) € I} given
by

(goh)(z,y) = g(h(z,y)) V (z,y) € D such that h(x,y) e I.

Similar concepts such as real-valued functions of three variables, the sum, different,

product, quotient and composition of functions of three variables can be defined accordingly.

Definition 13.5

Let D be a set of ordered pairs of real numbers, and f : D — R be a real-valued

function of two variables. The graph of f is the set of all points (x,y, z) for which
z=f(z,y) and (z,y) € D.

Example 13.6. Let r > 0 be a real number. The graph of the function z = f(x,y) =
\/7? — 22 — y? is the upper hemi-sphere of the sphere centered at the origin with radius r.

On the other hand, the graph of the function z = g(z,y) = —m is the lower
hemi-sphere of the sphere.

Definition 13.7: Level Curves

Let D be a set of ordered pairs of real numbers, and f : D — R be a function of two

variables. A level curve (or contour curve) of f is a collection of points (z,y) in D

along which the value of f(z,y) is constant.

Definition 13.8: Level Surfaces

Let D be a set of ordered pairs of real numbers, and f : D — R be a function of three

variables. A level surface of f is a collection of points (z,y, z) in D along which the

value of f(z,y,z) is constant.




Example 13.9. A level curve of the function z = 4/r? — 22 — 2 is a circle centered at the
origin, and a level surface of the function w = g(z,y,z) = 2? + y* + 2% — r? is a sphere

centered at the origin.

Example 13.10. The graph of f(x,y) = y? — 22 is called a hyperbolic paraboloid. A
level curve of a hyperbolic paraboloid is a hyperbola (or degenerated hyperbola), and each
plane perpendicular to the xy-plane intersects the graph of z = f(z,y) along a parabola (or

degenerated parabola).

Hyperbolic paraboloid

13.2 Limits and Continuity

Let § > 0 be given. The d-neighborhood about a point (xg,yo) in the plane is the

open disk centered at (g, yo) with radius § given by

D((ﬂfo;yo)afs) = {(a:,y) ‘ V(X —20)2+ (y — y0)? < 5} .

Definition 13.12

Let R be a collection of points in the plane. A point (zg,yo) (in R) is called an

interior point of R if there exists ¢ > 0 such that the §-neighborhood about (xg, yo)
lies entirely in R. If every point in R is an interior point of R, then R is called an
open region. A point (g, yo) is called a boundary point of R if every §-neighborhood
about (g, yo) containing points inside R and point outsides R. In other words, (¢, yo)

is a boundary point of R if
Vo> O,D((xo,yo),5) NR#¢ and D((mo,yo),5) NR' #&.

If R contains all its boundary points, then R is called a closed region.




Remark 13.13. For z € R and § > 0, let D(x,0) denote the interval (z — ¢,z 4+ J) (and
called the interval centered at x with radius r). Then for each z € (a,b), there exists 6 > 0
such that D(z,7) < (a,b); thus (a,b) is called an open interval. The end-points a, b of the
interval are boundary points of the interval, and [a, ] is a closed interval since it contains

all its boundary points.

Definition 13.14

Let f be a real-valued function of two variables defined, except possibly at (zo, o),

on an open disk centered at (xg, o), and let L be a real number. Then

lim  f(z,y) =1L

(z,y)—(w0,y0)

if for every ¢ > 0 there exists 0 > 0 such that

‘f(:z) —L} < ¢ whenever 0 < \/(x—x0)2+ (y —yo)? < 9.

Remark 13.15. If lim  f(x,y) = L; and lim  f(z,y) = Ly, then Ly = L. In
(z,y)—(z0,90) (z,y)—(z0,y0)
other words, the limit is unique when it exists.

The proof of the following is almost identical to the one of Theorem 1.14.

Theorem 13.16: Properties of Limits of Functions of Two Variables

Let (a,b) € R?. Suppose that the limits

lim x,y) =1L and lim r,y) =K.
(z,y)—(a,b) fz.y) (z,y)—(a,b) 9(@,)
both exist, and ¢ is a constant.
1. lim ¢=¢, lim x=aand lim y=2.
(z,y)—(a,b) (z,y)—(a,b) (z,y)—(a,b)
2. lim [f(z,y) £g(z,y)] =L+ K;
(z,y)—(a,b)
3. lim [f(z,y)g(z,y)] = LK;

" (2y)—(ab)

. flx,y L .
4. lim = —if K #0.
@y —(b) g(z,y) K




Theorem 13.17: Squeeze

Let (w9,%0) € R%. Suppose that f, g, h are functions of two variables such that

9(x,y) < flx,y) < h(z,y)

except possible at (g, o), and  lim  g¢g(z,y)=  lim  h(z,y) = L, then
(z,y)—(z0,%0) (z,y)—(z0,y0)

lim  f(z,y)=L.

(z,y)—(z0,y0)

2
Example 13.18. For (a,b) € R?, find the limit  lim %
(z9)—(ab) T+ Y

First we note that 1-3 of Theorem 13.16 implies that the function f(z,y) = 5z%y and
g(z,y) = 22 + y* has the property that

lim z,y) = 5a*b and lim z,y) = a®+ b*.
(xvy)_’(avb) f< y) (z,y)—>(a,b) g( y)

Therefore, Theorem 13.16 again shows the following:
1. If (a,b) # (0,0), then 4 of Theorem 13.16 implies that

. 522y _ f(zy)  Ba%b
lim s = lim =— 5 -
@y)—(ab) 22+ Y2 (@y)—@b) g(z,y) a®+Db

2. If (a,b) = (0,0), then we cannot apply 4 of Theorem 13.16 to compute the limit.

Nevertheless, since

52y

the Squeeze Theorem implies that

52
(2,5)—(00) T2 + ¥
332— 2

2
Example 13.19. Show that the limit  lim ) does not exist.

(2,4)—(0,0) (x2 + 92

2 2.2
Let f(z,y) = (; - Zz) . By the definition of limits, if (x,yl)iir%o,o) f(z,y) = L exists, then

there exists § > 0 such that

|f($,y) —L‘ < % whenever 0 < \/x2—+y2 )



which implies that

1 1
L— 5 < flz,y) < L+ 3 whenever 0 <4/22+y2 <. (13.2.1)

However, when (z,y) satisfies 0 < \/m < ¢ and z =y, then f(z,y) = 0 while on the
other hand, when (x,y) satisfies 0 < \/m < and y =0, then f(x,y) = 1. Thisis a
contradiction because of (13.2.1).

e Another way of looking at this limit: When (x,y) approaches (0,0) along the line x =y

(we use the notation ( 1>irr(1 : to denote this limit process), we find that
x,y)— (0,0
T=y

lim T =0
(2,5)—(0,0) f(z.y)
=y

and when (x,y) approaches (0,0) along the z-axis (we use the notation ( l)iH(lo ) to denote
z,y)—>U,
y=0

this limit process), we find that

li =1.
(z,y)l—ri(lo,m flz,y)
o

The uniqueness of the limit implies that the limit of f at (0,0) does not exist.

13.2.1 Continuity of functions of two variables

Definition 13.20

A function f of two variables is continuous at a point (x,1o) in an open region R

if f(xo,y0) is defined and is equal to the limit of f(x,y) as (x,y) approaches (o, yo);
that is,
lim  f(z,y) = f(zo, %) -

(z,y)=(z0,y0)

In other words, f is continuous at (z,yo) if for every ¢ > 0 there exists § > 0 such
that

|f(1:,y) — f(xo,yo)‘ < e whenever \/(m —20)?+ (y —yo)? < 9.
The function f is continuous in the open region R if it is continuous at every

point in R.

Remark 13.21. 1. Unlike the case that f does not have to be defined at (zg, o) in order
to consider the limit of f at (xg,yo), for f to be continuous at a point (z¢,yo) f has
to be defined at (xg, yo).



2. A point (z9,yo) is called a discontinuity of f if f is not continuous at (xg, y0). (zo,¥o)

is called a remowvable discontinuity of f if ( )lir(n : f(z,y) exists.
z,Yy)—>(Zo,Y0

Theorem 13.22

Let f and g be functions of two variables such that f and g are continuous at (o, yo).

1. f + g is continuous at (xg,yo)-

2. fg is continuous at (xg, yo)-

3. ! is continuous at (xo, o) if g(xo, yo) # 0.
g

Theorem 13.23

If h is continuous at (zg,yo) and ¢ is continuous at h(zg,yo), then the composite

function g o h is continuous at (zg,yo); that is,

lim  (goh)(z,y) = g(h(zo, %)) -

(z,y)—(x0,y0)

13.3 Partial Derivatives

Definition 13.24

Let f be a function of two variable. The first partial derivative of f with respect to

x at (xo, o), denoted by f.(xo,v0), is defined by

— lim f(xo + Az, y0) — f(z0,90)
Az—0 Ax

fx(iﬁo,yo)

provided the limit exists. The first partial derivative of f with respect to y at (zo, ¥o),
denoted by f,(xo, o), is defined by

f (o, 90 + Ay) — f(z0,%0)

provided the limit exists. When f, and f, exist for all (zo,y0) (in a certain open
region), f, and f, are simply called the first partial derivative of f with respect to

and y, respectively.




e Notation: For z = f(z,y), the partial derivative f, and f,, can also be denoted by

0 B 0z _Of
%f(x,y) - fx(xay> = Zz = E - (}l’(x’y)
and 5 5 of
z
%f(x,y) - fy(ff,y) =Ry = a_y - a_y<x7y> :
When evaluating the partial derivative at (zg,yo), we write
_of G
fo(0,90) = %(%ﬂo) = 9z (w):(zo’yo)f(%y)
and o 5
fy(x(hyO) = &_y(m()ay()) = a_y ($7y):($07y0)f(x7y) .

Example 13.25. For f(x,y) = ze*', find f, and fy, and evaluate each at the point (1,1n2).
Note that f, is obtained by treating y as a constant and differentiate f with respect to
x. Therefore, the product rule implies tat
fo(z,y) = (igy) "y x(iex2y> =" 4 x- eV 2my = (1 + 22%y)e” Y
ox ox
thus
fo(1,In2) = (1 +2In2)e™? =2(1 +2In2).

Similarly,

thus f,(1,In2) = e"? = 2.

Example 13.26. Let f : R? — R be defined by
ay(z® —y?)
T 7Y it (2, y) # (0,0)
flag = e P00
0 i () = (0,0).
Then if (z,y) # (0,0), we can apply the quotient rule (and product rule) to compute the

partial derivatives and obtain that

(2 + )2 [ay(a? — )] — 2y(a® — )2 (5 + 37?)
(CU2 +y2)2
(@4 ) [y(a? — ) + 22%y) — ay(a® — ¢?) - (2)
(.TQ + y2)2
B vty + 4a?y® — P
(I'2 + y2)2 '

fo(z,y) =




If (z,y) = (0,0), we cannot use the quotient rule to compute the derivative since the
denominate is 0 (so that 4 of Theorem 13.16 cannot be applied), and we have to compute
f2(0,0) using the definition. By definition,

f(Al‘,O) — f(0,0)

1(0,0) = Algilo Az =0
Therefore,
aly + 42y — o .
f 0,0
Ly =] @epp 9200,
0 if (z,y) = (0,0).
Similarly,

x® — 4a3y? — xyt .
fy(x y) _ (.’L‘Q +Z/2)2 if (l’,y) 7 (070)7

0 if (x,y) = (0,0).

e Geometric meaning of partial derivatives: Let f(z,y) be a function of two variable,

(x0,yo) be given, and zy = f(x¢,yo). Consider the graph of the function z = f(z,y,) (of one
variable) on the zz-plane. If the graph z = f(x,yo) has a tangent line at (zo, z9), then the
slope of the tangent line at (zg, 29) is given by

lim J(zo +h,y0) — f(20,%0)
h—0 h

and this limit, if exists, is f,(zo,v0). This is called the slopes in the x-direction of the
surface z = f(x,y) at the point (z,yo, z0). Similarly, the slope of the tangent line of the
graph of z = f(zo,y) at (yo, 20) is fy(x0,%0), and is called the slopes in the y-direction
of the surface z = f(x,y) at the point (o, yo, 20)-

e Partial derivatives of functions of three or more variables:

The concept of partial derivatives can be extended to functions of three or more variables.

For example, if w = f(z,y, z), then

6w_ . f(.CE+AfE,y,Z)_f(.T,y,Z>

oz = wy2) = fim Az /

ow s f(I7y+Ay7Z)_f(x7y7Z>

oy To(@y,2) = Alglfilo Ay ’

aw_ _ f(x,y,z+Az)—f(m,y,z)

a_ _fz(xvyaz> Algllo Az

In general, if w = f(x1, 29, ,x,), then there are n first partial derivatives denoted by
Jdw

a_%:fﬂﬁk(xl?z%”'axn)? ]{:1,2,"',71.



e Higher-order partial derivatives:

We can also take higher-order partial derivatives of functions of several variables. For

example, for z = f(x,v),

1. Differentiate twice with respect to x:

2
72 (5) = G = Foe

2. Differentiate twice with respect to y:

L) -

3. Differentiate first with respect to x and then with respect to y:
o (of 0? f
Ly,
oy \dx 6y6w

4. Differentiate first with respect to y and then with respect to z:
0 <8 f ) _*F s
ox\oy/ oOxoy TV

The third and fourth cases are called mixed partial derivatives.

Example 13.27. In this example we compute the second partial derivatives of the function

given in 13.26. We have obtained that

:z;4y + 4:1;23/3 — y5

Je(z,y) = (22 +y?)?
0 if (z,y) = (0,0),

and
4

x® — da3y? — ay ,
fy(a%y) = (1‘2 —|—y2)2 f (l’,y) # (0,0),

If (z,y) # (0,0), the quotient rule, the product rule and the chain rule (for functions of one

variable) together show that

(@ + )5 (frf y +dx?y® — %) — (aty + daPy® —y ) (2% 4 y?)?
(@2 1+ y2)d
(2?2 + y?)%(42y + 8xy®) — (zty + 422y — ¢°) - [2(1‘2 +y?) - (2:5)]
(22 + 423
(22 + y?)(423y + 8zy®) — da(xty + 42y — ob) _ —4a3y3 + 1229°
(22 +y2)3 (22 +y2)?

faz(,y) =




Similarly, if (z,y) # (0,0),
(2% 4+ y?)*(=82%y — day?) — (27 — 4a®y® —ay?) - [2(2° + ¢7) - (2)]

xZ, =
fyy( y) (12 - y2)2
_ 1227y + Aoy’
(x2 + y2)3 )
foy(zy) = (2% + y2) (2" + 122°y% — 5y*) — dy(a'y + 42*y® — °)
Y\ (12 + y2)3
_ 28 + 9zy? — 922yt — o8
(xQ + y2)3
and
f < ) (372 + yz)(5l’4 _ 121‘2y2 _ y4) _ 4$(x5 o 4I3y2 o Iy4)
€T .1’7 =
y Y (22 + y2)3
_ 28 + 9xty? — 92yt — ¢fF

(22 + 42)°
We note that when (z,y) # (0,0), fuy(z,y) = fyz(z,9).
Since f,(x,0) = f,(0,y) = 0 for all  # 0, we find that

im fx(A:L',O) B fx(070>

fee(0,0) = lim Ar =0
and 1,00, 8) — 1,(0.0)
T y\Yy Yy)— y\\Yy _
J(0,0) = Algl,rilo Ay =0
Finally, we compute f,,(0,0) and f,.(0,0). By definition,
—Ay5
T f2(0, Ay) — £.(0,0) T Ayt
Jay(0,0) _Algljrilo Ay _Alzl/IEO Ay 1
and
Az
_ o Jy(Az,0) = £,(0,0) L Apt
fua(0,0) = Jim . =A% Ar b

We note that f,,(0,0) # f,.(0,0).

Theorem 13.28: Clairaut’s Theorem
If f is a function of  and y such that f,, and f,, are continuous on an open disk D,

then

foy(x,y) = fre(z,y)  V(x,y)€D.




In the following, we prove the following more general version:

If f is a function of z and y such that on an open disk D f,, is continuous and f,,

exists, then f$y(x,y) = fy;p(x’y) for all (z,y) € D.

Proof. Let (a,b) € D be given. Then

fya(a,0) = (f,)a(a,b) = ,1335 fy(a+h, b})L — f,(a,b)

o flathb k)~ flathb) o flab+k) = f(ab)
= lim =Y k k—0 k
h—0 h
i i (@ BDHE) = flab+ k) = fla+hb) = fa,b)
h=0 k=0 hk

Define
fla+h,b+k)— f(a+ h,b) — fla,b+ k) + f(a,b)

Q(h, k) = - .

Then the computation above shows that

lim lim Q(h, k) = fy(a,b). (13.3.1)

h—0 k—0
For h,k # 0 such that (a + h,b+ k) € D, define p(z,y) = f(z,y + k) — f(x,y). Then

hk
(Theorem 3.9),

. By the mean value theorem for functions of one variable

a+01h,b)h  f.(a+01h,b+k)— f.(a+01h,b)
hk N k

for some functions ¢, = 6,(h) satisfying 0 < #; < 1. Applying the mean value theorem

Q(h,k) _ 90x<

again,

fx(a+91h,b+k) —fx(&—i‘(glh, b) fxy(a—i—th,b—i—Hgk)k
Q(h,k) = ; - ;

for some functions 6y = 65(h, k) satisfying 0 < 6, < 1. Therefore, we establish that there
exist functions 0; = 6,(h) and 0y = 05(h, k) such that

Q(hu k) = fmy(x + 91h7 Yy + 92k) .

Passing to the limit as k& — 0 first then h — 0, using (13.3.1) and the continuity of f,, we
conclude that f,,(a,b) = fy(a,b). O



Example 13.29. Let f(z,y,2) =ye® +xInz. Then f,(x,y,2) =ye® +1nz, f,(z,y,2) =€"
and f,(z,y,2) = z Therefore,
z

f:}cy(xvya Z) =€’ = fy:v(xvya Z) )
for(zyy, 2) = % = fo(z,y,2) V2#0,
fyZ(xayv z) =0= fzy(x>yv Z) .

13.4 Differentiability of Functions of Several Variables

Recall that a function f : (a,b) — R is said to be differentiable at a point ¢ € (a,b) if the
limit
et Ax) - (0

Az—0 Ax

exists. The differentiability of f at ¢ can be rephrased as follows:

A function f : (a,b) — R is said to be differentiable at ¢ € (a, b) if there exists
m € R such that

lim
Az—0

)f(c+Ax) — f(c) — mAzx

Ax ‘:0'

or equivalently,

lim

r—c

o) = 1) =mla=0)| _,

Tr—cC

This equivalent way of defining differentiability of functions of one variable motivate the

following

Definition 13.30

Let R < R? be an open region in the plane, and f : R — R be a function of two

variables. For (zg,y0) € R, f is said to be differentiable at (zg,yo) if there exist real
numbers A, B such that

I |f(z,y) — f(zo,90) — (A, B) - (z — 20,y — W)
im
(z,9)—(0,50) \/(x —20)2+ (y — yo)?

=0.

Suppose that f is differentiable at (zg,yo). When (x,y) approaches (zg, o) along the



line y = yo, we find that

‘f(%y) - f(lz‘o’yo) - A(I - 150) - B(y - yo)‘

0= lim

e Vo= 0+ - P
— lim ‘f(l',yo) - f(x()ayo) - A(I‘ - xo)‘ — lim f<x>y0) — f($0>y0> _A
xr—x0 |£L‘ — CL'()| T—T0 T — X

which implies that the number A must be f,(xo, o). Similarly, B = f,(zo, yo), and we have

the following alternative

Definition 13.31

Let R < R? be an open region in the plane, and f : R — R be a function of two

variables. For (zq,y0) € R, f is said to be differentiable at (xg,y0) if (/. (70, y0),
fy(z0,yo) both exist and)

lim ‘f(a:',y) — f(zo,y0) — folo, y0) (7 — 20) — fy(an Yo)(y — yo)‘

=0.
(z,y)—(z0,50) \/($ —20)? + (Y — %o)?

Remark 13.32. The ordered pair (f,(zo,o), fy(0,v0)) if called the derivative of f at
(x0,0) if f is differentiable at (zg,yo) and is usually denoted by (D f)(xq, yo)-

2. Using e-0 notation, we find that f is differentiable at (¢, yo) if for every € > 0, there
exists 0 > 0 such that

’f(fl?a y) — f(xo,90) — fu(@o,y0)(x — o) — fy(T0,Y0)(y — yo)’
<en/(x —20)? + (y — yo)? whenever /(2 — x0)2 4 (y — yo)2 < 6.

Now suppose that f is a function of two variables such that f,(zo,v0) and f,(xo, o)

exist. Define

f(z,y) = f(@o,y0) — fa(0,90)(x — z0) — fy(T0,%0)(y — ¥0)
e(w,y) = V(& —20)? + (y — v0)?
0 if (z,y) = (z0,%0) -

if (l’,y) 7 (l’o, ?JO) ;

Let Az =2 — xy, Ay =y —yo and Az = f(x,y) — f(x0,%0). Then

Az = fo(xo,y0) Az + fy(xo,yo) Ay + ez, y)A/Ax? + Ay?,

and f is differentiable at (z¢,yo) if and only if  lim  e(z,y) =0.

(x,y)—»(xo 7y0)



Finally, define

e(z,y)Az

R St X, # Zo, ,
cey) = 4 Az eap ) )
0 if (‘T’y) 7 (:E07y0) )
e(z,y)Ay .
— = if (x,y) # (%0, Y0),
ea(z,y) = { AP+ Ay? (2,y) # (0, 90) |
0 if (fE, y) # (xU)yO) )

then

0 < les(@, y)l, lea(z, y)| < ez, )| = Verlw, ) + ea(z, y)?

thus the Squeeze Theorem shows that

lim  e(x,y) =0 if and only if lim  e(z,y)= lim ey(z,y)=0.
(m,y)—>(mo,yo) (1‘,y)—>(1‘0,y0) (m,y)—>(mo,yo)

By the fact that e(z,y)/Az? + Ay? = &1(z,y)Ax + e9(x, y) Ay, the alternative definition

above can be rewritten as

Let R < R? be an open region in the plane, and f : R — R be a function of two
variables. For (zg,y0) € R, f is said to be differentiable at (xq, yo) if (/. (20, v0).

Jy(x0.yo) both exist and) there exist functions €, and e, such that

Az = fo(zo,y0) Az + f, (20, Yo) Ay + e1Az + €Ay,

where both ¢; and €9 approaches 0 as (z,y) — (xo, yo).

Example 13.33. Show that the function f(z,y) = x* + 3y is differentiable at every point
in the plane.
Let (a,b) € R? be given. Then f,(a,b) =2a and f,(a,b) = 3. Therefore,
Az — fo(a,b)Az — f,(a,b)Ay = 2° + 3y — a® — 3b — 2a(x — a) — 3(y — b)
= (z —a)’ = e1(2,y) Az + &5(2, y) Ay,

where ¢ (z,y) = x — a and ey(x,y) = 0. Since

lim e(x,y) =0 and lim ey(x,y) =0,
(2.9)—(a.b) 1(#y) (25)—(a.b) 2(.y)

by the definition we find that f is differentiable at (a,b).



Example 13.34. The function f given in Example 13.26 is differentiable at (0,0) since if
(z,y) # (0,0),

[f(,y) = £(0,0) = £2(0,0)z — £,(0,0)y| _ |ay(@® =) _ Ja® —¢?| _

NCET @l Sy
and the Squeeze Theorem shows that
o @) = 10,0 - £0.0@ -0 - A0.06-0] _
(2.9)=(0,0) RS
¢ Differentiability of functions of several variables
A real-valued function f of n variables is differentiable at (aq,aq,- -+ ,a,) if there exist n

real numbers Aq, Ay, -+, A, such that

lim |f(l’1, 7$n)_f(a17"' aan)_(Alv"' 7An)'(x1_a17"' 7$n_a’n)}

=0.
(21, xn)— (a1, ,an) \/(zcl — a1)2 + -4+ (.In — an)2

We also note that when f is differentiable at (ay, - - ,a,), then these numbers Ay, Ay, -+, A,
must be f, (a1, - ,an), fe, (a1, - ,an), -+, fo, (a1, -, ay), respectively.

It is usually easier to compute the partial derivatives of a function of several variables
than determine the differentiability of that function. Is there any connection between some

specific properties of partial derivatives and the differentiability? We have the following

Theorem 13.35

Let R < R? be an open region in the plane, and f : R — R be a function of two

variables. If f, and f, are continuous in a neighborhood of (x¢,yy) € R, then f is
differentiable at (zo,y0). In particular, if f, and f, are continuous on R, then f is

differentiable on R; that is, f is said to be differentiable at every point in R.

Therefore, the differentiability of f in Example 13.26 at any point (zo,yo) # (0,0) can

be guaranteed since f, and f, are continuous on R*\{(0,0)}.

Theorem 13.36

Let R < R? be an open region in the plane, and f : R — R be a function of two

variables. If f is differentiable at (xg,yo), then f is continuous at (xg, yo).




Proof. By the definition of differentiability, if f is differentiable at (z¢,yo), then there exists

function £, and &9 such that

lim  e(z,y) = lim  e,(z,y) =0
(2,5)(0,30) 1@ y) (23)— (x0,0) ()
and
f(z,y) = f(xo,v0) + fu(To, yo)(x — xo) + fy(xo, Yo)(y — yo)
+e1(x,y)(x — w0) + €2(2, ) (¥ — Yo) -
Then — lim  f(z,y) = f(zo, o) 0

(I,y)ﬁ(xo,yo)
Example 13.37. Consider the function

—3xy
fla,y) = @ +v?

Then f is not continuous at (0,0) since

3
<z,y5§o,o) f(z,y) u (E,yiggo,o) f(z,y) 5

However, we note that

T f(Ax,O)—f(0,0)_ R T f(O,Ay)—f(0,0)
1:(0,0) = Algilo Az =0 and ,(0,0) = Alg{glo Ay

=0.

Therefore, the existence of partial derivatives at a point in all directions does not even

imply the continuity.

13.5 Chain Rules for Functions of Several Variables

Recall the chain rule for functions of one variable:

Let I,J be open intervals, f: J — R, g : I — R be real-valued functions, and the
range of ¢ is contained in J. If g is differentiable at ¢ € I and f is differentiable at

g(c), then f o g is differentiable at ¢ and

L1 (Fog)a) = F(a(e)g'(c).

dz lz=c




For functions of two variables, we have the following

Theorem 13.37

Let z = f(z,y) be a differentiable function (of z and y). If z = ¢(t) and y = h(t) are
differentiable functions (of ¢), then z(t) = f(z(t),y(t)) is differentiable and

2(t) = fo(2(t),y(®)2"(t) + £y (), y())y'(t) -

Let v(t) = (z(¢),y(t)). Then ~'(t) = (z'(t),y’(t)), and the chain rule above can be

written as

d

S (fen®) = (DH®) - 7'(?).

A short-hand notation of the identity above

d=_ofde  ofdy _

= sea tapq = Ut @),

Corollary 13.38

Let z = f(x,y) be a differentiable function (of z and y).

@
0s

derivative (;z of the function z(s,t) = f(u(s,t),v(s,t)) exists and
S

1. If x = u(s,t) and y = v(s,t) are such that — and % exist, then the first partial

zs(s,t) = fx(u(s,t),v(s,t))us(s,t) + fy(u(s,t),v(s,t))vs(s,t).

2. If o = u(s,t) and y = v(s, t) are such that % and % exist, then the first partial
derivative oz of the function z(s,t) = f(u(s,t),v(s,t)) exists and

ot
z(s,t) = fo(uls,t),v(s,t))u(s, t) + fy(uls, ), v(s, t))vi(s,t).

Example 13.39. Let f(z,y) = 2%y — y*. Find %, where z(t) = f(sint,e?).

1. Since z(t) = e'sin®t — e, by the product rule and the chain rule for functions of one

variable, we find that

det dsin®t
2/(t) = ——sin®t + ¢* —

dt dt

2¢%! = el sin®t + 2et sint cost — 2e? .




2. By the chain rule for functions of two variables,

2'(t) = (fu(sint, e"), fy(sint,e")) - %(sint,et)

- (cost, €'
(z,y)=(sint,et) ( )

= (2¢'sint,sin®t — 2¢) - (cost, e')

= (2zy,2° — 2y)

— 2¢elsintcost + et sin?t — 2e* .

%and%

Example 13.40. Let f(z,y) = 2zy. Find p 5
S

where z(s,t) = f(s* + 12, ;)

3
1. Since z2(s,t) = 2(s* + tz); = 2% + 2st, by the product rule we find that

0z 65> 0z 253
g(“):TJer and E(S’t>:_t_2+28'

2. By the chain rule for functions of two variables,

0z _ 2 | 42 2, 42 d 2 28
g(s,t) = (fo(s® +£2,5/0), fy(s* + 1, s/t)) - g(s +t ’E)
_ (2 g ). (2s, Ny 2 B 2265
_(t’2(8 —i—t)) (25’t)_t+ ; _t+2t
and
%(s,t) = (]‘};(s2 + 2, 5/t), fy(s2 + t2,s/t)) . %(3 + 12 ;)
25 . o9 o s 253 + 2st? 253
= (7,2(3 +1 )) . (2t,—t—2) :48_t—2 = —t—2+23.
e The chain rule for functions of several variables
Suppose that w = f(z1,xs, - ,x,) be a differentiable function (of x,zs,- -, x,). If each
x; is a differentiable function of m variables t1,%s,- - ,t,,, then
&_w: 8w0x1+ awax2+m+ ﬁwﬁmn:ia_w%’
5151 (9&:1 5t1 (3562 (%1 8:1:n &‘tl = 8xj (3t1
6_w: 8w8x1+ ow 0xy s éwﬁxn:i 8w%7
8t2 6x1 8t2 81’2 6752 8xn 8t2 = &xj 8252
dw 0w 0wy 0w 0wy ow dx, < 0w dw;
5 = omo T omen, T T anLon, = 2o o



Using the notation of the matrix multiplication,

'é’xl 6901 é’xl'

Oxo Oxg 0xo
ow Cw @W]:{@f of ot T Otw
6751 6t2 atm 69:1 0952 &acn . .

ox, Oz, 0xy

e Differentiation of determinant functions

For an n x n matrix A, let Cof(A) denote the cofactor matrix of A; that is, the (i,j)-th

entry of Cof(A) is the determinant of the matrix obtained by deleting the i-th row and j-th
column of A or

ai1 12 e a1(j-1) A1(5+41) T Q1n
. . a 27 a ’L* ... a Zf - a ’L* . P a Z.f n

[COf(A)} - (_1)’L+] (D1 8G-1)2 E-1@E-1)  “GE-1@E+1) (i-1)
" A(i+1)1 O(i+1)2 0 Q@+1)(G-1) A+ (G+) 0 G+l

Gn1 Qn2 o Qn(j—1) Qn(j41) o Qnn

Then the determinant of A, using the reductive algorithm, can be computed by
det(A) = ) ay [Cof(A)],  VI<i<n. (13.5.1)
k=1

On the other hand, the determinant of an n x n matrix A = [a;j]1<ij<n can be viewed as a

real-valued function of n? variable:

f(an,am, T, Qin, 421,022, 7 1, G2p, 431 7 7ann> = det([aij])-

Since for each 1 < i < n the (i, k)-th entry of the cofactor matrix Cof(A);; is independent

of a;; for all 1 < j, k < n, we have f_ [Cof(A)Lj; thus if a;; = a;;(t) is a function of ¢

aij

for all 1 <4,j < n, with A = A(t) = [a;(t)] \<ij<n 0 mind the chain rule implies that

%f(all(t)76112<t)7 e ,ann(t)) = Z [Cof(A)}

3,j=1

da;(t)

A 13.5.2
i dt (135.2)



Let Adj(A) be the transpose of the cofactor matrix, called the adjoint matrix, of A, then
(13.5.2) implies that

d - . dCLi]’ . . dA
. dA daij .
where tr(M) denotes the trace of a square matrix M and — = [ } . In particular,
dt dt Ji<ij<n

1

o , 1 _
if A is invertible, then A=! = det(A)

Adj(A); thus for invertible matrix A = [a;;(t)], we have

14

2 fet(a) = tr(det(A)A- —

dt ) = det(A)tr (A*%) (13.5.4)

dt
or

d [ adA
o | det(4)] = (A7 22

Example 13.41. Let A(t) = { “}igg ggg ] Then

d _ k=gl |/ 9" _ kf'—gh'  kg'—gk'
adet<A>—“([_h f} [h' k! )‘“( —hf'+ fh' —hg' + fk' )
=kf'—gh' —hg'+ fk' = (fk—gh)".
e Taylor’s theorem for functions of two variables

Let R < R? be an open region, and f : R — R be a function of two variables. For
(z,y), (a,b) € R, define g(t) = f(a+t(x —a),b+t(y —b)). Suppose that all the k-th partial
derivatives of f are continuous for 0 < k < n + 1 (which, by Theorem 13.35, implies that
g is (n + 1)-times differentiable), then Taylor’s Theorem implies that there exists & € (0, 1)
such that

noJR) gt
N

Now we compute ¢g¥)(0). First by the chain rule,
d
0'1) = S (ati(e—a) b iy —b)
= fola+t(x—a),b+tly—b))(x—a)+ f,(tx+ (1 —t)a, ty + (1 — £)b) (y — b);

thus ¢'(0) = fu(a,b)(z —a) + fy(a,b)(y —b). In general, we can prove by induction that

g B (t) = Z Cka—f.(a +t(x—a),b+tly—0b))(z—a)(y—b) (13.5.5)

J k—30a,7
= dxkF=idy



under the assumption that the k-th partial derivatives are continuous (on an open region
containing the line segment connecting (x,y) and (a,b)). To see this, we first simplify the
notation by letting v(¢) = (a+t(z —a),b+t(y —b)). We note that (13.5.5) holds for k = 1.
Suppose that (13.5.5) holds for £ = ¢. Then by the chain rule and Theorem 13.28, we find

that
d d < oLy » ,
g = dtg(é) ()= . Z Cf—axg_jayj (v(®) (@ — @) (y — bY’
a€+1f
) J';)Cf[axe—j—&-l&yj (v(®) (& — @) (y = b)’
a€+1 ‘
axz—f'a;m (v(1) (z — ) (y WH]

¢ +1
N )@ - )iy - by

J L+1—35ad
= or oy
{41 aﬁ—l—lf

Z P 1m(7(t)) (z —a) ' (y — b

() - )+ S h ) -5

af—l—lf
1 Oxttl- ]ay]

9€+1f
- W

+2 (Ch+ L

By Pascal’s Theorem,
af—&-l f

1)\
g( (t) - 5$£+1

(/1)) (& — ) + %(w»(y e

+1 a“_lf O NEHl—Gg, NG
+ Z ¢ OztH1=3 gy (7(t)) (z —a) (y — D)

E+1 aﬁ—i—lf ' '
= Z O sy (1) (@ —a) ™ (y = by

thus we establish (13.5.5) by induction. Therefore, by the fact that g(1)
g(O) = f(a7 b)7

(v(#) (z — @) (y — 1)

f(z,y) and

(13.5.6)



where

ntl
R, (z,y) I Z n+16xk iog (a+&(x—a)b+&(y—"b))(z—a) 7 (y—b).

The “polynomial” of two variables

1 r OFf ke i
Pu(z,y) = Z 0 Z C; axk,—jayj(a’ b)(x —a)"(y — )

is called the n-th Taylor polynomial for f centered at (a,b), and the function R, is the
remainder associated with P,.
Expanding the sum, we find that
Po(z,y) = f(a,b) + fo(a,b)(z — a) + fy(a,0)(y — b)
1
b o [Ferl@ ) — 0 + 2fu (0, D) (& — )y — 1) + fyyla,B)(y B
1
3, [fmx(a b)(z — a) + 3 foay(a, b)(z — a)Q(y = b) + 3 fayy(z — a)(y — b)Q
+ fula,b)(y = 0] + -+

o o" _
o[- ar + @ - o b et
on ,om .
HOLg @b e — oy -0 + S by )

Example 13.42. Find the third Taylor polynomial for the function f(x,y) = sin(xy) cen-
tered at (0,0).

We compute the first, the second and the third partial derivatives of f as follows:

fo(z,y) =ycos(zy), fy(z,y) =z cos(zy),

fea(,y) = —y?sin(zy),  fuy(z,y) = cos(zy) — zysin(zy), fy,(r,y) = —2"sin(zy),
frea(®,y) = =y cos(y) ,  fumy(x,y) = —2ysin(zy) — zy” cos(zy) ,
fewy(,y) = —2wsin(zy) — 2%y cos(xy),  fyp(z,y) = —2° cos(ay) .

Therefore, the only non-vanishing term, when plugging (z,y) = (0,0), is f3,(0,0) = 1; thus

Psy(z,y) = % - 2fy(0,0)(z = 0)(y — 0) = zy.



Example 13.43. Find the second Taylor polynomial for the function f(x,y) = exp(z?+2y)
centered at (0,0).

We compute the first and the second partial derivatives of f as follows:

fo(z,y) = 2wexp(a® +2y),  fy(a,y) = 2exp(a® + 2y)
foz(z,y) = (2 + 42®) exp(2® +2y),  foy(7,y) = 4z exp(a® + 2y),
fy(z,y) = 4exp(z? + 2y).

Therefore, f,(0,0) = f,,(0,0) =0, £,(0,0) = f..(0,0) =2, f,,(0,0) = 4; thus

Py(z,y) = f(0,0) + f.(0,0)z + f,(0,0)y + % [f22(0,0)2” + 2f,,(0,0)zy + f,,(0,0)y?]
=142y + 2% + 2%,

e Implicit partial differentiation

In Section 2.4 we have talked about finding derivatives of a function y = f(z) which is defined
implicitly by F(z,y) = 0 (when F' is giving explicitly). Now suppose that z = F/(z,y) is a
differentiable function and the relation F(x,y) = 0 defines a differentiable function y = f(x)
implicitly (so that F(z, f(z)) = 0). By the chain rule,

0= L F(e 1)) = il £(0)) + By f2) ()
which implies that
[ = —% it Fy(x, f(x)) 0.

Since f is in general unknown (but exists), we usually write the identity above as

dy _ Fulw,y)
dx Fy(z,y)

if F(z,y) =0 and F,(z,y) #0.

In fact, when F, and F), are continuous in an open region R, and F'(a,b) = 0 and F(a,b) # 0
at some point (a,b) € R, the relation F'(z,y) = 0 defines a function y = f(z) implicitly near
(a,b) and f is continuously differentiable near x = a. This is the Implicit Function Theorem

and the precise statement is stated as follows.



Theorem 13.44: Implicit Function Theorem (Special case)

Let R < R? be an open region in the plane, and F' : R — R be a function of
two variables such that F, and Fj are continuous in a neighborhood of (a,b) € R.
If F(a,b) = 0 and F,(a,b) = 0, then there exists 6 > 0 and a unique function
f:(a—0d,a+6) - R satisfying F(x, f(z)) =0 forall z € (a—0,a+ ), and b = f(a).
Moreover, f is differentiable on (a — §,a + §), and

flla) = ——gg ;Eg; Vre(a—d,ats).

In general, if F' is a function of n variables (xi,zo,--- ,z,) such that F,,, F,,, ---,
F,, are continuous in a neighborhood of (aj,as, - ,a,. If F(aj,as, - - ,a,) = 0
and F,, (ai,as,- - ,a,) # 0, then locally there exists a unique function f satisfying
F(zy, - ,xp_, f(x1, - ,24-1)) = 0 and a, = f(ay,--- ,a,-1). Moreover, for 1 <
Jj<n-—1,

of Fo@, s tnt (o Tn1))

ﬁ(xh"‘ ,In—l)Z—F]@ T a—

j wn (L1570 1, f(T1,0 0 T

Example 13.45. Find % if (z,y) satisfies 3> + y? — 5y — 22 +4 = 0.
X

Let F(z,y) = v* +y* — by — 22 + 4. Then F,(z,y) = —2z and F,(z,y) = 3y + 2y — 5.
Therefore,
dy _ Fi(z,y) 2z

dr  F,(z,y) - 3y +2y —5

Example 13.46. Find S—z and % if (z,y,2) satisfies 3z?z — x%y? + 22% + 3yz — 5 = 0.
x y

Let F(z,y, z) = 3222 —2?y* + 22+ 3yz — 5. Then F,(z,vy, 2) = 6x2 —2zy?, F,(z,y,2) =
—22%y + 3z and F,(x,y,2) = 32% + 622 + 3y. Therefore,

0z Fy(z,y,z)  2xy®>—6az
ox F.(z,y,2) 322 +622+ 3y

and
0z Fy(w,y,2)  22%y—3z

oy F.(z,y,2) 3224622 +3y’



13.6 Directional Derivatives and Gradients

Let f be a function of two variables. From the discussion above we know that the existence
of f, and f, does not guarantee the differentiability of f. Since f, and f, are the rate of
change of the function f in two special directions (1,0) and (0,1), we can ask ourselves
whether f is differentiable if the rate of change of f exist in all direction.

Let f be a function of two variables z and y, and let w = cos #i+sin 0, where i = (1,0)
and j = (0,1), be a unit vector. The directional derivative of f in the direction of w
at (a,b), denoted by D, f(a,b), is the limit

Do f(a,b) = lim fla+ hcos®,b+ hsinf) — f(a,b)
h—0 h

provided this limit exists.

Example 13.48. Find the direction derivative of f(z,y) = x?sin 2y at (1, g) in the direc-
tion of v = 3i — 4j.
We first normalize the vector v and find that u = gi — % j is in the same direction of v

and has unit length. Therefore, for h # 0,

3h 4h
f(l—f—g,g—?)—f(l,g) (1+%)28in(ﬂ'—%)—1281nﬂ 3h 28111%
D - 0 =+3) '

sin h

thus by the fact that }llir% =1, we find that

Theorem 13.49

Let R < R? be an open region in the plane, and f : R — R be a function of two

variables. If f is differentiable at (z¢, yo) € R, then for all unit vector v = cos fi+sin 0,

(Duf)(xo,y0) = fa(T0,y0) cOs O + fy(%,yo) sinf = (Df)(zo,%0) - .

Proof. Let g(t) = f(xo + tcosl,yy + tsinf). Then by the chain rule for functions of two

variables,



(Duf a0, ) = i 2090

Example 13.50. In this example we re-compute of the direction derivative in Example 13.48

=g'(0) = fo(xo,y0) cos O + f,(x0,yo)sinb. O

using Theorem 13.49. Note that f(x,y) = x?sin2y is differentiable on R? since f,(z,y) =
2xsin2y and fy(z,y) = 227 cos 2y are continuous (so that Theorem 13.35) guarantees the
differentiability of f). Therefore, Theorem 13.49 implies that

4 3 4 8
—fy(l,z):—-Q-Sinﬂ'—g-2-12'COS7T:g.

m 3 m
(Du)(1:3) = 5Fo(lig) =54 3) =3

Unfortunately, the existence of directional derivative of f in all directions does not imply
the differentiability of f.

Example 13.51. Let f : R? — R be given by

2

oy = | g @) # 0.0,

and u = (cos 6, sin #) € R? be a unit vector. Then if cosf # 0 (or equivalently, 6 # g, 3%),
f(hcos, hsin@) — f(0,0) h3 cos 6 sin 62 _ sin6?

Do f)(0,0) = li — i =
(Duf)(0,0) - h 20 h(h?cos0? + h*sinf*)  cosf

while if cosd = 0,

=0.

1. f(hcosf,hsinB) — £(0,0)

Therefore, the directional derivative of f at (0,0) exist in all directions. However, f is not

continuous at (0,0) since if (x,y) approaches (0,0) along the curve x = my? with m # 0,

we have \
. T 2 T my . m
(zyyl)lgg%m flay) =l fimy”sy) = o s T = e 1
T=my

which depends on m. Therefore, f is not continuous at (0, 0).

Definition 13.52

Let z = f(z,y) be a function of z and y such that f,(a,b) and f,(a,b) exists. Then
the gradient of f at (a,b), denoted by (Vf)(a,b) or (gradf)(a,b), is the vector

(fz(a,b), fy(a,b)); that is,

(Vf)(a,b) = (fola,b), fy(a,b)) = fula,b)i+ fy(a,b)j.




e Functions of several variables

Definition 13.53

Let f be a function of n variables. The directional derivative of f at (ay,aq,--- ,ay)

in the direction w = (uy,ug, - ,u,), where u? +u3 + - -+ +u2 = 1, is the limit

(Duf)(ar,az,-+ a,) = lim flaa + huy, ag + hus, - -- ,ag+hun) — flas,as,- -+ an)

provided that the limit exists. The gradient of f at (ay,as,--- ,a,), denoted by
(Vf)(ay,az, - ,ay,), is the vector

(Vf)(alaa%"' 7an) = (fxl(ala"' 7an)afx2(a17"' 7an)7"' afxn(aflv"' aan)) .

Let f be a function of n variables. If f is differentiable at (a;,aq,- - ,a,) and u =

(ug,ug, -+ ,uy,) is a unit vector, then

(Duf)(a1, a9, - ya,) = (Vf)(ar, -+ ,a,) .

e Properties of the gradient

Theorem 13.55

Let f be a function of two variables. If f has continuous first partial derivatives
f» and f,, in a neighborhood of (x¢,yo) and (Vf)(xo,v0) # 0, then (Vf)(xo,yo) is

perpendicular/normal to the level curve f(z,y) = f(xo,v0) at (xo,y0). Moreover,

(V£)(xo,y0)
VD @orwo)] 29

where | - | denotes the length

the value of f at (zg,yo) increase most rapidly in the direction

(V) (0, %0)
[(V ) (o, yo) I’

decreases most rapidly in the direction —

of the vector.

Remark 13.56. 1. Let f : (a,b) — R be differentiable. The graph of the function y =
f(z) can be view as the level set F(z,y) = y — f(z) through point (¢, f(c)) (that
is, F(z,y) = F(c, f(c))). We note that at the slope of the tangent line (¢, f(c)) if
f'(c) (so that (1, f'(c)) is a tangent vector at (c, f(c))); thus the vector (—f’(c),1)
is perpendicular to the graph of f at (¢, f(c¢)). The theorem above generalizes this

result.



2. The terminology “the value of f at (xg, o) increase most rapidly in the direction u”,
where w is a unit vector, means that the directional derivative (D, f)(zo,vo), treated

as a function of v, attains its maximum at v = u.

2 2
Example 13.57. Let f(z,y) = % + %2 Then the level curve f(x,y) =1 is an ellipse and
a

the normal vector of this level curve at point (a cos®,bsin @) is given by

' ) 2cosf 2sin6
(fx(acosejb&ne)’fy(aCOSQ,bSIHQ)) - ( a b )

Example 13.58. A heat-seeking particle is located at the point (2, —3) on a metal plate

whose temperature at (z,y) is T'(z,y) = 20 — 42® — y?. Find the path of the particle as it
continuously moves in the direction of maximum temperature increase.

Suppose the path of the particle is given by (z(t),y(t)). Then
(2'(t),y' (1) /) (VT)(x(t), y(t)) = (= 8x(t), —2y(t)) .

Therefore, there exists a function k(t) such that —8z = k% and — 2y = k% ; thus

d
£(1n|x| —4Inly]) =0.

Then |z||y|~* = C. Since (z(t),y(t)) passes through (2,—3), we find that C' = 8—21; thus

2 4
s1¥

Theorem 13.59

Let f be a function of three variables. If f has continuous first partial deriva-
tives fy, fy, f. in a neighborhood of (x¢,vo,20) and (Vf)(xo,v0,20) # 0, then
(V) (2o, Yo, 20) is perpendicular/normal to the level surface f(z,y,2) = f(xo, Yo, 20)

(x,y) satisfies x =

at (o, Yo, 20). Moreover, the value of f at (o, yo, z0) increase most rapidly in the direc-

(V£) (o, Yo, 20) (V) (20,90, 20)
IV f) (0, Yo, 20) || IV £) (20, yo, 20)]

where | - || denotes the length of the vector.

tion and decreases most rapidly in the direction —

Proof. We have shown that (V F')(zo, yo, z0) is perpendicular to the level surface F(z,y, z) =
F(z0,Y0, 20) in Theorem 13.63, so it suffices to show that (D,F)(xq, yo, 20) attains its maxi-
mum at v = u. Nevertheless, by Theorem 13.54, we find that

(Do F) (20,0, 20) = (VF)(x0, Y0, 20) - v = |(VE)(x0, Yo, 20)| cos b,



where 0 is the angle between (VF')(xg,yo, 20) and v. Clearly (D,F)(xo,yo, 20) attains its

maximum when 6 = 0 which shows that (D,F)(zo, %o, 20) attains its maximum at v =
(VF)(;UOvasz) ]
[(VE) (20, yo, 20) |

Example 13.60 (Gradient method of finding local minimum of a function). Suppose that

you are looking for the minimum of a function f : R? — R. You do not know where the
minimum point of f is, so you start with (conjecturing a possible) point (a,b) and hope to
find a curve C' that connects (a, b) and the minimum point. Suppose that C' is parameterized
by 7 : [a,b] — R2. By the fact that —(V f)(x) points to the direction to which f decreases
most rapidly, we expected that

r'(t) ) =(V)(r(t)).
In particular, we choose 7'(t) = —(V f)(7(t)) and hope that we can find 7 (so that we can
(V) (r®)

IV AE®)]
vanishes so that the tangent direction indeed points to the direction —(V f)(r(t)).

find C'). We note that we can also choose 7'(t) = which implies that 7’ never

Sometimes it is very hard to find the solution r to the differential equationt, so instead
we choose a different strategy. Starting at the point (a,b), we move forward in the direction
—(Vf)(a,b) and stop temporally at (a1,b1) = (a,b) — to(V f)(a,b) for some ¢t > 0. Then
we move forward in the direction —(V f)(ay, b1) and stop temporally at (ag, by) = (a1, b1) —

t1(V)(a1,b1). Continue this process, we obtain a sequence of stops {(ax, bx)}i; given by

(ak—f—h bk+1) == (ak, bk) - tk(Vf) (ak, bk) (1361)

for some sequence {t;}{, of non-negative numbers to be chosen. One way of choosing the

step-size t;, called the method of exact line search, is to choose t; so that

S ((ar, br) = t1(V f)(ax, br)) = min f((ar, br) = t(V f)(ak, bi)) -

Such t; must satisfy that

d
Gty T (s be) = (07 1) ax, i) =0

which implies that ¢, satisfies that (V f)((ax, bk) — te(V f)(ax, b)) - (V.f)(ar, by) = 0. There-
fore, (13.6.1) implies that
(Vf)(a/kJr]_, bk+1) : (Vf)(ak, bk> =0 VkeNu {O}

which shows that the exact line search algorithm of constructing minimizing sequence pro-

duces a zigzag path connecting the starting point and the minimum point.



13.7 Tangent Planes and Normal Lines
e The tangent plane of surfaces

Any three points in space that are not collinear defines a plane. Suppose that S is a
“surface” (which we have not define yet, but please use the common sense to think about
it), and Py = (¢, Yo, 20) is a point on the plane. Given another two point P, = (21,91, 21)
and P, = (z3,y2, 22) on the surface such that Py, Py, P, are not collinear, let Tp p, denote
the plane determined by Py, P, and P,. If the plane “approaches” a certain plane as P;, P,
approaches Fy, the “limit” is called the tangent plane of S at F.

Now suppose that the surface S is the graph of a function of two variables z = f(x,y).
Consider the tangent plane of S at Py = (¢, Yo, 20), where zg = f(xq,yo). The plane Tp, p,,
where P, = (xo + h, yo, f(xo + h,y0)) and Py = (zo, yo + k, f(z0,yo + k)), is given by

[(hvoaf(x0+hay0) —f(lfo,yo)) x <0> k7f($0,y0+k)_f($o7yo))} (r—20,¥y—Y0,2—20) =0,

where u - v and u x v are the inner product and the cross product of u and v, respectively.
For (h, k) # (0,0), divide both sides by hk and pass to the limit as (h,k) — (0,0), we find
that the limit is

[(1,0, fa(@o,y0)) x (0,1, fy(zo,%0))] - (x — 20,y — Yo, 2 — 20) =0,
provided that f,(xo, o) and f,(zo,yo) exists. Computing the cross product, we find that
(1,0, falzo, y0)) x (0,1, fy(z0,m0)) = (= fe(20,%0), —fy (0, 40), 1) ;
thus if the tangent plane exists at (zo, o, 20), the tangent plane must be
(—fx(on;yo), _fy<$073/0)a 1) : (33 —20,Y — Yo, %2 — f(xmyo)) =0
or equivalently,
z = f(z0,Y0) + fo(Zo, yo)(x — o) + fy(0,Y0) (¥ — ¥o) -

On the other hand, if f is differentiable at (xq,yo), then

f(z,y) = f(wo,90) + fo(To, v0)(x — 20) + fy(0, %0) (¥ — v0)
+e1(z, y) (@ — x0) + £2(2, ¥) (Y — W)



for some functions €1, 9 satisfying ~ lim  ey(z,y) = lim  es(x,y) = 0. This shows
(wﬁy)*’(wozyo) (m,y)%(xg,yo)
that the rate of convergence of the quantity

’f(l", y) — f(wo,y0) — fe(wo,y0)(x — 20) — fy(%, Yo)(y — yo)’ )

as (x,y) approaches (g, 19), is “faster than linear” and this is exactly what we have in mind

when talking about tangent planes. Therefore, we conclude that

Theorem 13.61

Let R < R? be an open region in the plane, and f : R — R be a function of two

variables. If f is differentiable at (z¢,yo) € R, the tangent plane of the graph of f at
('T(): Yo, f('TanO)) is given by

z = f(zo,y0) + fo(zo, Y0)(x — 20) + £y (%0, %0) (¥ — Yo) »

and the vector (fi(zo,v0), fy(%0,y0),—1) is a normal vector to the graph of f at
(Io, Yo, f(fl?o, yO))

Example 13.62. Find the equation of the normal line to the surface xyz = 12 at the point
(2,-2,-3).

Let F(z,y,2) = xyz — 12. Then (F,, F,, F,)(2,-2,—-3) = (6, —6,—4). Therefore, the
vector (6, —6,—4) is normal to the surface zyz = 12 at (2,—2,—3) and the normal line

passing through (2, -2, —3) is

r—2 y+2 z+43
6 -6 -4

Now suppose that the function of three variables w = F(x,y, z) is continuously differen-
tiable; that is, F,, F, F, are continuous. Suppose that for some (zo, 3o, 29) in the domain,
(Fi (0, Yo, 20), Fy (%0, Yo, 20), F= (20, Y0, 20)) # 0. W.L.O.G., we assume that F,(xo, o, 20) #
0. Then the Implicit Function Theorem (Theorem 13.44) implies that there exists a unique
differentiable function z = f(z,y) such that

F(x,y, f(r,y)) =0 and 20 = f(z0,0) -

By the discussion above, the tangent plane of the graph of f at (xo, yo, 20) is given by

z =z + fo(®o,y0)(x — o) + fy(20, Y0) (Y — Yo)



and the implicit partial differentiation further shows that the tangent plane above can be
rewritten as
F:E<'I07y0720) - Fy(xoayO;ZO)

z2=z20— ———(xr — x9

Y—Yo)-
F.(z0, Yo, 20) F.(z0, Yo, 20) o)

Therefore, the tangent plane of the graph of f at (xg, 3o, z0) is given by
(F2(z0, Yo, 20), Fy (2o, Yo, 20), F: (20, Yo, 20)) - (x — o,y — Yo, 2 — 20) = 0.

On the other hand, note that the graph of f is the same as the level surface F(z,y,z2) =
F(x0, Yo, 20); thus we conclude that

Let w = F(z,y,2) be a function of three variables such that F,, F, and F, are
continuous. If (Fx(:ro, Yo, 20), Fy (20, Yo, 20), F= (0, Yo, ZO)) # 0, then the tangent plane

of the level surface F(z,y,z) = F(x0, Y0, 20) at (xo, Yo, 20) is given by

(Fa(z0, Yo, 20), Fy (20, Yo, 20), F= (20, Yo, 20)) - (x — 0,y — Yo, 2 — %) =0,

and the vector (Fx(:vo,yo,zo),Fy(xo,yo,zo),Fz(xo,yo,zo)) is a normal vector to the

level surface F(xz,y,z) = F(zo, Yo, 20)-

Example 13.64. Find an equation of the normal line and the tangent plane to the paraboloid

1
-1 — 2 42
z 10(:76%—?;)

. 1
at the point (1, 1, 5).

1 1 1 4
Let F(z,y,2) =2—1+ TO(xQ + 4y?). Then F.(1,1, 5) = (5’ 5 1) # 0; thus Theorem

13.63 implies that the tangent plane of the given paraboloid at (1, 1, %) is

3 1

4 4
D) —(y—1D =2 —Zp—Zy.
(r—1) 5(y ) 5 5T Y

N —
U] =

z =

. . Iy . .
An equation of the normal line at (1, 1, 5) is given by

r—1 y—1 2z-1/2
/5  4/5 1




13.8 Extrema of Functions of Several Variables

13.8.1 Absolute extrema and relative extrema

Theorem 13.65: Extreme Value Theorem

Let f be a continuous function of two variables x and y defined on a closed bounded

region R in the plane.

1. There is at least one point in R at which f takes on a minimum value.

2. There is at least one point in R at which f takes on a maximum value.

A minimum is also called an absolute minimum and a maximum is also called an absolute

maximum. As in the case of functions of one variable, there are relative extrema defined as

follows.

Definition 13.66: Relative Extrema

Let f be a function defined on a region R containing (zo, o).

1. The function f has a relative minimum at (xg,yo) if f(x,y) = f(xo,y0) for all
(z,y) in an open disk containing (xq, 3o)-

2. The function f has a relative maximum at (zo,yo) if f(x,y) < f(zo,yo) for all
(z,y) in an open disk containing (xg, 3o)-

Similar to the critical points for functions of one variable defined in Definition 3.4,we

have the following

Definition 13.67: Critical Points

Let f be defined on an open region R containing (xg, ). The point (zo,y0) is a

critical point of f if one of the following is true.

1. fa(zo,y0) = 0 and fy(xo,y0) = 0;

2. fo(xo,y0) or f,(xo,yo) does not exist.

Similar to Theorem 3.5, we have the following necessary condition for points where f

attains its relative extrema.



Theorem 13.68

Let R be an open region in the plane, and f : R — R be continuous. If f has a

relative extremum at (x, ) on an open region R, then (zo,yo) is a critical point of

f.

Example 13.69. Determine the relative extrema of the function
flz,y) = —2® +day — 2> + 1.

First we find the critical points of f. Since f is differentiable, the critical points are
those points at which the gradient of f is the zero vector. Since f,(z,y) = —3x? + 4y and
fy(z,y) = 4z — 4y, if (a,b) is a critical point of f, then —3a*+ 4b = 4a — 4b = 0. Therefore,
(0,0) and (5’ %) are the only critical points of f.

Note that (0, 0) is not a relative extremum of f since f(x,0) does not attain its extremum

at x = 0. Near (%, g), we find that if |hl, |k| « 1,

f(§+h,§+k):—(h+§)3+4(§+h)(§+k)—2(k:+§)2+1

_ 13 2_@_% E % é - ’ § E
= —h% —4h 3 27+4<9 +3h—'_3k+hk) 2(1{:+3k+9)+1
= B8 — A2+ Ahk — 207+ £ (5, )
4 4
)

:f(gé)—2(/~fi—h)2—hQ(2+h)<f(§,§ _

Therefore, f has a relative maximum at (§’ §)'

13.8.2 The second partials test

A critical point of a function of two variables do not always yield relative maxima or minima.

Definition 13.70
Let f be a function of two variables. A point (z¢,yo) is a saddle point of f if (zo,yo)

is a critical point of f but f does not attain its extrema at (xg, yo)-




Theorem 13.71

Suppose that a function f of two variables has continuous second partial derivatives

on an open region containing a point (a,b) for which f,(a,b) = f,(a,b) = 0. Let

_ o |alad) fa(ab)
D = f:ccc(aa b)fyy(a> b) fwy(a7 b) fym(a; b) fyy(& b) .

1. If D > 0 and f..(a,b) > 0, then f has a relative minimum at (a, b).

[\]

. If D> 0and f,.(a,b) <0, then f has a relative maximum at (a, b).

3. If D <0, then (a,b, f(a,b)) is a saddle point.

W

. The test is inconclusive if D = 0.

Example 13.72. Consider the relative extrema of the function given in Example 13.69.

We have computed that (0,0) and (g, g) are the only critical points of f.

1. The point (0,0): we compute the second partial derivatives and obtain that
f22(0,0) =0, f,,(0,0) =4 and f,,(0,0)=—4.
Therefore, D = —16 < 0 which implies that (0,0) is a saddle point.

. 4 4 . .. .
2. The point (g, g): we compute the second partial derivatives and obtain that

4 4 4 4 4 4
fxz(gag) :_87 f:vy(§>§) =4 and fyy(gag) =—4.
Therefore, D = 16 > 0. Since f. (% é) < 0, f has a relative maximum at (é %)
Y . Trr 3) 3 9 37 3 °

Example 13.73. Find the absolute extrema of the function f(z,y) = sin(zy) on the closed
region given by 0 <z <7mand 0 <y < L.

From the partial derivatives

fe(z,y) = ycos(zy) and  fy(x,y) =z cos(zy),

we find that each point on the hyperbola zy = g is a critical point of f. The value of f at
each of these points is sin% = 1 which is the maximum of the sine function. Therefore, the
maximum of f is 1.

The minimum of f occurs at the boundary of the region.



1. z=0and 0 <y < 1: then f(z,y) =0.

2. x =mand 0 <y < 1: then f(x,y) = sin(mwy). The critical points of the function
g(y) = sin(my) occurs at y = % since g’(%) = 7T COS (%) = 0. Since g(%) =1 and
g(0) = g(1) = 0, we find that the minimum of g is 0.

3. y=0and 0 <z < m: then f(z,y)=0.

4. y=1and 0 < z < 7: then f(x,y) = sinx whose minimum on [0, 7] is 0.

Therefore, the minimum of f is 0.

The concepts of relative extrema and critical points can be extended to functions of three
or more variables. On the other hand, the second derivative test for functions of three or
more variables are more tricky, and we will not talk about this until the course of Advance

Calculus.

13.9 Applications of Extrema
| Theorem 13.74 |

The least squares regression line for n points {(m, y1), (T2, y2), -+, (xn, yn)} is given

1

by y = ax + b, where

3

1=1

=1 7

n
ny ot (
=1

a= and bz%(iyi—aizn;xi) (13.9.1)

=1

NgE
&S
~—

=1

Proof. For a,b € R, define S(a,b) = > (ax; + b —y;)>. Then
=1

0S -

%(a, b) = QZ(a:Bi +b—y)x;,
i—1

0S "

%(a,b) = QZ(axi +b—y).
i=1



The critical points (a,b) of S satisfies

afo —|—b2 x; = inyl-, (13.9.2a)
i=1 i=1 i=1
a) wi+by 1=>y; (13.9.2b)
i=1 i=1 i=1
which implies that (a,b) are given by (13.9.1). Clearly such (a,b) minimizes S. O]

Remark 13.75. An easy way to memorize the equations (a,b) satisfies is given in this

remark. We assume (even though in general it is a false assumption) that the line y = az+0b

passes through (z1,v1), (2,y2), -+, (Tn,Yn). Then y; = az; + b for all 1 < i < n; thus in
matrix form, we have

r; 1 y1 1

g 1 {a] Y2 1

b :

T, 1 Yn 1
Therefore,

rp 1 po 1

[xl To mn] x9 1 {a] B {751 To xn} y2 1
11 1 b 11 1]
T, 1 UYn 1

which implies (13.9.2).

13.10 Lagrange Multipliers

The concept of this section is to find the extrema of a function of several variables subject

to certain constraints:

Find extrema of the function w = f(xy,z9,- -+ ,z,) when (z1,xs,- - ,z,) satisfies

91(1’1,"' 7%):92(551,"' 7$n) :"':gm(l’h"' ,%):0-




Theorem 13.76: Lagrange Multiplier Theorem

Let f and g be continuously differentiable functions of two variables. Suppose that
on the level curve g(x,y) = c¢ the function f attains its extrema at (xg,y0). If
(Vg)(xo,y0) # 0, then there is a real value A such that

(V) (o, 90) = MV ) (0, 0)

Proof. First we note that (z¢,yo) is on the level curve g(x,y) = ¢; thus ¢ = g(zo, yo)-

Define F(z,y) = g(x,y) — g(z0,yo). Then F has continuous first partial derivatives, and
(VF)(z0,90) = (Vg)(xo,y0) # 0. Then either F,(zo,y0) # 0 or F,(xo,yo) # 0. Suppose
that F,(zo,y0) # 0. Then the Implicit Function Theorem implies that there exists § > 0 a
unique differentiable function h : (xg — 6,29 + §) — R such that

F(z,h(z)) =0 and Yo = h(xp) .

In other words, the set {(z, h(z)) |29—08 < x < +0} is a subset of the level curve g(z,y) =
9(z0,yo). Therefore, the function G : (xg — §,z9 + 0) — R defined by G(z) = f(x,h(x))

attains its extrema at (an interior point) x¢; thus

G'(z0) = fu(®0,90) + fy (0, y0)h (20) = 0.
Since the implicit differentiation shows that

iy Fulwo, h(xo)) _ ga(x0, %0)
" (xO) B Fy(zo, h(x0)) B 9y($0>yo) ’

we conclude that
[ (95 05 yo)

9y(T0, Yo)
If f,(zo,y0) = 0, then f.(xo,yo) = 0 which implies that (V f)(zo,y0) =0=0-(Vg)(xo, o).
If fy(an yU) 7 07 then

fa(xo,90) — fy(z0,Y0) =0.

fa (0, 90) _ 92 (0, Yo)
fy(@o,90)  gy(x0, o)
which implies that (V f)(zo,v0)// (Vg)(xo,y0); thus there exists A such that

(V)(@o,90) = AM(Vg) (2o, %0) -

Similar argument can be applied to the case F,(z¢,yo) # 0, and we omit the proof for
this case. n



Remark 13.77. The scalar A in the theorem above is called a Lagrange multiplier.

Example 13.78. Find the extreme value of f(z,y) = 4zy subject to the constraint

2

<

2
X
= ~1.
5+

—_
(=}

2 2
Let g(z,y) = % + %6 — 1. Suppose that on the level curve g(z,y) = 0 the function

[ attains its extrema at (xg,yo). Note that then (Vg)(xo,yo) # 0 (since (zo,v0) # (0,0));
thus the Lagrange Multiplier Theorem implies that there exists A € R such that

(. 420) = (V) z0.0) = A(Vg) (0. 10) = A (222, %0) |

2)\$0

Therefore, (z,yo) satisfies 4dyy = and 4zg = %, as well as —2 + yo = 1. Therefore,

A # 0, and

)\yo A )\%0 )\21'0
dorg=—=—+ — = :
8 8 18 144
The identity above implies that xo = 0 or A = +24.

1. If zg = 0, then yg = +4 which shows that A = 0, a contradiction.

2. If A\ = +24, then g = 3 : thus

L%, Y6 _ Y
9 16 ' 16

1 =
8

30/3

Therefore, yo = +2v/2 which implies that o = —.

2 2
+24. Therefore, on the ellipse % + %6 = 1 the maximum of f is 24 (at (xo,v0) =

At these (zo,%0), f(7o,%0) =

(+2v2, i?)\z@)) and the minimum of f s —24 (at (zo, y0) = (£2v2, $3\2@))

Example 13.79. Find the extreme value of f(x,y) = 4xy, where x > 0 and y > 0, subject
2 2

to the constraint —— + £ = 1. From the previous example we find that the maximum of

9 16
fis 24 (at (zo,30) = (2V2, S\QF)> The minimum of f occurs at the end-points (0,4) or

(3,0). In either points, the value of f is 0; thus the minimum of f is 0.



2 2
Example 13.80. Find the extreme value of f(z,y) = 4xy, where (z, y) satisfies %4—% <L
2 2

We have find the extreme value of f, under the constraint T4 %6 =1, is £24. Therefore,

9
2 2
it suffices to consider the extreme value of f in the interior T4

9 16
Assume that f attains its extreme value at an interior point (zg,yo). Then (xq,yo) is a

critical point of f; thus

fz(z0,90) = fy(anyO) =0
which implies that (z,%0) = (0,0). Since f(0,0) =0, f(0,0) is not an extreme value of f.

2 2
Therefore, the extreme value of f on the region % + % < 1is £24.

We note that (0,0) in fact is a saddle point of f since f,,(0,0)f,,(0,0) — f.,,(0,0)* =
—16 < 0.

Example 13.81. Find the extreme value of f(z,y) = x? + 6(y*> + y + 1)? subject to the
constraint z? 4+ (y* — 1)? = 1 (using the method of Lagrange multipliers).
Let g(z,y) = 2% + (y* — 1)%. We first compute the gradient of f and g as follows:

(VA (@,y) = (22,12Qy + 1)(y* +y + 1)) and  (Vg)(z,y) = (22,6y*(y° — 1)) .
Assume that f, under the constraint g = 1, attains its extrema at (zo,yo). Then

1. If (Vg)(zo,y0) # 0, then the Lagrange multiplier theorem implies that there exists
A € R such that

(20, 12(290 + 152 + 90 + 1)) = (220, 65258 — 1)) (13.10.1)
Therefore, xo(A — 1) = 0 and 2(2ys + 1) = Ay2(yo — 1).
(a) wo = 0, then g(xg, o) = 1 implies that yo = v/2 (yo = 0 cannot be true because

no A will verify (13.10.1)); thus f(xo,yo) = 6(v/4 + /2 + 1)
(b) A =1, then 4yy + 2 = y2(yo — 1) or equivalently, y3 — y2 — 2(2yo + 1) = 0. Note
that
Yo — Yo — 40 — 2= (yo + 1)(y5 — 2u0 — 2);
thus yo = —1 (impossible since g(z¢, —1) # 1) or yo = 1++4/3 (both are impossible
since g(wp, 1 £+/3) # 1).



2. If (Vg)(xo,90) = 0, then (zq,y0) = (0,0); thus f(x,y0) = 1.

Therefore, the maximum of f, under the constraint g = 1, is f(0,v/2) = 6(v/4 + /2 + 1)2

and the minimum of f, under the constraint g = 1, is f(0,0) = 1.

Similar argument of proving Theorem 13.76 can be used to show the following

Theorem 13.82

Let f and g be continuously differentiable functions of n variables. Suppose that on

the level curve g(z1,- -+ ,z,) = c the function f attains its extrema at (ay,--- ,a,). If
(Vg)(ai, - ,a,) # 0, then there is a real value A such that

(vf)(ala T ,an) = /\(VQ)(CH, T ’an>'

Example 13.83. Find the minimum value of f(z,y,2) = 22® + y? + 32% subject to the
constraint 2z — 3y — 4z = 49.

Let g(z,y,2) = 2x — 3y — 42 — 49. Then (Vg) # 0; thus if f attains its relative extrema
at (zo, Yo, 20), there exists A € R such that (V f)(zo, v0, 20) = A(Vg)(x0, Yo, 20). Therefore,

(4.’150, 23/0, 620) = )\(2, —3, —4)

2
or equivalently, A = 2xg = —3% = —gzo. Since 2z — 3yg — 4z = 49, we find that A =6
which implies that
(‘7;07 Yo, ZO) = (37 _97 _4> .

Since f grows beyond any bound as 4/ 22 + y? + 22 approaches o, we find that f(3, -9, —4) =

147 is the minimum of f.

Next, we consider the optimization problem of finding the extreme value of a function

of three variables w = f(x,y, z) subject to two constraints g(z,y, z) = h(z,y, z) = 0.

Theorem 13.84: Lagrange Multiplier Theorem - More General Version

Let f, g and h be continuously differentiable functions of three variables. Suppose

that subject to the constraints g(z,y,z) = h(x,y,z) = c the function f attains its
extrema at (zo, Yo, 20). If (Vg)(xo, Y0, 20) X (Vh)(x0,y0,20) # 0, then there are real
numbers A and p such that

(V) (o, 90, 20) = MV g) (0, Yo, 20) + (VR) (0, Yo, 20) -




Example 13.85. Find the extreme value of the function f(z,y,2) = 20 + 2z + 2y + 2°
subject to two constraints z2 +y* + 22 =11 and z +y + 2 = 3.

Let g(x,y,2) = 2 + y* + 22 — 11 and h(z,y,2) = z + y + 2z — 3. We first note that if
(x,y, z) satisfies g(x,y, z) = h(z,y,2) =0, then (Vg)(z,y,2) x (Vh)(z,y, z) # 0. Moreover,
f attains its extrema on the intersection of the level surface g(x,y,2) = 0 and h(z,y,z) =
0 (since the intersection is closed and bounded). Suppose that f attains its extrema at

(%0, Yo, 20)- Then there exists A, u € R such that

(V) (o, Yo, 20) = AM(Vg)(zo, Yo, 20) + (V) (x0, Yo, 20) ,
9(0, Yo, 20) = (w0, Yo, 20) = 0.

Therefore,
Azo + = 2, (13.10.2a)
200 + =2, (13.10.2b)
20 =1z +pu=0, (13.10.2c)
3+ Y+ 20 =11, (13.10.2d)
To4 Yo+ 7 =3. (13.10.2¢)

(13.10.2a,b) implies that A(zo — yo) = 0; thus A = 0 or xy = ypo.

1. If A = 0, then (13.10.2a) implies ¢ = 2 and (13.10.2¢) implies p = 2z5. Therefore,
2o = 1 which further shows 22 + y2 = 10 and z¢ + yo = 2. Then (z¢,v0) = (3,—1) or
(—1,3). Therefore, when A = 0,

($0>y07 ZO) = <3a _17 ]-) or (ZE(), Yo, ZO) = (_17 37 1) .

2. If zg = yo, then (13.10.2d,e) implies that 222 + 22 = 11 and 2z + 29 = 3. Therefore,

3423 3F4V3
To = Yo = 3 y 20 = 3 .

Since f(3,—1,1) = f(—1,3,1) = 25 and

3+2v3 3+2v3 3—4v3, . 3-2V3 3-2V3 3+4¢v3, 91
f(3’3’3)_f(3’3’3)_§’

. .. . 91
we conclude that the maximum and minimum value of f subject to ¢ = h = 0 are 5 and

25, respectively.



Example 13.86. Find the extreme value of f(z,y,z) = z subject to the constraints z* +
y*— 22 =0and y = 2.
Let g(z,y,2) = 2* + y* — 2% and h(x,y,2) =y — 2. Then

(Vo) (z,y, 2) = (42°, 4>, —327) and (Vh)(z,y,z) =(0,1,-1)
which implies that
(Vg)(z,y,2) x (VRh)(x,y,2) = (32% — 4>, 42 42?) .
Suppose the extreme value of f, under the constraints g = h = 0, occurs at (xg, yo, 20)-
1. If (Vg)(xo, Yo, 20) x (Vh)(x0, Yo, 20) = 0, then (xq, Yo, 20) = (0,0,0) and f(0,0,0) = 0.

2. If (Vg)(xo, Y0, 20) X (Vh) (0, Yo, 20) # 0, then the Lagrange Multiplier Theorem implies
that there exist A\, u € R such that

(V)(o, %o, 20) = A(Vg) (20, Yo, 20) + n(Vh) (2o, Yo, 20) -

Therefore, (xo, Yo, 20) satisfies that

4oz =0, (13.10.3a)
ADys+p=0, (13.10.3b)
3zl —pu=1, (13.10.3c)
xg+ys — 20 =0, (13.10.3d)
Yo — 20 =0. (13.10.3e)

Then (13.10.3a) implies that A = 0 or zo = 0.

(a) If A =0, then (13.10.3b) shows p = 0; thus using (13.10.3¢), we obtain a contra-
diction 0 = —1. Therefore, A # 0.

(b) If 2o = 0 (and A # 0), then (13.10.3d) implies that ys — z3 = 0. Together with
(13.10.3e), we find that yo = 0 or yo = 1. However, if yo = 0, then (13.10.3b)
shows that p = 0 which again implies a contradiction 0 = 1 from (13.10.3c).
Therefore, yo = z9 = 1 (and there are A, u satisfying (13.10.3b,c) for yo = 2o = 1

but the values of A and p are not important).



Therefore, the Lagrange Multiplier Theorem only provides one possible (xg, yo, 20) =

(0,1,1) where f attains its extreme value.

Since the intersection of the level surface ¢ = 0 and h = 0 is closed and bounded, f must
attains its maximum and minimum subject to the constraints ¢ = h = 0. Since (0,0,0)
and (0,1,1) are the only possible points where f attains its extrema, the maximum and
minimum of f, subject to the constraint ¢ = h = 0, is f(0,1,1) = 1 and f(0,0,0) = 0,

respectively.

13.11 Exercise
Problem 13.1. Let f : R? - R be a function such that
f(xy)+ fly,2)+ f(z,2) =0  Va,y,zeR.
Show that there exists g : R — R such that
fl@y) =g(x) —gly)  VryeR.

Problem 13.2. In the following sub-problems, find the limit if it exists or explain why it

does not exist.
2

T +y . z . -y
1 im 2 im ——- 3 lim ——
(1) (2)—(0,0) 22 +y (@) —(0,0) 22 — y? 3) (@) —(0,0) 24 + y?
3.3

. xy . T~ —y : 2 2 2 2
4 lim 5 lim 6 lim (z°+ In(xz= +
(4) (2,y)—(0,0) T2 + y? (5) (2y)—(0,0) T2 + y? (6) (m,y)—>(0,0)( v In( v)

4

. Ty . 1 . 1
7 lim —2— 8 lim sin — 9 lim xcos—=
(7) (z)—(00) z* + y* (®) w00 @ (9) (24)—(0,0) y

2?2 + 92 Y + Yz + zx
10 lim 11 lim -
(10 (@) —(0,0) /22 + 42 + 1 — 1 (11) (2,y,2)—(0,0,0) 22 +y2 + 22

2 2
(12) lim % 13) lim arctan 5 92, 2
(z,y,2)—(0,00) *+ Y-+ =z (z,y,2)—(0,0,0) ¢ty -+ z
Problem 13.3. Discuss the continuity of the functions given below.
sin(zy)

L flz,y) = Y
1 ifxy=0.

it xy # 0,



R A |

2. f(z,y) = v? +y?
1 if (z,y) = (0,0).
sin(z® +y1) .

—— if 0,0
o g | P ) £ 00),
0 if (z,y) = (0,0).

0 ify<Ooryz=at,
Problem 13.4. Let f(z,y) = L ifo 4
if0<y<at.

1. Show that f(z,y) — 0 as (z,y) — (0,0) along any path through (0,0) of the form

y =mz* with 0 < a < 4.
2. Show that f is discontinuous on two entire curves.

. Do not write the answer in terms of

0 n
Problem 13.5. Find ; (z+y)

Tl(zy,2)=(In4n92) n=p n!z"
an infinite sum.

Problem 13.6. Let f(z,y) = (2 + y?). Find the partial derivative gf
X

Problem 13.7. Let f(z,y, z) = zy*2*+arcsin(z/z). Find f,., in the region {(z,y, z) | [¢22| <
1},
Problem 13.8. Let @ = (aj,aq, - ,a,) be a unit vector, & = (1,29, - ,x,), and

f(z1, 29, -+ ,x,) = exp(a- &). Show that

Problem 13.9. Let f(z,y) = (22 + 2) "2 Find f,(1,0).

Problem 13.10. Let f(z,y Show that

) = f/ dt
N 1 vV1— 233
Yo 1
(T, y) = — | dt
in the region {(z,y) |x <1l,y>1landay <1}
Problem 13.11. The gas law for a fixed mass m of an ideal gas at absolute temperature

T, pressure P, and volume V is PV = mRT, where R is the gas constant. Show that
orPovaor

oV oToP



Problem 13.12. The total resistance R produced by three conductors with resistances Ry,

Rs, R3 connected in a parallel electrical circuit is given by the formula

1 1 1 1

i R1+R—2+R—3.

. . OR . : . o .
Find T by directly taking the partial derivative of the equation above.
1

Problem 13.13. Find the value of SZ at the point (1,1, 1) if the equation
A

ry+ 22 — 292 =0

defines z as a function of the two independent variables x and y and the partial derivative

exists.

Problem 13.14. Find the value of g'z at the point (1,—1, —3) if the equation
rz4+yhme —22+4=0

defines x as a function of the two independent variables y and z and the partial derivative

exists.

Problem 13.15. Let f : R? — R be a function such that f.(a,b) and f,(a,b) exists.
Suppose that ¢ = f(a,b).

1. Using the geometric meaning of partial derivatives, explain what the vectors (1,0, f.(a,b))

and (0,1, f,(a,b)) mean.

2. Suppose that you know that there is a tangent plane (which we have not talked about,
but you can roughly imagine what it is) of the graph of f at (a,b,c). What should
the equation of the tangent plane be?

Problem 13.16. Define

2 arctan 4 — y?arctan © if 2,y # 0,
fla,y) = v Y
0 ifr=0o0ry=0.
Find f,,(0,0) and f,.(0,0).

Problem 13.17. Show that each of the following functions is not differentiable at the origin.



(1) f(z,y) = Yz cosy (2) f(z,y) = /Iy

Problem 13.18. In the following, show that both f,(0,0) and f,(0,0) both exist but that
f is not differentiable at (0,0).
512y

1) flz,y) =14 a¥+4°
0 ifad+y3=0.

if 22 +93 #0,

2zy

(2) f(x,y): \/562+y2

0 if (z,y) = (0,0).

if (z,y) # (0,0),

322y
3) flzy) =4 «*+y°

sin(z? 4
(4) f(z,y) = ;+$)iﬂﬁw¢@ﬁ%

0 if (x,y) = (0,0).

Problem 13.19. Let f,g : (a,b) — R be real-valued function, h(z,y) = f(x)g(y), and
c,d € (a,b). Show that if f is differentiable at ¢ and ¢ is differentiable at d, then h is
differentiable at (¢, d).

Problem 13.20. Show that the function f(z,y) = v/ + y?sin/a? 4 y? is differentiable
at (0,0).

Problem 13.21. Investigate the differentiability of the following functions at the point

(0,0).
—— if (2,y) # (0,0), W a0
() fle) =3 V22 (2)f(x,y):{x+y2 o
24y sin——— if z, 0,0),
) flog) =1 @I s T £ 0.0)
0 if (z,y) = (0,0).

d
Problem 13.22. Use the chain rule for functions of several variables to compute % or d—qf

(1) z=+/1+ 2y, x =tant, y = arctant.



(2) w:xexp(g),x:tQ,yzl—t,z:1+2t.

(3) w=In+/2%+ y?+ 22, x =sint, y = cost, z = tant.
(4) w=azycosz, v =t,y=1t% z = arccost.
(5) w=2ye® —Inz, x =1In(t* + 1), y = arctant, z = e’

Problem 13.23. Use the chain rule for functions of several variables to compute o and

ds
oz
ot
(1) z = arctan(z? + y?), * = slnt, y = te®.
(2) z = arctan L 2 =scost,y=ssint.
Yy
(3) z=¢€"cosy, x = st, y = s>+ 1%
- 9 S\ Of - of B 2 . .0z
Problem 13.24. Assume that z = f(ts ,;), %(:ﬁ,y) = xy, a—y(x,y) =5 Find EP and
%
ot
Problem 13.25. Find the partial derivatives g—z and % at given points.
x y

(1) sin(z +y) +sin(y + z) +sin(z + 2) = 0, (z,y,2) = (7, 7, 7).
(2) ze¥ +ye* +2Inz —2—-3In2 =0, (z,y,2) = (1,In2,In 3).
(3) z=e€" COS(y—|— Z)a (.T,y,Z) = (07 -1, 1)

Problem 13.26. Let f be differentiable, and z = ;[f(ax +y) + glax — y)] Show that

9%z _ M( 202)
oz 420y y oy/)
Problem 13.27. Suppose that we substitute polar coordinates x = rcosf# and y = rsinf

in a differentiable function z = f(x,y).

(1) Show that % = fycos6 + f,sinf and %% = —fysind + f, cos@.
(2) Solve the equations in part (1) to express f, and f, in terms of gz and g;
T



(3) Show that (f.)%+ (f,)* = (Zi)Q + 1(2;)2.

2
(4) Suppose in addition that f, and f, are differentiable. Show that

f + f — 6722 + 1% iLzZ
W 02 o dr 12062
Problem 13.28. Let R be an open region in R? and f : R — R be a real-valued function. In

class we have talked about the differentiability of f. For k > 2, the k-times differentiability
of f is defined inductively: for k € N, f is said to be (k + 1)-times differentiable at (a, b)

k
if the k-th partial derivative ———— is differentiable at (a,b) for all 0 < j < k (note
0xk=i0yi
k
that in order to achieve this, (%c’f—ﬂf(?yﬂ has to be defined in a neighborhood of (a,b) for all

0<j< k) f is said to be k-times differentiable on R if f is k-times differentiable at (a, b)

for all (a,b) € R. f is said to be k-times continuously differentiable on R if the k-th partial
akf

derivative ———— is continuous at (a,b) for all 0 < j < k.
Oxk—ioyl ’

(1) Show that if f is (k + 1)-times differentiable on R, then f is k-times continuously
differentiable on R.

(2) Show that if f is k-times continuously differentiable on R, then f is k-times differen-
tiable on R.

Hint: In this problem Theorem 13.35 is used (without proving yet).
Problem 13.29. Let f(z,) = /zy.
(1) Show that f is continuous at (0,0).

(2) Show that f, and f, exist at the origin but that the directional derivatives at the

origin in all other directions do not exist.

Problem 13.30. Let X
T

flzy) =< @t Ty

0 if (z,y) =(0,0).

if (x,y) # (0,0),

(1) Show that the directional derivative of f at the origin exists in all directions u, and

(D.N0.0) = (ZL0.0.Z0.0) .



(2) Determine whether f is differentiable at (0,0) or not.

Problem 13.31. Let u = (a,b) be a unit vector and f be twice continuously differentiable.
Show that

Dif = fuu@® + 2fryab+ f,,0°,
where D2 f = D, (D.f).

Problem 13.32. Show that the operation of taking the gradient of a function has the
given property. Assume that u and v are differentiable functions of x and y and that a,b

are constants.
(1) V(au+ bv) = aVu+ bVu.
(2) V(uww) = uVv + vVu.

(3) v(g) _ vVu —2qu'
(4) V(u") =nu""'Vu.

2
Problem 13.33. Show that the equation of the tangent plane to the ellipsoid — + L

x 2+z2_
a? b2 2

1 at the point (zo, o, 20) can be written as

TLo  YYo | 220 _ 1
@2 T T e T
Problem 13.34. Show that the equation of the tangent plane to the elliptic paraboloid
2 2
z = % + %2 at the point (o, yo, 20) can be written as

2xxg N 2yy0 2+ 20 .

a? b2 c

Problem 13.35. Let f be a differentiable function and consider the surface z = =z f(g)
X
Show that the tangent plane at any point (xg, 3o, 20) on the surface passes through the

origin.

Problem 13.36. Prove that the angle of inclination # of the tangent plane to the surface
z = f(z,y) at the point (xo, yo, 20) satisfies

1

cosf = .
\/fz(l‘myo)Q + fy(zo,y0)2 + 1




Problem 13.37. In the following problems, find all relative extrema and saddle points of
the function. Use the Second Partials Test when applicable.

(1) f(z,y)=a®>—ay—y*—3c—y (2) flz,y) = 2y — %(1’4+y4) +1

(3) flz,y) =2y — 2z — 2y — 2 — y? (4) f(z,y) = 2 + y* — 32® — 3y* — 9z

(5) f(z,y) = /5622 — 8y2 — 16z — 31+ 1 — 8x (6) f(x,y) = é +xy+;

(7) flz,y) =In(z+y) +22—y 8) f(z,y) =2Inzr+Iny—4zx —y

x2+y2)

(9) f(w,y) = zyexp (- = (10) f(x,y) = zy+ e

(11) f(z,y) = (2> +y*)e™  (12) f(z,y) = (% — 2%+ y2) exp(l — 2% — y?)

Problem 13.38. In the following problems, find the absolute extrema of the function over

the region R (which contains boundaries).
(1) f(z,y) =2* + oy, and R = {(z,y) | o] < 2,|y| <1}

(2) f(z,y) = 2x — 2zy + y?, and R is the region in the xy-plane bounded by the graphs
of y=2%and y = 1.

dxy
(z* +1)(y* + 1)

3) flz,y) = ;and R = {(z,9)|0 <z <1,0<y <1}

(4) f(z,y) =xy® and R = {(z,y) |z = 0,y = 0,27 +y* < 3}.
(5) flz,y) =22+ y* and R = {(z,y)|2? + y* < 1}.

Problem 13.39. Show that f(z,y) = 2* + 4y? — 4zy + 2 has an infinite number of critical

points and that the discriminant f,, f,, — fy = (0 at each one. Then show that f has a local

(and absolute) minimum at each critical point

Problem 13.40. Show that f(z,y) = 22ye * "% has maximum values at ( +1, \}5) and
1
minimum values at ( +1, ——). Show also that f has infinitely many other critical points

V2

and the discriminant f,, f,, — 2 =

zy
values? Minimum values? Saddle points?

0 at each of them. Which of them give rise to maximum



Problem 13.41. Find two numbers a and b with a < b such that
b
f /24 — 22 — 22 dx
has its largest value.

Problem 13.42. Let m > n be natural numbers, and A be an m x n real matrix, b € R™

be a vector.

(1) Show that if the minimum of the function f(z1,---,z,) = ||Az — b| occurs at the
point ¢ = (c1,- -+ ,¢,), then ¢ satisfies ATAc = ATb.

(2) Find the relation between the linear regression and (1).

Problem 13.43. Let {(:vl, Y1), (T2,92), - ,(:Bn,yn)} be n points with z; # z; if i # j. Use
the Second Partials Test to verify that the formulas for a and b given by

niﬂfzyz—<i$z><§1yz> 1,& n

i=1 i=1

n n 2 }
ny, xf — ( > :r2> i=1 i=1
i=1 i=1

a =

indeed minimize the function S(a,b) = 3. (az; + b — y;)*.
i=1

Problem 13.44. The Shannon index (sometimes called the Shannon-Wiener index or
Shannon-Weaver index) is a measure of diversity in an ecosystem. For the case of three

species, it is defined as

H=—pilnp; —p2Inpy — pslnps,

where p; is the proportion of species ¢ in the ecosystem.
(1) Express H as a function of two variables using the fact that p; + ps + ps = 1.
(2) What is the domain of H?
(3) Find the maximum value of H. For what values of py, pa, ps does it occur?

Problem 13.45. Three alleles (alternative versions of a gene) A, B, and O determine the
four blood types A (AA or AO), B (BB or BO), O (OO), and AB. The Hardy-Weinberg



Law states that the proportion of individuals in a population who carry two different alleles
is
P =2pq + 2pr + 2rq,

where p, ¢, and r are the proportions of A, B, and O in the population. Use the fact that
2
p+ q+1r =1 to show that P is at most 3

Problem 13.46. Find an equation of the plane that passes through the point (1,2, 3) and

cuts off the smallest volume in the first octant.
Problem 13.47. Use the method of Lagrange multipliers to complete the following.
(1) Maximize f(x,y) = 4/6 — 22 — y2 subject to the constraint = +y — 2 = 0.
(2) Minimize f(z,y) = 322 — y? subject to the constraint 2z — 2y + 5 = 0.
(3) Minimize f(z,y) = 2 + y? subject to the constraint zy? = 54.
(4) Maximize f(z,y,2) = €** subject to the constraint 222 + y? + 22 = 24.

(5) Maximize f(z,y,2) = In(z? + 1) +In(y? + 1) + In(2% + 1) subject to the constraint
2?2 +y? + 22 =12

(6) Maximize f(z,y,z) = x + y + z subject to the constraint 2 + y* + 2% = 1.
(7) Maximize f(z,y,z,t) =z +y+ 2 + t subject to the constraint 2 + y* + 2% + t* = 1.
mimize f(x,y,z) = x°+y~+z° subject to the constraints r+2z = 6 and r+y = 12.
8) Minimi y 2+ 9%+ 22 subject to th traint 2z =6and z+y = 12
aximize J(x,y,z) = z subject to the constraints z°+4y* +2° = and 2r+y—=z = 2.
(9) Maximize f(x,y, 2) bject to th traints 2% +y?+ 22 = 36 and 2z +y 2
(10) Maximize f(z,y,z) = yz + xy subject to the constraint zy = 1 and y* + 22 = 1.

Problem 13.48. Use the method of Lagrange multipliers to find the extreme values of the

function f(x1, T2, - ,2,) = ¥+ T2+ -+, subject to the constraint z? +z2+---+22 = 1.

Problem 13.49. (1) Use the method of Lagrange multipliers to show that the product of
three positive numbers z, y, and z, whose sum has the constant value .S, is a maximum

when the three numbers are equal. Use this result to show that

%2«3/xyz Vr,y,2>0.



(2) Generalize the result of part (1) to prove that the product zixex3 - - - x,, is maximized,

under the constraint that ] z; = S and z; > 0 for all 1 <7 < n, when
i=1

T1 =Ty =3 ="'""=Tp-

Then prove that

Ttz + -+
VX1To Xy < " V.Z’l,l'g,"',anO.

n n

Problem 13.50. (1) Maximize ), z;y; subject to the constraints »|

z?=1and Yy} =1.
i=1 i=1 i=1

(2) Put x; = Y andy = bi to show that

SR
\/Z“a’
Jj=1

for any numbers aq,as, - -, ap, by, by, -+ ,b,. This inequality is known as the Cauchy-

Schwarz Inequality.

Problem 13.51. Find the points on the curve 22 + zy + ?> = 1 in the zy-plane that are
nearest to and farthest from the origin.

2 2

Problem 13.52. If the ellipse % + y—Q
a b
of a and b minimize the area of the ellipse?

= 1 is to enclose the circle 22 +4? = 2y, what values

Problem 13.53. (1) Use the method of Lagrange multipliers to prove that the rectangle

with maximum area that has a given perimeter p is a square.

(2) Use the method of Lagrange multipliers to prove that the triangle with maximum area

that has a given perimeter p is equilateral.

Hint: Use Heron’s formula for the area:

A=/s(s —2)(s —y)(s - 2),

where s = g and z,y, z are the lengths of the sides.



Problem 13.54. When light waves traveling in a transparent medium strike the surface of
a second transparent medium, they tend to “bend” in order to follow the path of minimum

time. This tendency is called refraction and is described by Snell’ s Law of Refraction,

sin 81 sin 92

Vi Vo

Y

where 0, and 6, are the magnitudes of the angles shown in the figure, and vy and v, are the
velocities of light in the two media. Use the method of Lagrange multipliers to derive this

law using x +y = a.

P 1
~ 1
S | Medium |
('f] N 1
~ 11
S
X < ! )
i s ]
Medium 2 S S~ d,
: 2 e
< a -1 ()

Problem 13.55. A set C' < R" is said to be convex if
te+(1—t)yeC Ve, ye C and t e [0,1].

(- B R* ¢ ol & C’W}bﬁ_; WE LR C P Ed B g2 3R mmEs & C
¢ ) °
Suppose that C' < R™ is a convex set, and f : C' — R be a differentiable real-valued

function. Show that if f on C attains its minimum at a point *, then
(VHx*) - (x—x*) =0 VeeC. (%)

Hint: Recall that (Vf)(z*) - (x — «*), when f is differentiable at z*, is the directional

derivative of f at x* in the “direction” (x — x*).

Remark: A point * satisfying () is sometimes called a stationary point of f in C.
Problem 13.56. Let B be the unit closed ball centered at the origin given by

B = {:L': (21,29, ,xn)eRn‘||a:\|2:x§—|—x§—|—--~+xi < 1},
and f: B — R be a differentiable real-valued function. Consider the minimization problem

min f(x).

xzeB



(1) Show that if f attains its minimum at «* € B, then there exists A < 0 such that
(V)(z") =A™

(2) Find the minimum of the function f(z,y) = 2% + 2y — 2 on the unit closed disk
centered at the origin {(z,y)|2? + y* < 1} using (

Problem 13.57. Let a € R? be a vector, b € R, and C be a half plane given by
C={x=(v,22,73) eR*|a -z < b},

and f : C' — R be a differentiable real-valued function. Consider the minimization problem

Hllél f(x). Show that if f attains its minimum at z* € C, then there exists A < 0 such that
Te

(Vf)(@") = Aa.



Chapter 14

Multiple Integration

14.1 Double Integrals and Volume

Let R be a closed and bounded region in the plane, and f : R — R be a non-negative

continuous function. We are interested in the volume of the solid in space

D= {(x,y,z)‘(x,y)eR,Oézéf(:r;,y)}.

First we assume that R = [a,b] x [¢,b] = {(z,y)|a <z < b,c <y < d} be a rectangle. Let
Po={a=ap<z1 <2< <z,=bfand Py={c=y <y < - < ymn = d} be
partitions of [a, b] and [c, d], respectively, R;; denote the rectangle [z;_1, x;] x [y;_1,y;], and
{(ai,ﬁj)}KKnKjgm be a collection of points such that «; € [x;—1,2;] and 5; € [y;_1,y;].

XN,

Then as before, we consider an approximation of the volume of D given by
Z Z flai, Bi) (@i — xima) (y; — yj-1) -
i=1j=1

Then the limit of the sum above, as |P,|, |P,| approaches zero, is the volume of D. The

collection of rectangles P = {R;; }1<i<n.1<j<m is called a partition of R.

’ =

i

Figure 14.1: The volume of D can be obtained by making |P.|,||P,| — 0.

355



In general, by relabeling the rectangles as Ry, Ra, -+, Ry (thus P = {R |1 < k <
nm}), and letting {(&, nk)}zzl be a collection of point in R such that (&, nx) € Rg, we can

consider an approximation of the volume of the solid given by
> F (&) Ak
k=1

where A;, is the area of the rectangle R;. The sum above is called a Riemann sum of f
for partition P. With |P|, called the norm of P, denoting the maximum length of the
diagonal of Ry; that is,

|P| = max {¢ | ¢4 is the length of the diagonal of Ry,1 <k < nm},

then the volume of D is the “limit”

lim Zf ke, i) A

IP—0

as long as “the limit exists”. Similar to the discussion of the limit of Riemann sums in the
case of functions of one variable, we can remove the restrictions that f is continuous and
non-negative on R and still consider the limit of the Riemann sums. We have the following
Let R = [a,b] x [c,d] be a rectangle in the plane, and f : R — R be a function. f is

said to be Riemann integrable on R if there exists a real number V' such that for every

e > 0, there exists ¢ > 0 such that if P is partition of R satisfying |P| < J, then any
Riemann sums of f for the partition P belongs to the interval (V — e,V +¢). Such

a number V' (is unique if it exists and) is called the Riemann integral or double

integral of f on R and is denoted by fff(x,y) dA or simply f f(z,y)d(z,y).
R
R

How about the case that the base R of the solid is not a closed and bounded rectangle?
In this case we choose 7 > 0 large enough such that R < [—r,r]? = [-r,7] x [-r, 7] and then
for a function f: R — R, define [ : [—r,7]? > R by

~ o [ fle) ifzeR,
f(x)_{ 0 ifz¢R.

We define JJ flx,y)dA as Jf f x,y) dA (when the latter double integral exists).

[—r,r]?



Before proceeding, let us talk about a special class of regions.

Definition 14.2

A region R is said to be have area if the constant function 1 is Riemann integrable on

R. If R has area, then the area of R is defined as the integral Jf 1dA.

The following theorem is an analogy of Theorem 4.10.

Theorem 14.3
Let R be a closed and bounded region in the plane, and f : R — R be a function. If

R has area and f is continuous on R, then f is Riemann integrable on R.

Similar to the properties for integrals of functions of one variable, we have the following

Theorem 14.4: Properties of double integrals

Let R be a closed and bounded region in the plane, f,g : R — R be functions that

are Riemann integrable on R, and ¢ be a real number.

1. ¢f is Riemann integrable on R, and

|[enemar=c|[ s aa

2. f £ g are Riemann integrable on R, and

H(f +g)(z,y)dA = J f(z,y)dA £ Ug(m,y) dA

3. If f(x,y) = g(x,y) for all (z,y) € R, then

f flz,y)d >g9(9€,y)dz4

4. |f| is Riemann integrable, and

‘Hf(x,y)dA‘ <J f(z,y)|dA.




Definition 14.5

Two bounded regions R; and Ry in the plane are said to be non-overlapping if Ry N R»

has zero area.

Theorem 14.6

Let Ry and R, be non-overlapping regions in the plane, R = Ry U Ry, and f: R - R

be such that f is Riemann integrable on R; and Rs. Then f is Riemann integrable

£ff(a:,y)dA= ilff@’y)dAjLLfﬂx’y)dA'

on R and

14.2 The Iterated Integrals and Fubini’s Theorem

Let R be a bounded region with area, and f : R — R be a non-negative continuous function.

As explained in the previous section, the volume of the solid
D ={(z,y,2)|(x,y) € R,0 < 2 < f(x,y)}

is given by fj f(z,y)dA. We are concerned with computing this double integral in this

. R
section.

Recall from Section 7.2 that if D is a solid lies between two planes * = a and x = b
(a < b), and the area of the cross section of D taken perpendicular to the z-axis is A(z),

then
b

the volume of D = J Ax)dzx .

a

Therefore, if the region R is given by
R={(zy)|a<z<bg(r) <y<g)}

for some continuous functions ¢y, g» : [a,b] — R, then the area of the cross section of D

taken perpendicular to the z axis is

g2(x)
Ax) = j f( ) dy

g1(x)



92(z)
f f(z,y) dy) dx. Therefore, in this

b
which shows that the volume of D is given by f (
a ~Jgi(z)

special case we find that

g2 ()

Hf(g;,y) dA = Lb (L() £z, y) dy) dz | (14.2.1)

Similarly, recall that if D lies between y = ¢ and y = d (¢ < d), and the area of the cross
section of D taken perpendicular to the y-axis is A(y), then

d
the volume of D = f A(y) dy;

C

thus similar argument shows that

H fla,y)dA = fd (fi(i) F(z,) dm) dy . (14.2.2)
). "y

c

b 1 1
\\ L] L\
|

Figure 14.2: Finding the volume of D using the method of cross section

g2(x)
We note that in formulas (14.2.1), we have to compute the integral f(z,y)dy
g1(x)
for each fixed z € [a,b] which gives the area of the cross section A(z), then compute the
b
integral f A(x) dx to obtain the volume of D. This way of computing double integrals is

called iterated integrals, and sometime we omit the parentheses and write it as

femaa=[ [ fe g,
- L[

Similarly, the iterated integral appearing in (14.2.2) can also be written as

ﬂ}mwmzfﬂtﬁwwmw.
. 1



The evaluation of the double integral jj f(x,y) dA can be generalized for a more general
R

class of functions, and it is called the Fubini Theorem.

Theorem 14.7: Fubini’s Theorem

Let R be a region in the plane, and f : R — R be continuous (but no necessary

non-negative).

1. If Ris given by R = {(z,y)|a <z < b,g1(z) <y < go(x)}, then

[[#mar={"([ 92(9:) (o) dy) dr

g1 (J»‘

2. If R is given by R = {(z,y) | c<y<d gi(zr) <y<gsr)}, then

[[remar=[(] h(()) (o) dr) dy.

C

Example 14.8. Find the volume of the solid region bounded by the paraboloid z = 4 —
22 — 2y% and the zy-plane. By the definition of double integrals, the volume of this solid is

given by ff (4 — 2% — 2y?) dA, where R is the region {(ZE, Y) ‘x2 +29% < 4}. Writing R as
R

.2 )
Rz{(m,y))—2<$<2,—\/?<y<\/42x}

R={(z,y)| —V2<y<v2,-/1-22 <z <~/4-2y},

the Fubini Theorem then implies that

or

ffu-st-mria= [ ([ o)
R 2

NN ey
£ﬁ<£¢HM

1. Integrating in y first then integrating in x: for fixed x € [—2,2],

(4 — 2% — 2¢%) d:v) dy .



4—22

J 42;2(4—:162—23; dy_fr dy—QJF

VB - - () - 2

[N

Therefore, by the substitution x = 2sinf (so that dx = 2 cos df),

2 212 2
ff —2® —2yh)dA = == V2 ( x2)gdx:\TFJ 8 cos® 0 - 2 cos 0df
5

3 Joo
N2 (3 442 (2
_ 322 V2 [ cos49d9:ﬁj200849d9
3 J— g
_ 64[ : (M) do
3 Jo 2
PE
_ 16v2 e <1+2cos29+1+C—OS49> a9
3 JO 2
16[ 3 T 1 . T
B [5 g o (2g) + goin (1:5)] = 4var.

2. Integrating in z first then integrating in y: for fixed y € [—v/2,v/2],

4292 4292 4292
f (4—x2—2y2)dxzf (4 —2y)dx—f 2? dw

4292 4—2y2

—a(-2)t - -2t = -2l

thus by the substitution of variable y = v/2sin (so that dy = v/2 cos 6 df),

4 (V2 4 (2
Jf(4—x2—2y2)dA:§f (4—2y2)§dy:§f 8cos® - /2 cos b df
). _

V3

s
2

32{[ os*0do =

4 3
MJ cos* 0 db = 4v2r .
0

Example 14.9. Find the volume of the solid region bounded above by the paraboloid
2z =1— 2% —y? and below by the plane z =1 — y.

Let R be the region in the plane whose boundary points (z, y) satisfies 1 —2?—y?> = 1—y
or equivalently, 22 + 4> — y = 0. Then the volume of the solid described above is given by



Jf [(1—2?—y?) — (1 —y)] dA. Note that the region R is a disk centered at (0, %) with
R
1

radius 3 and can be written as

R={(z,)[0<y<1,-y—y> <z <~y—y?}.

Therefore,

H [(1—2?—y*) —(1—y)]dA= Ll (J o (y -2~ y) da:)dy
R
= fol (Q(y — )t - %(y - yQ)%) dy = %Jl(y —y?)7 dy = gfol [i ~(y- %ﬁgdy.

1
Making the substitution of variable y — % = ésin@ (so that dy = 5 cos 0 dé)),

4 (7 cos’f 1 1 (2
ff [(1—2"—y) = (1—y)] dA=§J7r COZ -écosecw:éfo cos40d0:3%.
R

2

1, pl
Example 14.10. Find the iterated integral J (f e da/:) dy.
0 y

Let R = {(z,y)|0
{(z,v) ‘ 0<z<1,0<y<uz}, by the Fubini Theorem we find that

Ll <L1 e das) dy = [J e dA = Ll <J: e~ dy) dr = Ll ze " d

<y<l,y<uz< 1}. Since R can also be expressed as R =

14.3 Surface Area

14.3.1 Surface area of graph of functions

Let R = [a,b] x [¢,d] be a rectangle in the plane, and f : R — R be a continuously

differentiable function. We are interested in the area of the surface

S:{(:E,y,z)‘(a:,y)ER,z:f(a:,y)}.

Let P = {Rij ‘ l1<i1<n,1 <j< m} be a partition of R. Partition each rectangle

R;; = [xi—1, %] x [yj—1,y;] into two triangles Az-lj and A,?j, where A}j has vertices (2,1, y;-1),



(%i,yj-1), (wi—1,y;) and A?j has vertices (z;,9;), (i—1,Y;), (i, yj—1). Then intuitively, the
area of the surface f(A}) can be approximated by the area of the triangle T} with ver-
tices (a:i,l,yj,l,f(a:i,l,yj,l)), (xi,yj,l,f(xi,yj,l)) and (:Ul',yj,f(xi,yj)), while the area
of the surface f (A?j) can be approximated by the area of the triangle Tg with vertices
(a:i,yj, f(x,;,yj)), (xz-_l,yj, f(xi_l,yj)) and (xz-,yj_l, f(xi,yj_l)). Therefore, the area of the
surface f(R;;) can be approximated by the sum of area of triangles T1 and Té, and the area

of the surface S can be approximated by the sum of the area of the triangles T} and Té,

where is sum is taken over all 1 <t <nand 1 <7 <m.
Now we compute the area of the triangles 75 and T};. We remark that for a triangle T
with vertices Py, P, P, letting u = PP, = P, — P, and v = P, P; = Py — P;, the area of

1
T can be computed by §||u x v|. Therefore, the area of T,é is given by

1
\Tzlj’ = 2 H (1’1 — -1, 0, f(zi, yj—l) - f(a:i—lyyj—l)) X
< (0,45 — yj—1, f(@ic1, y5) — f@im1,yj-1)) H :
By the mean value theorem, there exist £ € (2,1, 2;) and 77 € (y;-1,%;) such that
f(@iyi—1) = f(@ic1,y5-1) = fo(& yi—1) (@i — i),
f(wiy, yj) — f(wi-a, yj71> = fy(iUzeh 77;)(?/3‘ - yjfl) ;

thus we obtain that
1
T3l = 5 110, £o(&F y5-1)) (0.1, fyis, ) |
:—H( fo (& yj-1), = fy (i1, 1)), )G = i) (y; = yj1)

= 5\/1 + [ yi—1)? + fy(wio,nf)2 (@ — wima) (Y5 — Y1) -

Similarly, there exist £* € (x;_1,%;) and n7* € (y;_1,¥;) such that the area of the triangle

T is given by

1721 = 5T+ Fu€ )+ Fy (e 3Pl — i) 05— yy).

Let M = (mz)xx (Ifo(z,9)| + |fy(@,9)]), |R] = (b—a)(d—¢), and € > 0 be a given (but
z,y)ER
arbitrary) number. Suppose that

‘fm(aaﬁ) - fx(fa”)‘ + ’fy(@7ﬁ> - fy(fan)‘ < m v (avﬂ)a (5777) € Rij : (1431)



Then

‘\/1+fx(a, )2+ f,(a*, B \/1+fx (&m)%+ fy(€,n)? ‘

_ fx(a>ﬁ) + fy( >ﬁ ) — f2(&, 77) — fy(§, 77)
\/1+frr(0‘a B)? +fy(04* \/1+fa: §,m)? "‘fy(g n)?

<5 [0 - fm(&n)Hfm(%B) - h(ém)!
1100, 8%) = F&mlfa®, 8 + £ (&)

v Me €
—[!fx(oe, — fo(&m)| + | £y (0, B7) = [, (&, 77)!] SIR|(1+ M) ~ 2R

Therefore, if (14.3.1) holds for all 1 <7 < n and 1 < j < m, then for (;,7;;) € R;;, we have

‘|Tz§'| + T3 \/1 + ful&jsmig)? + fy(&ijymig)* (s — @ima) (yy — yj,l)‘
1
< ‘%\/1 + fz(gz?k?yjfl)Q + fy(xiflan;")2 + 5\/1 + fx( i >yj) + fy(l’iaﬁf*)Q
- \/1 + fz(gija nz‘j)Q + fy(&ja 77@'3’)2‘(1’1‘ - xi—l)(yj - yj—l)

3
= 3[R

thus if (14.3.1) holds for all 1 <4 < n and 1 < j < m, then for (&;,n;;) € Rij,

(T = i) (Y — Y1)

ZZ (| ’+| ZZ\/1+JC:B (&> i) + Sy &gy mig)* (@i — 2im1) (y; — Y1)
i—1j=1 i—1j=1
<22‘|1—%|+|E§‘|_\/1+fx(§ij:77ij)2+fy(£ij’77ij>2( — i) (Yj — Yj- 1)‘
i=1j=1

< DX g ) — ) = 5

Finally, we state as a fact that there exists §; > 0 such that (14.3.1) holds as long as

|P| < é;. This property is called the uniform continuity of continuous functions on

closed and bounded sets.
On the other hand, since the function z = /1 + f.(z,y)? + f,(z,y)? is continuous on R

(and R has area), it is Riemann integrable on R. Let

- £ |V £+ an




Then there exists d > 0 such that if P is a partition of R satisfying ||P|| < 9, then any
Riemann sum of f for the partition P belongs to (I — %, I+ %) Therefore,

n m E

> \/1 + fol&igymig)? + Fy(&go mig)* (i — 2ima) (s — yj-0) =1 < 5

i=1 j=1
Let 6 = min{él,ég} Then 6 > () and if P = {RL‘J‘ = [IL‘ 1;£é] [UJ 1, Ul} 1 <1<
n,1 < j < m} is a partition of R satisfying |P| <6, then by choosing a collection of points

cicn.1<jem Such that (&, ;) € Rij, we conclude that

{(gl]a 772] }1\ ,

ZZ\ il +HIT50) 1

=1 j=1

< Z 2 (1751 + 172 — Z Z \/1 + fa(&ijsmig)* + Fy (i i) * (T3 — i) (Y5 — Y1)

i=1j=1 1=175=1
0 21+ el + ol )P — )y — 350) —
i=1j=1

This means that the approximation of the area of the surface S can be made arbitrarily

closed to I; thus the area of the surface S must be I. In general, we have the following

Theorem 14.11

Let R be a closed region in the plane, and f : R — R be a continuously differentiable

function. Then the area of the surface S = {(z,y,2)|(z,y) € R,z = f(z,y)} is given
by

[[viFT@neir = [[\i+ s+ iepras

Example 14.12. Find the surface area of the sphere with radius r.
Let f(z,y) = /r* —2? —y*> and R = {(z,y)|2? + y* < r?}. Then the surface area of

the sphere with radius r is given by

zﬂ\ﬁ+fx(x,y)2+fy(x,y)2d/1 _ zrg md/x

Since R can also be expressed as R = {(x,y) ’ —r<e<r,—Vr2—ax2<y<r?— x2},
the Fubini Theorem then implies that

VrZ—z?

H\/T—ycm L Jﬁ\/T_y )




By Theorem 5.63, we find that for each —r < x <,

N y =z
f dy = arcsin —— = arcsin 1 — arcsin(—1) = 7.
VT2 / 7“2 _ 172 y=—/r2—z2

Therefore,

r R .
J <J dy)d:r:f mdr = 2nr
Nemr- RV —r
which implies that the surface area of a sphere with radius r is 4772,

Example 14.13. In this example we consider the surface area of the upper hemi-sphere

2z = 4/1? — 22 — y? that lies above the disk R = { x,y) }:(:2—1—1/2 < 02}, where 0 < o < r.
Let f(x,y) = +/r? — 22 — y2. Since R can also be expressed by

R:{(x,y)} —ragxéa,—\/UQ—xz<y<\/02—x2},

the Fubini Theorem implies that the surface area of interest is given by

H \/1 + fula,y)? + fy(z,y)2dA
' Vo=

ﬂﬁf {———

By Theorem 5.63, we find that

o} o“—x o y y:m
J ( f — ) J ( arcsin ——— )d:v
m\/ — 2?2 —y? —o 78— x® ly=—Vo?—a?

Vo? — 12 o Vo? — 12

=2 arcsin ——— dr =2 arctan ——— dx
Y r2—z e 2 —o

2 _ 2 |z=0 o d 2 _ .2

= ofwarctan Y22 f v aretan Y2 o]
Vr2 —o?le=—0 J_, dx r2 — o2

:_QUxmmd QMJ N i

14 2= 2 — 22)y/o? — 12

—0 r2_g2

= —2Vr?2 — o271 + 24/r2 —UQJ dx .

—LU2) o2 — 12

. o .0
Using the substitution z = o sin 50 e find that

o T2 T 7,.2 ™ 7,.2
f 2 22\ /52 — de:f 2 20 dG:f 2 _ 52(] — 9d9
o (r2—a?)\o? —x —x 2(r? — 0%sin® 3) 5 2r2 —o02(1 — cosf)

T 1
=7’ db
" J,r (2r2 — 0?) + 02 cos 0



0
and further substitution tan 3= t implies that

JU r2 dr — [~ r2 2dt
_o (M2 —22)y/o? — 22 Jowo (212 — 02) + 02 ig 1+¢2
. [~ 272 di
) 221+ 82) = 21+ 12) + 02(1 - 12)
(0 2
r
= 2 2 57z dt
J_or?H(r2=o?)t
= ! arctan ( rt-o t) ” = il
r? — o2 T t=—o0 r? — o2

Therefore, the surface area of interest is given by

dAZQT\/W[—W—I——WT }:271'7“(7“— TZ—UQ).

r2 — g2

[

Example 14.14. Find the surface area of the paraboloid z = 1 + 2% + y? that lies above
the unit disk.

Let f(z,y) =1+ 2?4+ y* and R = {(a:,y)! —1<z<1,—V/1-22<y< M}, the
Fubini Theorem implies that the surface area of interest is given by

Nier

lj¢r+n@yv+@@umdA:J:(IV:;VG+4ﬁ+Qﬂ@%m.

2 rhun/a2 + b2
Using (8.3.1),Weﬁndthatj a2+b2u2du:%[w+ln(bu+ a2+62u2)}+0
a
if a,b > 0; thus
Vica? Via?
V1+4x? 4+ 4y dy = 2 1+ 4x? 4+ 4y? dy
Via? 0
1+ 42? [2y/1 4 42% + 4y? Nigwrawy: } y=vi-a?
= [ a2 +ln(2y+ 144z +4y) o
2 — 2
VBT gE 4 LA VT2t
2 V1 + 422
Therefore,
1 2
1+422 . /5 +2y1 — a2
Jf\/1+fx($,y)2+fy($>y)2dfl:f_l [\/5V1—a:2+ ;—In N dx
R
1 NS
:\/gﬂ—i—lf (1+4x2)1n\/5+2 L e
2 2 -1 \/1—|—4IE2



Integrating by parts,

1 1 — 42
J (1—1—4x2)ln\/5+2 Sl
—1 \/1+4$2

4 v B2V — 2=t ! 4 5 d . AB+2V1— 22
:(:c—l—f:z:)ln — (:c—i—fa: )—1n dx

3 V14+4z?2  la=—1 1 3 Jdx V1 + 42

—2x 4x
VI+4r2 — ————(v/5+ 21 — 22
[y VS Nzl o
1 3 V5421 —a? 1+ 422

__Jl (x_’_éxg) —2z 5"‘2\/5\/1—%‘2 dx

1 3 VB +2V1 — 22 (1 + 422)V/1 — 22
VB[N 22(3n + 44 C VB [T 14 3(1+ 4a?) — 21 — 2?)(1 + 4a?) "
3 ) (A 44e)vi—22 T 3 ), (14 42?)vV1 — 22

_\/g 1 1 1 1 2\/5 1
= dr +V5 | ——de— 22| V1—22d
3 -1 (1+4$2)\/1*LE2 v —1 \/1*.172 o 3 -1 o o
—ﬁf 1 2v/5
= dx + .
3 )1 (1+42?)v1—2? 3

By the substitution of variable x = sin 6, we find that

1 Ed ™
1 2 1 2 1
dr = ——df = de
fl (1 + 422)4/1 — 22 * fg 1 +4sin?6 J 1+ 2(1 — cos20)

™

2 1 1 (" 1
_f 3—200529d0—2jﬂ3—2605¢5d¢'

_T —
2

Wl

¢

By the substitution of variable tan 5= t, we further obtain that

Jl 1 dx—lfo 1 2dt _f‘” 1
1 (1 +422)v/1 — 22 2) 3221442 _ oo 1+ 5¢t2

1412

= \}5 arctan(+/5t)

t=00

t=—00

5

Therefore,

ff\/1+f:c($,y)2+fy(x,y)2dA: \fwjté[—\éa\;%ﬂL Q?W] = %(5\/3—1).
R



14.3.2 Surface area of parametric surfaces

Definition 14.15: Parametric Surfaces

Let X, Y and Z be functions of v and v that are continuous on a domain D in the

uv-plane. The collection of points
Y= {re R3 ‘ r=X(u,v)i+Y(u,v)j+ Z(u,v)k for some (u,v) € D}

is called a parametric surface. The equations z = X(u,v), y = Y(u,v), and z =
Z(u,v) are the parametric equations for the surface, and » : D — R? given by
r(u,v) = X(u,v)i+ Y (u,v)j+ Z(u,v)k is called a parametrization of X.

Example 14.16. Let R be an open region in the plane, and f : R — R be a continuous

function. Then the graph of f is a parametric surface. In fact,
the graph of f = {r eR? ‘ r = (z,y, f(z,y)) for some (z,y) € R} .

Therefore, a parametric surface can be viewed as a generalization of surfaces being graphs

of functions.

Example 14.17. Let S* = {(z,y,2) € R®|2? + 4> + 22 = 1} be the unit sphere in R®.

Consider
r(0,¢) = (cosfsing,sinfsing,cosg), (6,¢) € D =10,27] x [0,7].
Then r: D — S? is a continuous bijection; thus S? is a parametric surface.

Example 14.18. Consider the torus shown below

Figure 14.3: Torus with parametrization r(u,v). (temporary picture)



Note that the torus has a parametrization
r(u,v) = ((a+ beosv) cosu, (a + beosv)sinu, bsinv), (u,v) € [0, 2] x [0, 27].
Therefore, the torus is a parametric surface.

Remark 14.19. Similar to the case of curves, it is not required that the parametrization
r is one-to-one; thus self-intersection of surface is allowed for defining parametric surface.
However, we always assume that the “area” of the part of intersection is zero. This require-
ment is similar to the case that the parametrization of a curve that we discussed in Chapter

12 has non-overlapping property (see page 281).

Definition 14.20

A parametric surface

Y= {'r’e R? ‘ r=X(u,v)i+ Y (u,v)j+ Z(u,v)k for some (u,v) € D} :
is said to be regular if X, Y, Z are differentiable funcitons and
7y (u,v) x ry(u,v) # 0 V(u,v) € D,

where r, = X,i+ Y,j+ Z,k and 7, = X,i+ Y, j+ Z, k.

Remark 14.21. Let V be an open region in the plane. A vector-valued function ¢ : ¥V — R3
is differentiable if each component of 1 is differentiable, and the derivative of v, denoted by

D, is defined by
T (1) T (4, 0)

ou ov

0 0
[Dy(v)] = | 2 (w,0) F2(u,0)

03 03

%(%U) W(U, U)

Therefore, a parametric surface
Y= {re R3 ‘ r=X(u,v)i+Y(u,v)j+ Z(u,v)k for some (u,v) e D} :
is regular if for each (u,v) € D the derivative Dt (u,v)] has full rank.

Question: What does it mean by that a parametric surface is regular?



Suppose that
Y= {’PER3‘7’:X(U,U)i-i-Y(u,’U)j—i—Z(u,U)k for some (u,v) € D}_

is regular. Then at each point p = 7(ug, vo), Tu(uo, vo) and 7, (ug, vy) are tangent vectors to
Y. so that 7, (ug,vg) X r,(ug, Vo) is normal to the tangent plane of ¥ at p. In other words, a

parametric surface is regular if every point p € ¥ has a tangent plane (denoted by 7,,X).

Example 14.22. Let S? be the unit sphere given in Example 14.17. Then

r9(0,0) = (— sin 6 sin ¢, cos 0 sin ¢, O) ,
ry(0,0) = (cos@cos ¢, sin 0 cos ¢, — sin (b)

so that

(ry x 1)(6, ¢) = (— cosOsin® ¢, —sin sin® @, — sin ¢ cos ¢)
= —sin gzﬁ( cos 6 sin ¢, sin @ sin ¢, cos ng)

which is non-zero if ¢ # 0 and 7. Therefore, S*\{the north and the south poles} is a regular

parametric surface (with the same parametrization except that the domain becomes [0, 27] x
(0, 7).

Example 14.23. Let the torus be given in Example 14.18. Then

ro(u,v) = (= (a4 beosv)sinwu, (a+ beosv) cosu,0)

ry(u, v) (— bsin v cos u, —bsin v sin u, b cos v)

so that

(ry x ) (u,v) = (b(a + beosv) cosucosv, b(a + beosv) cosvsinu, b(a + beosv) sinv)

= b(a+ bcosv)(cosucosv,sinucosv,sinv) .

Since r, x 1, # 0, we find that the torus is a regular parametric surface.

Question: How to compute the surface area of a regular parametric surface?

Let p = r(ug, v9) be a point in X, and we consider the surface area of the region 'r’([uo, Ug+
h] x v, vo + k]), where h,k are very small. This area can be approximated by the sum
of the area of two triangles, one with vertices 7r(ug,vg), ™(ug + h, vg), 7(ug, vo + k) and the
other with vertices r(ug + h,vo), 7(ug, vo + k), 7(ug + h,vo + k).



The area of the triangle with vertices r(ug,vg), T(uo + h,vo), 7(ug, vo + k) is

= —H( r(ug + h,v) — r(uo,vo)) X (r(uo,vo + k) — r(uo,vo))HR3 )

By the mean value theorem,

r(ug+h,vo) — r(ug, vo)
= [X(UO + h, U()) — X(Ug, U0>:| i+ [Y(UO + h, ’Uo) — Y('Ll,o, Ug)]j
+ [Z(uo +h,vo) — Z(uy, UO)}k
= h[Xu(uo —|— th, ’Uo) —f- Y (’LLO —|— Qgh ’Uo) + Z (UO —|— 93h Uo)k}
for some 6,605,053 € (0,1). Suppose that 7 is continuously differentiable; that is, X, Y, Z
are continuously differentiable, then
Xu(ug + 01h,vo) = Xy (uo, vo) + E1(uo, vo, h),
Yu(uo + O2h,v9) = Yy, (uo, vo) + Ea(ug, vo, h) ,
Zu(ug + O3h,v0) = Z,(uo, vo) + E3(uo, vo, h),
where F, Es, E5 approach zero as h — 0. Therefore,

r(uo + h, vo) — 7(uo, vo) = h[ry(uo, vo) + Ei(uo, vo, h)]

where E| = Eyi+ Eyj + Esk satisfying that }llin%) E(ug,vo; h) = 0. Similarly,

r(ug, vo + k) — m(ug, vo) = k[ru(u(),vo) + E5(ug, vo, h)} ,

where lim F;(ug, vo; h) = 0. The discussion above shows that

—

lim (7 (uo + P, vo) — (w0, v0)) X (1(uo,vo + k) — r(uo, v0))
(hk)—(0,0) hk

— 1u(Uo, Vo) X Tu(Uo, Vo) =0



which further implies that

Ay = 2o, 10) % 7t to) [+ (o, b B

for some function £; which is bounded and converges to 0 as (h, k) — (0,0). Similarly, the

area of the triangle with vertices r(ug + h, vo), r(uo, vo + k), r(ug + h,vo + k) is

1
Ay = |7, vo) x 7o (0, v0) [k + Exluo, vo, b k) ok

for some function & which is bounded and converges to 0 as (h,k) — (0,0). The two

formulas for A; and A, shows that

the surface area of 7([ug, uo + h] x [vg, vo + k]) (14.3.2)
= |[ru(uo, vo) x 7y (o, vo)|hk + E(uo, vo, b, k)hk o
for some bounded function £ which converges to 0 as the last two variables h, k approach 0.
Now consider the surface area of r([a,a + L] x [b,b+ W]). Let £ > 0 be given. Choose
N > 0 such that
E(u, v, k)| < = VO < h < Lock<® ana (u,v) € [a,a + L] x [b,b+ W].
2LW N N
Denote |7, x | by /g. Then

‘ZZ\/g(Hi_nlL,Hj;blM)iZ— \/gdA’<g if n,m = N.
j=1li=1 [a,a+L]x[b,b+W]

Then for n,m > N, with (h, k) denoting (%7 d

E) (14.3.2) implies that

‘the surface area of r([a,a + L] x [b,b+ W]) — J
[a,a+L]x [b,b+ V]

VEdA |

= ‘ Z Z the surface area of r([a + (i — 1)h,a + ih| x [b+ ( — 1)k, b+ jk])
j=li=1

\/gdA‘

ﬁa,a#»L} x [b,b+W]

<‘i \/g(a+(i—1)h,b+(j—1)/~c)hk—J JEdA
1

j:l 1= [a7a+L} X [b7b+W]

n

+’iif(‘“L(i—l)habJr(j—l)k;h,k)hk‘

j=11i=1




The discussion above verifies the following

Theorem 14.24

Let D be an open region in the plane, and

Y= {re]R3‘r:X(U,v)i—i-Y(u,v)j—i—Z(u,v)k for some (u,v) eD}_

be a regular parametric surface so that r is continuously differentiable; that is,
Xu, X0, Y, Yy, 2y, Z, are continuous. Then

the surface area of ¥ = J |7u(u, v) x 7y (u,0)| d(u,v) .

D

Example 14.25. Let R be an open region in the plane, and f : R — R is continuously
differentiable. Then Theorem 14.24 implies that the surface area of the graph of f is given
by

[[ 1< e ae,

where the parametrization r is given by r(z,y) = (:U,y, f(x,y)), (z,y) € R. This formula

agrees with what Theorem 14.11 provides.

Example 14.26. With the parametrization of the unit sphere S? given in Example 14.22,
by Theorem 14.24 the surface area of S? is given by

[ terax oot = [[([ smoan)as = sm.
[0,27] X [0,7]

Example 14.27. With the parametrization of the torus given in Example 14.23, by Theo-

rem 14.24 the surface area of the torus is given by

Jf b(a + bcosv) d(u,v) = JQW (J%(ab + b? cos v) du) dv = 472ab.

0 0
[0,27] x[0,27]

14.4 'Triple Integrals and Applications

Let @ be a bounded region in space, and f :  — R be a non-negative function which

described the point density of the region. We are interested in the mass of Q).



We start with the simple case that @ = [a,b] x [c,d] x [r, s] is a cube. Let

P.={a=xg<m < - <x, =0},
Py={c=yw <y < <ym=d},

P.={r=2<zn<-<z,=s},

be partitions of [a,b], [c,d], [r,s], respectively, and P be a collection of non-overlapping

cubes given by
P = {Riji| Riji = [mi—1, @] % [yj—1,y;] ¥ [ze-1, 26, 1 <i<n,1<j<m,1<k<p}.

Such a collection P is called a partition of (), and the norm of P is the maximum of the
length of the diagonals of all R;;i; that is

HPH = max{\/(xi — $i71)2 + (y] — yj,1)2 + (Zk — Zk,1)2 1<i<n,l <7< m, 1<k< p} .

A Riemann sum of f for this partition P is given by
n m P
Z Z Z F(Eiges Miges Gigre) (i — Tim1) (Y5 — yj—1) (2% — 20-1) -

The mass of @ then should be the “limit” of Riemann sums as ||P| approaches zero. In
general, we can remove the restrictions that f is non-negative on R and still consider the
limit of the Riemann sums. We have the following

Let @ = [a,b] x [¢,d] x [r,s] be a cube in space, and f : Q@ — R be a function. f is

said to be Riemann integrable on ) if there exists a real number I such that for every

e > 0, there exists 0 > 0 such that if P is a partition of @) satisfying |P| < J, then
any Riemann sum of f for P belongs to (I — €, + ¢). Such a number [ (is unique if

it exists and) is called the Riemann integral or triple integral of f on () and is

denoted by ijf(x, y,z)dV.
Q

For general bounded region @ in space, let 7 > 0 be such that @ < [—r,7]3, and we

define Jff f(z,y,2)dV as JJJ f(x, y,z)dV, where £ is the zero extension of f given by
Q [—r,r]3
7 f([L‘,y,Z) if({L‘,y,Z)ER,
f(z,y,2) = .
0 if (z,y,2) ¢ R



Some of the properties of double integrals in Theorem 14.4 can be restated in terms of

triple integrals.

L. Jff(cf)(x,y,z) dV:cJJ flz,y,2)dV
Q Q
2. H (f +9)(z,y,2)dV = H f(@,y,2)dV + Hfg(w, y,z)dv
fff flz,y,2z)dV = ffff x,y,z)dV + ffff x,y, z)dV for all “non-overlapping”

Q1uQ2
solid regions () and Qg

Similar to Fubini’s Theorem for the evaluation of double integrals, we have the following

Theorem 14.29: Fubini’s Theorem

Let (@ be a region in space, and f :  — R be continuous. If ) is given by @) =

{(z,y,2)|(z,y) € R, gi(z,y) < z < g2(w,y)} for some region R in the zy-plane, then

Hfmy, )dV = H ngy :vy,z)dz)dA.

In particular, if R is expressed by R = { (z,y !a <z <bh(x)<y< hg(y)}, then

H Fz,y,2)dV = Lb [ L h(()) ( J e F(a,y,2) dz) dy] dz .
Q

gl(x,y)

Example 14.30. Find the volume of the region ) bounded below by the paraboloid z =
22 + 9% and above by the sphere 22 4 32 + 2% = 6.
Suppose @ is a solid region in space with uniform density 1 (or say, this region is occupied

by water). Then the volume of @ is identical to the mass (in terms of its numerical value);

thus we find that the volume of @) is given by f f 1dV. To apply the Fubini Theorem, we

Q
need to express () as {(:c, Y, 2) } (z,y) € R,g1(z,y) < 2z < go(x, y)} Nevertheless, if R is the
bounded region in the plane enclosed by the curve (z* + y*)? + 2% + y*> = 6 (which in fact
gives 72 + y? = 2), then

Q= {(x,y,2)| (v,y) € R,a® +y* < 2 < /6 — 22 — 2}



and the Fubini Theorem implies that

the volume of Q) = J (J 1 dz) dA .
R £B2+y2

Solving for R, we find that R = {(:L’,y) ‘ —V2<r<V2, V222 <y <2 - xQ}; thus
by the Fubini Theorem we find that

V2 V2—x? A/ 6—22—y2
the volume of ) = f [J f 1 dz) dy] dz .
-2

—A/2—x2 < :(:2+y2

w/2 w/2 3
Example 14.31. Evaluate f [J (J sin(yZ)dz> dy} dz.
0 T 1

Let R = {(z,y)]|0 < = < y/7/2,2 < y < 4/7/2}, then the domain of integration is
given by

Q={(z,y,2)|0<z</1/2,z<y</m/2,1<z<3}

and the iterated integral given above is the triple integral f f f sin(y?) dV.
Q

Since R can also be expressed as R = {(:E,y) ‘ 0<y<+/m/2,0<z< y}, by the Fubini
Theorem we find that

LW U:/m (f sin(yQ)dz)dy] do — Jcﬂsm(zf)dv

_ LW on (f sin(y?) dz ) de| dy = fm2ysin(y2)dy = —cos(y?)|

1 0

Example 14.32. Compute the iterated integrals

f: ”3 (de)dy}dwrf [L <L6_ydx)dy]dz,

then write the sum above as a single iterated integral in the order dydzdx and dzdydzx.

y=3
) dz
y=3

We compute the two integrals above as follows:

[l [ (oo [ (757

1 [ z 1 322 23
_2L (9—3z+Z)dZ—§<92—7+E>

2=6
=9 ,
z=0




and

1 6 y:12;z

== 12 — d
QL( y—y yZ) L, ®

1 f’ 144—24z+z2 (12 — 2)z

540 (12 — 2) 1 — 5 —36+9+3z)dz
1 {-6 2’2 2

=5 72 6z—36+6z—z—6z+——27+3z)d
Jo
1 6 3\ |2=6

—= | (9-3:+ )dz— (9z—?’i+z> ~9.
2.)0 z=0

Therefore, the sum of the two integrals is 18.
Let
Qi ={@ya|o<z<6<y<s i<y},
Q= {(@y|0<s<63<y< =5 <oy}

Then the Fubini Theorem implies that

f Uj (Edw)dy]dZZ Lﬂdv, f [Lu’; d;_ydx)dy]dz:g?fdv,

Let @ = Q1 U Q2. Since 1 and @), are non-overlapping solid regions (their intersection is
a subset of the plane y = 3). Then

[ﬂdmwdvzjﬂdv.

1. Let R be the projection of ) onto the xz-plane. Then R = {(:c,z) ‘ 0<z<30<
2z < 2:16} (where z = 2x is the projection of the plane z = % onto the zz-plane), and

() can also be expressed as

Q={(z,y,2)|(z,2) e Ra <y<6—=z}.

Therefore, the volume of () is given by

fo 3 ”02 (LG_I dy) dz] dx = f: [ fo " (6 22) 4] da

3

= LS 20(6 — 2z) dx = <6x2 - 4%)

r=3
=54 — 36 =18.
=0




N

2. Let S be the projection of () onto the zy-plane. Then S = {(w,y) ‘ 0<zxr <3z

y<6— Jc}, and () can also be expressed as
Q={(z,y,2)|(z,y) € 5,0 <z <2z}

Therefore, the volume of @) is given by

3

f [Jﬁ—m(fx dz>dy}dx=f [L6_z2xdy] dx:L 22(6 — 2x) dx = 18.

xT

14.5 Change of Variables Formula

In this section, we consider the version of substitution of variables in multiple integrals. We
have used the technique of substitution of variable to evaluate the iterated integrals in, for
example, Example 14.13 and 14.14; however, these substitutions of variable always assume
that other variables are independent of the new variable introduced by the substitution of
variable. We would like to investigate the effect of making a change of variables such as

x =rcosf, y =rsinf in computing the double integrals.

14.5.1 Double integrals in polar coordinates

We start our discussion with double integrals in polar coordinates. Suppose that R is the

shaded region shown in Figure 14.4 and f : R — R is continuous.

P2

Pl |= ¥

> 1T
O pr cos 6, f pycos B P c0s 6

P2 c0s )y

Figure 14.3: Rectangle in polar coordinates

Then to compute the double integral ff f(z,y) dA using the Fubini theorem directly,
R



we need to divide R into three sub-regions R;, Ry, R3 given by

Rlz{(x,y) plcos@g<$<pgcos@2,q/pf—x2<y<xtan@2},
R2:{<Qf,y) pgcos@g<a:<plcos@1,q/p§—:v2<y<\/p%—:v2},
R3:{<l‘,y) plcos@l<$<p2@2,xtan@1<y<y/p§—x2},

and write

gf(x,y) dA = ﬂf(x,y) dA+gf(x,y) dA+gf(x,y) dA .

However, we know that the region R above is a rectangle in rf-plane, where (r,0) is the
polar coordinates on the plane. To be more precise, in polar coordinate the region R can be
expressed as R’ = {(r, 0) }pl <1 < p2, 01 < 0 < Oy}, which means that every point (x,y)

in R can be written as (rcosf,rsin@) for (r,0) € R’, and vice versa. One should expect

that it should be easier to write down the iterated integral for computing f f f(z,y)dA.
R

LetPr:{p1:r0<7"1<~-<rn:p2} andpgz{@1:90<91<~-<9m:@2}
be partitions of [p1, po] and [©1, O], respectively, R;; = [ri_1,7] % [8,-1,6,] be rectangles
in the rf-plane, S;; be the sub-region in the xy-plane corresponds to R;; under the polar

coordinate; that is,
Sij = {(rcos,rsin)|r e [ri_i,r],0€[0;_1,0,]}.

The collection P = {SZ-]- | 1<i<n1<j< m} is called a partition of rectangles in polar

coordinates, and the norm of P, denoted by [P/, is the maximum diameter of S;;.

Y

(0]

Figure 14.4: Rectangle in polar coordinates



A Riemann sum of f for partition P is of the form Z Z f(&j,mi)|Si5], where |S;;| is
i=1j=1

the area of S;; and {(&;, i) be collection of points satisfying (&;;,7:;) € S;;
J g2 1) 51 g0 Thij J

<isn,l<jsm

)

Then intuitively JJ f(z,y) dA is the limit of Riemann sums of f for P as ||P|| approaches

ZETO.
To see the limit of Riemann sums, we choose a particular partition P and collection

{(&j. mij }1<Z<n 1<J< . We equally partition [py, p2] and [©1, O] into n and m sub-intervals.

S BES

Let Ar = Land Af = O Land r; = py+iAr and 0; = ©,+jA0, and &; = r; cos 0,

n
and 7;; = r;sinf;. Noting that

1 1 1
1S5 = (7“ — 77 )0 —0,1) = 5(7“2 +7i_1)ArAf = r; ArAf — §Ar2A9,

we find that

n m

2 Z f (&> mij)|Sis| = 2 Z f(ricosO;,r;sinb;)r; ArAf

i=1j=1 i=1j=1

2 Z f(ricos;,r;sinf;)ArAg.

i=17=1

Let g(r,0) = rf(rcosf,rsinf) and h(r,0) = f(rcosf,rsinf), then

ZZf &gﬂh; |Szy| —ZZQ 7”2, ATAQ— 722h TZ, A’/’A@

i=1j5=1 i=1j5=1 i=1j5=1

As n,m approach oo, we find that

22 g(ri, 0 ATAO—>JJ (r,0)d(r,0) ffrcos& rsin@)rd(r,0),

i=17=1
ZZh(n, ArAG—»JJ (r,8)d(r,0) Jfrcos@rsm@)d(r@)

where the right-hand side integrals denotes the double integrals on the rectangle R’. There-

fore, the limit of Riemann sums of f for P as |P| approaches zero is

J f(rcos@,rsin@)rd(r,0);

thus
J flz,y)d(z,y) = J f(rcos@,rsin@)rd(r,0). (14.5.1)
R R



14.5.2 Jacobian

Recall the substitution of variables formula for the integral of functions of one variable:

b ) g(b)
| rlo@)g@ e = [ swyau.
a g(a)

Suppose that g : [a,b] — R is one-to-one. If ¢ is increasing, then ¢’ > 0 and g([a,b]) =

[9(a), g(b)]; thus the formula above can be rewritten as

| s fong@de= | o)y @) ds.
9([a,b]) [a,b] [a,b]
If g is decreasing, then g’ < 0 and g([a,b]) = [g(b), g(a)]; thus the formula above can be

written as

| twae=—| fe@g@de= | fo@l'@)]dr.
9([a,b]) [a,b]

[a,0]

Therefore, in either cases we have a rewritten version of the substitution of variable formula
|t sl o
9([a,b]) [a,]

In this section, we are concerned with the substitution of variable formula (usually called the
change of variables formula in the case of multiple integrals) for double and triple integrals,
here the substitution of variables is usually given by x = x(u,v),y = y(u,v) for the case
of double integrals and =z = z(u,v,w), y = y(u,v,w), z = z(u,v,w) for the case of triple

integrals.

Consider the double integral Jf f(z,y) dA. Suppose that we have the change of variables
R

r = z(u,v) and y = y(u,v), and the Fubini Theorem implies that the double integral can
be written as f (f f(z,y) dy) dx, here we do not write the upper limit and lower limit

explicitly. Note the inner integral in the iterated integral is computed by assuming that =
is fixed. When z is a fixed constant, the relation z = x(u, v) gives a relation between u and

v, and the implicit differentiation provides that

du zy(u,v)

dv oz (u,v)



if z,, # 0. Making the substitution of the variable y = y(u, v) with u, v satisfying the relation
x = z(u,v), we find that

Ay =y, 0)du + g, (0, 0)dv =y, 0) oo+ (u,v)do

_ xu(u, v)yU(U, U) - J7v(u7 U)yU(u7 U) dv -

zy(u,v)

thus

ff(:r,y) dy = ff(a:(u, o), y(u, o)) Tl 8w V) = 2w vy v))

Ty (u, v)
Therefore, the substitution of variable © = x(u,v), where “v is treated as a constant since

it has been integrated”, is

J (Jf(yc, y) dy) dx
- J <ff(l’(um),y(u7v))

= f <ff($(u, v),y(u, U))‘mu(u, V)Y (1, v) — x4 (u, v) Yy, (u, v)} dv) du . (14.5.2)

Loy (U, V)Y (U, V) — Ty (U, 0)Yu(u, v) ‘ dv) Ty (u, I’)’ du

Ty (u,v)

Example 14.33. Consider the change of variables using polar coordinate x = rcos#f,

y = rsinf (treat r, 0 as the u,v variables, respectively). Then
Ty Yy — TpYu| = | cos@ -7 cos@ — (—rsind) -sinf| = |r| =r;
thus (14.5.2) implies the change of variables formula for polar coordinates (14.5.1).

Now we consider the possible change of variables formula for triple integrals. Suppose
that by the Fubini Theorem,

Jlff@a%z)dV——J[J‘<Jj(uywadz>@4dx7

where again we do not state explicitly the upper and the lower limit of each integral. For a
given change of variables x = z(u,v,w), y = y(u,v,w) and z = z(u,v,w), the first integral
that we need to evaluate is f f(z,y,2)dz, and this integral is computed by assuming that

x,y are fixed constants. When z and y are fixed constants, the relations = = x(u, v, w) and

y = y(u, v, w) give a relation among u, v, w. Suppose that these relations imply that u and v



are differentiable functions of w, then the implicit differentiation (when applicable) provides
that

0= xu(u,v,w)d—u + mv(u,v,w)@ + zy(u, v, w),

dw dw

du dv
0 = yu(u,v, w)% + yv(u,v,w)dw + Ywl(u, v, w) ;

thus if z,y, — z,y, # 0, we have

du Ty (Uy 0, W) Yoy (U, U, W) — Ty (w0, v, W)Yy (w, v, W)
dw — xy(u, v, W)y (u, v, w) — Ty (u, v, W)y (u, v, w)
dv Ty (U, U, W)Yy (Uy 0, W) — Xy (Uy U, W)Yy (W, v, W)
dw oy (u, v, W)Yy (U, v, w) — Ty (u, v, W)Y (u, v, w)

and these identities further imply that

dz = zy(u,v,w)du + z,(u, v, w)dv + z,(u, v, w)dw
. [ LTolYw — TwYv LTwlYu — Tulw
= [%u 2y
TulYv — TolYu TyYv — ToYu
_ [xvywzu — TwYviu + TwlYuiv — TuYw2e + ToulYviw — TolYuiw
TulYv — Tolu

+ 2w | (u, v, w)dw

] (u, v, w)dw .
Therefore,

| ez = [t 0.yt 0), 20, 0.0) 5

x xvywzu - xwyvzu+xwyu2v _xuywzv +xuyvzw _:Evyuzw (
ToulYv —TolYu

u,v,w) dw,

and (14.5.2), by treating w as a constant since it has been integrated, implies that

f”(Jf(:r,y,z) dz)dy}d;c

— J [J (Jf(x(uq /U, w), y(u, U’ w>7 Z(u7 /U’ w)) X
X TolYwiu — Twlvu T TwlYuv — TulwZe + TulvZw — ToluZw
TulYv — TolYu

X ‘:L'u(u, U, W)Yy (U, v, w) — 2, (u, v, W)y, (u, v, w)‘ d’U:| du

= J [J (Jf(x(u,v,w),y(u,v,w),Z(u,U,w))x

X |xvywzu — TwlYviu + LwYuRy — TyulYwiv + TyYviw — mvyuzw‘(uv v, w) dw) d?}] du .

’(u,v,w) dw) X

The naive (but wrong) computations above motivate the following



Definition 14.34

If x = z(u,v) and y = y(u,v), the Jacobian of x and y with respect to u and v,

o(x,y) .
denoted b d
enoted by a0’ is
o(z,y) | Tu Ty | _
8(’[1,’1}) - yu yv - xuyv :'E’Uyu .
If x = z(u,v,w), y = y(u,v,w) and z = z(u, v, w), the Jacobian of x, y and z with
0 .
respect to u, v and w, denoted by M, is
0 (u,v,w)
Ty Ty Ty
d(z,y,2)
5 | Yu Yo Yw | T TuYoRw T TwYuZe T Tolwiu — TwlYoZu — TolYuiw — Tulwy -
0(u,v,w)
Zu Zv Zw
In general, if g1, g2, - , g, are functions of n-variables (whose variables are denoted by
Uy, Ug, - -+ ,Uy), then the Jacobian of gy, ga, - - - , g, (With respect to uy, ug, - ,u,), denoted
ola. - .
by (gla agn) , is
0(ut, -+, un) o 0 g
(7u1 6uQ 6un
992 092 . Og2
0(91,--9n) _ | dur  Ouy duy,
a(ula , Up
(7U1 6uz 6un

Example 14.35. The Jacobian of the change of variables given by the polar coordinate

r=a+rcost,y=>b+rsinf is

cosf) —rsinf
sinf rcos@

-

The Jacobian of the change of variables given by the spherical coordinate x = pcos 8 sin ¢,

y = psinfsin ¢, z = pcos ¢ is

cosfsing —psinfsing pcosbcos
= | sinflsing pcosfsing psinfcos
cos ¢ 0 —psin ¢

d(x,y,2)
2(p,0,9)

= —p? cos® fsin® ¢ — p? sin” O sin ¢ cos? ¢ — p* cos? Osin ¢ cos® ¢ — p* sin? fsin® ¢

= —p?cos? fsin ¢ — p?sin’ fsinp = —p?sin .



The Jacobian of the change of variables given by the cylindrical coordinate x = rcos#,
y=rsinf, z =z is
cosf —rsinf 0

) — | sinf rcos® 0 |=r.
0 0 1

Even though the derivation of the change of variables is wrong; however, the conclusion

is in fact correct, and we have the following

Theorem 14.36

Let O < R? be an open set that has area, and g = (g1, g2) : O — R? be an one-to-one

continuously differentiable function such that ¢g=! is also continuously differentiable.
Assume that the Jacobian of gi, go (with respective to their variables) does not vanish
in O. If f: g(O) — R is integrable (on g(O)), then

“fgcydA Hfgluv gguv))‘ 9192‘@4’

9(0)
where the integral on the right-hand side is the double integral of the function

fg1(u,v), ga2(u,v) ’ 691 92)‘ (with variables u,v) on O.

Theorem 14.37

Let O < R? be an open set that has volume (that is, the constant function is Rie-
mann integrable on O), and g = (g1, g2, 93) : O — R3 be an one-to-one continuously
differentiable function such that ¢g~! is also continuously differentiable. Assume that
the Jacobian of ¢, go, g3 (With respective to their variables) does not vanish in O. If
f:9(0O) — R is integrable (on g(O)), then

Jf flz,y,2)dV = ijf g1(u, v, w), go(u, v, w), gguvw (91,92, 93) ’dV’

8 (u,v,w)
9(0)
where the integral on the right- hand side is the triple integral of the function
f(gl(u,v,w),gg(u,v,w),gg(u,v,w 5 (u v,w) (with variables u, v, w) on O.

Remark 14.38. Suppose that O is an open set in the plane such that the boundary of

O, denoted by 0O, has zero area. Under suitable assumptions (for example, if the set of



discontinuities of f has zero area and f is bounded above or below by a constant), we have

Hf(x,y) dA = f fla,y)dA. (14.5.3)
0 o)

Example 14.39. Let B = {(z,y) |#* + y* < R*} —[0,1) x {0}. Then the polar coordinate
x = x(r,0) = rcosf and y = y(r,0) = rcosf is an one-to-one continuously differentiable
function from O = (0, R) x (0,27) — R? and the inverse function r = r(z,y) = /22 + y?

and

Arccos —— ify>0,

$2+y2
0=0(x,y) = T ify=0,
I — arccos ———— if y <0,

Va2 +y?
is also continuously differentiable (which you proved in Quiz). Therefore, the change of

variables formula implies that
f f(z,y)d J f(rcosf,rsin@)rdA’.
(0,R) % (0,2)

Let D(R) = {(z,y)|2® + y* < R*}. Then D = B U dB and [0,R] x [0,27] = (0, R) X
(0,27) U A[(0, R) x (0,2m)]; thus (14.5.3) further implies that

ﬂfxydA_ H F(rcos6,rsind)rdA’.

D(R) x[0,27]

In general, if a region R, in polar coordinate, can be expressed as

R = {<T79)‘a < 0 < bvgl(g) ST S 92(0)}7

Hf(x,y) dA:Lb(fgi:)f(rcos@,rsin&)rdr) df
). 1

g

then

while if R, in polar coordinate, can be expressed as
R = {(T’,Q)‘C< r< d7h1(r) < 0 < h?(,r)}7

then

d ha(r)
f(z,y)dA = f(rcosf,rsin@)rdd) dr.
L xr,y J;(J T COS rsmdo)r ) T

hi(r)



Example 14.40. In this example we compute the double integral JJ\/l + 42?2 + 4y? dA

that appears in Example 14.14, where R = {(z,y) ’xQ +y? < 1}. f

Using the polar coordinate, R = {(r, 0) ‘ 0<r<1,0<6< 27r}; thus

21 1 2T 5
J 1+4x2+4y2dA—J (J \/1+4r2-rdr>d6—f [l(1+4r2)2]
0 0 12

0
R

r=1
de

r=0

- fﬁ@\@ ~1)df =27 (5V5 — 1).

0

dA that

r
T2—332—y2

appears in Example 14.13, where R = {(m, Y) ‘ 2?2 +y? < 02} with 0 <o <.

Example 14.41. In this example we compute the double integral ff
R

Using the polar coordinate (here we let p be the radial variable instead of r since r in
this integral is a fixed constant), R = {(p, 0) ’ 0<p<o,0<0< 27?}; thus

2 p=c

[deA:L%(LU\/%—pQ-pdp)d@:L (—m/ﬁ—p?)‘pzode
:f’r (12 — VT = o7) d = 2m (1 — /T = 7).

0

Example 14.42. Let S be the subset of the upper hemisphere z = /1 — 22 — y? enclosed

by the curve C' shown in the figure below

Hemisphere z

z2=1/1—x2—y>2 Curve C

Figure 14.5: Curve S on the upper hemisphere

where each point of C' corresponds to some point (costsint, sin?t, cos t) with t € [—g, g}
Find the surface of S.



7T7Ti|
3

Let (z,y) be a boundary point of R. The (x,y) = (costsint,sin?t) for some t € [—5, 5

thus

2%+ y* = cos’ tsin®t + sin*t = (cos?t + sin®t) sin? ¢t = sin’t = y.

Therefore, the boundary of R consists of points (z,y) satisfying x? + y* = y which shows
1 1
that R is a disk centered at (0, 5) with radius 3 Therefore,

R={(z,9)|0<y<l,—y—y? <z <~y—y*},

and by Theorem 14.11 the surface area of S is given by JJ
R

1
V1 —a2—92
Now we apply the change of variables using the polar coordinates to compute this double

integral. Since we have found the Jacobian of this change of variables, we only need to find

the corresponding region R’ of R in the rf-plane and the change of variables formula shows

that the surface area of S is jj " dA’.
R/

Vioe

By the fact that the boundary of R’ maps to the boundary of R under the change
of variables x = rcosf and y = rsinf, we find that if (r,0) is a boundary point of R/,
then (r, ) satisfies r> = rsin6; thus the boundary of R’ consists of points (r,6) satisfying

r =sinf or r = 0 in the rf-plane. Since R locates on the upper half plane, 0 < < 7, and

the center of the disk R corresponds to point (%, g) in the rf-plane, we conclude that
R'={(r,0)|0<6<7,0<r<sinb}.

Therefore,

gﬁdA/:f(Lwﬁrdr>d9:L[(_m)

:f(1—|cose|)d9:7r—2f

P o—z
20089d6:7r—2(sin9‘ >:7T—2.
0 0 =0

r=sin

| a0

r=0

Q0
Example 14.43. In this example we compute the improper integral f e dx. First
0

we note that this improper integral converges since 0 < e < e forall z = 1 and

0 0
f e *dr = e! < o0, the comparison test implies that f e dx converges.
1 1



o0 2 © 2
Let I = f e dx. Then I = j e Y dy; thus
0 0

0

I*= (LOO e dx) ( L e dy) = L@O (LOO eV dy) e dr
= JOOO <J000 e T ey dy) dr = LOO (LOO o~ (@ +?) dy) dr — [{[ o~ (@ +y?) A,

where R is the first quadrant of the plane. In polar coordinate, the first quadrant can be

expressed as 0 <r <ooand 0 <0 < g; thus using the polar coordinate we find that

I? = fog (J:O e_rzrdr)de = LQ (—%e‘r2>

By the fact that I > 0, we conclude that [ = \é%

Example 14.44. The Jacobian in the change of variable using spherical coordinate is
p?sin ¢ Let @ be a solid region in space, and f : Q — R be continuous. Suppose that @Q, in

spherical coordinate, can be expressed as
{(0797 (b) ‘ a < ¢ < bagl<¢) <0< 92(¢)7
Example 14.45. In this example we reconsider the volume of @) in Example 14.30, where

Q={(z,y,2) | (v,y) € R,a’ + 4> < 2 < /6 — 22 — y2},

and R is a disk centered at the origin with radius v/2.

Using the cylindrical coordinate, the region () can be expressed as
{(r6,2)[0<r<v2,0<6<2mr®<z<V6—12}.

Therefore, the volume of @) is given by

[ ar= 1L raardao= [T o=y oo
Q

:L [—%(6—7"2) —}Lr“] T:ﬁdezfﬁ(_

r=0 0

1

—1+2V6)df =27 (2v6 - ) .

[SIY)

w| oo




Example 14.46. Find the volume of the solid region () bounded below by the cone z =
A/22 + 42 and above by the sphere 2% 4+ y? + 22 = 9.
Using spherical coordinate, () can be expressed as

{(p,9,¢)‘0<p<3,0<9<27T,0<¢<

S

Therefore, the volume of @) is given by

gf dV = f ij (ij%inqsdp)de}dqs_ 187TJ1 sin ¢ dp = 18w (1 — *f),

0

Example 14.47. Find the double integral ff e~ 2 dA, where R is the region given in the
R

following figure.

h [
X y=—
"

Consider the following change of variables: = = \/? and y = y/uv. In order to apply

u
the change of variables formula to find the double integral, we need to know

1. What is the Jacobian of this change of variable?

2. What is the corresponding region of integration in the uv-plane?

We first note that for the change of variables to make sense, u,v have the same sign.

W.L.O.G., we assume that the corresponding region in the uv-plane lies in the first quadrant.
We compute the Jacobian and find that

}\/@.i} L1

Oz,y) _|2Ve w? 2Vo wf 1 -1 11 1

0(u,v) 1w L u 4 wu 4 u 2u
2 \/uv 2 y/uv

Now we find the corresponding region R’ in the uwv-plane. The rule of thumb is that a

one-to-one continuously differentiable function whose Jacobian does not vanish maps the



boundary of a region to the boundary of its image. Therefore, the boundary of R’ is given
by u = %, u=2and v =1, v = 4. Since the point (z,y) satisfying xy = 2 and % =1

corresponds to u = 1 and v = 2, we find that R’ = [%, 2] x [1,4]. Therefore, the change of

variable formula implies that

ff e 2 dA = Jf 65% dA’ = LZ (Jj 62_5 dv) du
s 2
2 _ CA 2
-[ 1)

1
} du = (6_% — 6_2) J —du = 31H2(6_% — 6_2> .
A more fundamental question is: why do we choose this change of coordinate? The

v=4

v=1 11U
2

general philosophy is to “straighten” the boundary so that in the new coordinate system

the corresponding region becomes a region bounded by straight lines. Observing that the

: . . 1 o

boundaries of the region R consists of four curves L. T LA 2, zy = 1 and zy = 4, it is
X X

quite intuitive that we choose u = Y and v = xy as our change of variables (in a reverse

T

order). Solving for z,y in terms of u, v, we find that x = \/? and y = /uv.
u

14.6 Exercise

Problem 14.1. Evaluate the following iterated integrals.

(1) J11<L1yem2+92dx>dy 2) f(fy@\/mdm)dy 3) Ll(J;y@w‘"’dx)dy
J: L1+ 4dgg)dy (5) L“(E sin(y2)dy>dx (6) LLL(J;ygildy)dx

(
JQ < JQ de dr  (8) JQ < Jl exp(z?) dm) dy  (9) f ( fl %ﬂy? dx) dy
(

0 0o \Jy 0o \Jo

Jo Jg siny d (11) J;(Li ﬁsinxdw)dy (12) j;(f:_w Zer dy)d

JI(J coS x\/mdm) dy  (14) f5 [Jm<fw \/mdz)dy] dx
0 \Jarcsiny —5tJo

J; [Ll Jy 2 cos(w dx)dy} dz (16) Ll [f:(j;xz exp(zy?) dy)da:} d»




1 1 In3 7T€2:1: Sin(ﬂ'yQ) 2 4—z2 T Sil’l(QZ)
(17) Jo [f%(JO — g dx)dy]dz (18) Jo [Jo (L s dy)dz}d:c
Problem 14.2. Evaluate the double integral fjf(m, y) dA with the following f and R.
R

(1) f(z,y) = y*e™¥, and R is the region bounded by y =z, y = 4 and x = 0.

(2) f(x,y) = zy, and R is the region bounded by the line y = = — 1 and parabola
2 =21 +6.

(3) f(x,y) = sin*(x 4+ y), and R is the triangle enclosed by the lines y = 0, y = 2z, and

rz=1.
(4) f(z,y) =2+ 2%y — y?*sinz, and R = {(z,y) ||z + y| < 1}.

(5) f(z,y) = |z +|yl, and R = {(z,y) | |z| + [y| < 1}.

(6) f(z,y) = xy, and R is the region in the first quadrant bounded by curves x* + y* = 4,
2 4+y?=9 22—y’ =1and 22 —y? = 4.

(7) f(z,y) =z, and R is the region in the first quadrant bounded by curves 4x? — y* = 4,

42% — y?> = 16, y = = and the z-axis.
(8) f(z,y) = exp(—2? — 4y?), and R = {(a:,y) ‘ 22+ 4y? < 1}.

9) f(z,y) = exp (;i;i), and R is the trapezoid with vertices (0,2), (1,0), (4,0) and
(0,8).

Problem 14.3. Evaluate the triple integral JJJ f(z,y,z) dV with the following f and D.
D

(1) f(z,y,2) =x —y+ 2% and D is the solid region bounded above by z = 1 + 22 + 2,
bounded below by z = 0, and inside 2 + y* = 4.

(2) f(z,y,2z) = 1, and D is the solid region bounded by z = 2 + y?, 2? + y?> = 4 and
z=0.
2 2

2
(3) f(z,y,2)=1,and D = {(m,y,z)eR?’ %—1—%24—'2—2 < 1},Where a,b,c > 0.



2
Problem 14.4. Evaluate the integral f [arctan(7z) — arctan z] dz by converting the in-
0

tegral into a double integral and evaluating the double integral by changing the order of

integration.

Problem 14.5. Let a,b be positive constants. Evaluate the integral

fa (Jb exp (max{b22?, a%y?}) dy) da .

0 0

Problem 14.6. Show that if A > %, there does not exist a real-valued continuous function
u such that for all z in the closed interval [0, 1],
1
ulw) =147 [ uy)uly - =) dy.

xT

Hint: Assume the contrary that there exists such a function u. Integrate the equation

above on the interval [0, 1].

Problem 14.7. Find the surface area for the portion of the surface z = zy that is inside
the cylinder 22 + 3% = 1.

Problem 14.8. Let ¥ be a parametric surface parameterized by
r(u,v) = X(u,v)i+ Y (u,v)j+ Z(u,v)k, (u,v)eR.
Define E=r,-r,, F =17, -r, and G = r, - r,. Show that
lry x 7|* = EG — F?.

Hint: You can try to make use of €;;;, the permutation symbol.
Remark: This quantity FG — F? is called the first fundamental form (associated with the

parametrization r).

Problem 14.9. Let £ > 0 be a constant. Show that the surface area of the cone z =
ka/x2 + y? that lies above the circular region 22 +y* < r? in the xy-plane is 7r2Vk2 + 1 by
the following methods:

1. Use the formula ff V14 [(V)(z,y)]? dA directly.
R



2. Find a parametrization of the cone above using 7, 6 (from the polar coordinate) as the

parameters and make use of the formula J |(rr % 79)(r,0)| d(r,0).

D

Problem 14.10. Let X be the surface formed by rotating the curve

C:{(x,y,z)ER?"x:cosz,y:O,—g<z<g}

about the z-axis. Find a parametrization for > and compute its surface area.

Problem 14.11. The figure below shows the surface created when the cylinder y? + 22 = 1
intersects the cylinder 22 + 22 = 1. Let ¥ be the part shown in the figure.

(1) Find the area of ¥ using the formula ff V1 (V)(x,y)]2 dA.
R

(2) Parameterize ¥ using 6, z as parameters (from the cylindrical coordinate) and find the

area of this surface using the formula Jj |(rg x 7.)(0,2)| d(r,0).
D

(3) Parameterize 3 using 0, ¢ as parameters (from the spherical coordinate) and find the

area of this surface using the formula Jj (rg x 74)(6, 2)| d(r,0).

D

(3) Find the volume of this intersection using triple integrals.

Problem 14.12. Let ¥ be the surface obtained by rotating the smooth curve y = f(x),

a < x < b about the z-axis, where f(z) > 0.
1. Show that
r(z,0) =xi+ f(x)cos0j+ f(z)sinbk, (z,0)¢€ [a,b] x [0,27],

is a parametrization of ¥, where 6 is the angle of rotation about the z-axis (see the

accompanying figure).



2. Show that the surface area of X is

b
J 2rf(x)\/1+ f/(x)?dx

a

using the formula ff |(rr x 79)(r,0)| d(r,0).
D

Problem 14.13. Let S be the subset of the upper hemisphere z = /1 — 22 — 2 enclosed
by the curve C' shown in the figure below

Hemisphere z

z=/1—22 —y? Curve C

where each point of C' corresponds to some point (costsint,sin®t, cost) with t € [—g, g}

Find the surface of S via the following steps:

(1) Let R be the region obtained by projecting S onto the zy-plane along the z-axis. Sup-
pose that R can be expressed as R = {(x, Y) ‘ c<y<d,q(y) <z < gg(y)} . Find ¢,d

and g1, g2, and find the surface area of S using the formula Jf V14 [(Vf)(z,y)]? dA.



(2) The surface S is a parametric surface parameterized by
S = {r’ r = cosfsin ¢i+ sinfsin ¢j + cos gk for some (6, ¢) € D} .

Find the domain D inside the rectangle [0, 27| x [0, 7], and find the surface area of S
using the formula ff |(re x 7)(6, )| d(6
D

Problem 14.14. Rewrite the following iterated integrals as an equivalent iterated integral

in the five other orders.

(1) Ll Ll ( Joyf(x, Y, 2) dz> dw} dy (2) Ll [Ll ( f:f(x, Y, 2) dx) dz] dy
(3) Ll :Llﬁ? ( Ol_xf(ac, Y, 2) dy) dz} dx (4) f:’ [J: ( Lg_x2f(x, Y, 2) dz) dy] dx

(5) Ll J\;( Ol_yf(x, Y, 2) dz) dy] dx (6) J_ll [le ( Ol_yf(x, Y, 2) dz) dy] dx

Problem 14.15. Find volume of the solid that lies under z = 22 + 3? and above the region

R in the zy-plane bounded by the line y = 2z and parabola y = 2.

Problem 14.16. Evaluate the triple integral JJJ dV, where D is bounded by z = 2 + 3?2,

>+ y>=4and 2 =0.
Problem 14.17. Evaluate the double integral JJ arctan 2 dA using the polar coordinate,
T

where
R={(z,y) eR*|1<2®+y"<4,0<y<uz}.

Problem 14.18. Evaluate the triple integral ija&exp(m2 +y* + 2%)dV, where D is the
D

portion of the unit ball 22 + y? + 22 < 1 that lies in the first octant.

Problem 14.19. Evaluate the triple integral ij V2 + y? + 22dV, where D is the region

D
lying above the cone z = 4/22 + 32 and between the spheres 2 +13%+2% = 1 and 2% +y%+ 22 =
4.

Problem 14.20. Use the cylinder coordinate to find the volume of the ball 22 +3?+2? = a?.



Problem 14.21. Use the spherical coordinate to find the volume of the cylindricality z? +

y? = r2, where 0 < z < h.

Problem 14.22. Compute the volume of D given below using triple integrals in cylindrical

coordinates.

(1) D is the solid right cylinder whose base is the region in the zy-plane that lies inside
the cardioid » = 1 4 cos @ and outside the circle » = 1 and whose top lies in the plane

z = 4.

L L
4 7
Z-—— =il
57
r=1+cos@

(2) D is the solid right cylinder whose base is the region between the circles r = cos 6 and

r = 2cos ) and whose top lies in the plane z = 3 — .

]

7=3—y

“u

" (=N

|"._\.\ ll....\\ 1»

)

o Bl

| A@

0. ¢

X Y r=cos#h
r=2cosf

Problem 14.23. Compute the volume of D given below using triple integrals in spherical

coordinates.

(1) D is the solid between the sphere p = cos ¢ and the hemisphere p =2, z > 0.



(2)

D is the solid bounded below by the sphere p = 2cos ¢ and above by the cone z =

a2+ y2.
X V—Vx* +y2
< _ -

m— 2cos ¢

X y

Problem 14.24. Convert the integral

[ ([ e

to an equivalent integral in cylindrical coordinates and evaluate the result.

Problem 14.25. Find the integrals given below with specific change of variables.

(1)

(2)

Find f f 3(2z — y)e@””_y)2 dm) dy using change of variables © = u + %v, Yy =u.
Find JJ _ dA by making the change of variables u = xy and v = y.
(1+zy) In(zy)
[0,1]x[0,1]

U

4
Find f f 2 +y?) d:c dy+f Jy 22 +y?) dx) dy using change of variables x = =
Y = uv.
1 21—z
Find J (f A/ 1% + 12 dy) dx using change of variables x = u? — v?, y = 2uw.
o \Jo
Let R be the region in the first quadrant of the xy-plane bounded by the hyperbolas

xy = 1, zy = 9 and the lines y = z, y = 4x. Find ff \/7+«/ )dA using the

change of variables x =

G\:

, Y = UL.



(6) Let D be the solid region in xyz-space defined by

D:{(x,y,z)}l<x<2,0<xy<2,0<z<1}.

Find Jff(xzy + 3xyz) dV using change of variables u = z, v = zy, w = 3z.
D

Problem 14.26. Evaluate the double integral Jf(x + y)e$2_y2 dA, where R is rectangle
R
enclosed by the linesz —y=0,r—y=2,2+y=0,and x +y = 3.

Problem 14.27. Let f be continuous on [0, 1] and let R be the triangular region with
vertices (0,0), (1,0), and (0,1). Show that

fff(:ery)dA:Lluf(u)du.

Problem 14.28. Let A be the area of the region in the first quadrant bounded by the line

Yy = %x, the z-axis, and the ellipse éxz +y? = 1. Find the positive number m such that
A is equal to the area of the region in the first quadrant bounded by the line y = mx, the
y-axis, and the ellipse %IQ +y?=1.

Hint: Try to make change of variables so that the computation of the area of the region

. . . . 1
in the first quadrant bounded by the line y = mx, the y-axis, and the ellipse §x2 +y2 =1

looks the same as the former one.
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